
COVERAGE ANALYSIS FOR EMBEDDED
TESTING AND AN APPLICATION

Jinsong Zhu* and Son T. Vuong
Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada V6T 1Z4

Abstract In this paper, we present two new results on the properties of the cov­
erage measure for embedded testing as proposed in [10], and an appli­
cation of the measure to a practical protocol. First, we identify and
prove the sufficient and necessary condition for loops to exist between
the test context and the test tree being constructed. This allows us to
avoid producing infinite test trees during test tree construction. Then
we prove that the calculation of the coverage measure is NP-complete,
which indicates that there unlikely exist efficient algorithms to compute
the coverage in general. Finally, in order to demonstrate the concept
and practicality of the coverage measure, we developed a tool set and
applied it to a practical protocol extracted from the Universal Personal
Computing system.

Keywords: Protocol testing, embedded test, fault coverage, universal personal com­
puting

*Now with Abatis Systems Corporation, Burnaby, Canada.

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999

378

1. INTRODUCTION
In this study, we focus on a type of protocol testing known as con­

formance testing [7], which is essentially a black-box testing strategy
applied to protocol systems. In conformance testing, we try to deter­
mine if an IUT complies with its specification. This will enhance our
confidence on interoperability between different implementations of a
common specification. Conformance testing can also be used for certi­
fying a product.

The research on protocol conformance testing has been targeting on
both single (isolated) machine testing and embedded testing. In sin­
gle machine testing, the machine offers full access of its interface and
therefore thorough testing may be performed. On the other hand, in
embedded testing the machine is embedded within a complex system
and a tester can only indirectly test the machine via other surrounding
machines known as the test context. The area of embedded testing is
still relatively young, but interests are starting to rise [6, 5, 3, 10]. While
most authors have focused on generating test suites, we are more inter­
ested in test coverage assessment of a test suite and in. incrementally
generating test suites based on the coverage requirement.

In [10], we have proposed an approach that evaluates the coverage of
embedded testing by machine identification. We enhance the approach
by solving the "loop prevention" problem (see Section 3.) with a pre­
identified sufficient and necessary condition, and giving a proof on the
computational complexity of the coverage calculation. Furthermore, we
try to model a real-life protocol as embedded testing and evaluate the
test coverage of a test suite for the embedded machine.

2. COVERAGE MEASURE FOR
EMBEDDED TESTING

In embedded testing, we deal with a module embedded within a com­
plex system which is referred to as a composite system. Modules in a
composite system communicate with each other and provide an over­
all system service to its users. To test an embedded module that does
not offer direct access to its interface, a tester can only try to infer the
conformance of the embedded module by testing the composite system.
The embedded module under test (MUT) is only exercised via its test
context. In our study, we describe each module in a composite system
as a finite state machine (FSM), and the composite system as a system
of communicating finite state machines (CFSMs).

In a previous work (10], we have defined the coverage of a test suite
with respect to a specification as follows:

379

Definition 1 (Coverage measure) LetT be a given test suite, S the
specification, and n the upper bound of the number of states in any im­
plementation of S. Let K rc M be the number of T-conforming machines
for S, and KscM is the number of S-conforming machines. The test
covemge ofT is defined as:

1
Cov(S,T,n) = F K 1 \.reM- SCM+

where T-conforming machines are the machines that pass the test suite
T, and S-conforming machines are the T -conforming machines that con­
form to S. Cov(S, T, n) is inversely proportional to the number of ma­
chines that pass the test suite but do not conform to the specification.

In order to better reflect the coverage values, we will use the logarith­
mic scale in the above definition, i.e.,

1
Cov(S, T, n) = I (F) I (F) . g \.reM - g \.scM + 1

To calculate Cov(S, T, n), we propose an approach that identifies the
MUT based on the test suite applied to the composite system. We
first compute test trees for the MUT from the system test suite, and
then "collapse" these trees into FSMs. The algorithm for generating
the test trees are given in [10]. The algorithm gives us the set of T­
conforming machines. The calculation of S-conforming machines is done
at the composite system level, according to the following conformance
in context (denoted confc) relation:

M confc S iff C o M conf C o S.

where conf is the conformance relation as used in single machine
testing. This conformance relation takes into account the limited ob­
servability introduced by the test context. Based on this definition, the
set of S-conforming machines can be produced.

3. LOOP PREVENTION
During construction of the test trees (TTs) for the MUT, a loop may

occur where the context and the test tree keep exchanging internal events
without producing an external output. This would create an infinite test
tree and the TT construction algorithm would not terminate.

We propose an approach that pre-identifies the conditions under which
a loop can happen, and then employs some measures to prevent it from
happening during TT construction. An examination of the problem
reveals that if the context machine contains cycles consisting of only

380

IT: nl

~~
u.,tz,·. 1 .-

0 u,..,l-z.

(I) i-cycle =>loop (2) no i-cycle => no loop

Figure 1.1 Proof for Theorem 1

internal events, it can cause a loop. A cycle is a transition path whose
end state is the same as the start state. We call a cycle with all internal
transitions an internal cycle, or i-cycle for short (similarly, i-path for
internal paths). We prove the following theorem:

Theorem 1 A loop between the test context and a test tree can happen
if and only if there exists i-cycles in the test context.

Proof: 1) i-cycles =? loop. Suppose there is an i-cycle in (Z/U)* in the
test context C. Pick a state Ql on the cycle, which is z1 / u 1, z2/ u2, ... , zn/ Zn
(Figure 1.1). When C gets into q1 via some external input, let the test
tree TT be at node n1. For C's output u1, TT may select z2 according
to the TT construction algorithm, which causes C to output u2 • TT
may select z3 for u2 , causing C to output u 3 . This may continue until
C gets back to state q1 , and TT repeats the path from n1. Therefore,
there is a loop between C and TT.

2) no i-cycles =? no loop. Suppose there is a longest i-path in C,
which is 1r = zifu1 , z2/u2, ... , zi/ui. Let C enter state Qi after zi/ui.
The outgoing transitions from Qi must be of the form xjy, xju, or zjy,
since otherwise 1r would not be the longest i-path. For transitions of the
form xjy and xju, since x is an external input, it must be a test input
from the test suite, and TT stays at the same node with no new edge
introduced, i.e., no loop will happen. For transitions of the form zjy,
TT would have selected z, and y will be produced by C. This external
output y is then compared against the test suite, and TT has a new edge
ud z added. This continues until all test step<> are exhausted at which
point TT is terminated. Therefore no infinite loop will exist between C
and TT. D

This theorem identifies the sufficient and necessary conditions for
loops to exist. It is straightforward to identify all i-cycles. The next

381

step is to find techniques to prevent loops once we recognize that they
may happen.

Suppose there is ani-cycle,~= ztful, z2/u2, ... , znfun. We call a se­
quence ut/z2, u2/ Z3, ... , Un-d Zn, un/ z1 the complement of~ and denote
it as ~. It is the path in the test tree corresponding to ~. In order to
avoid loops, the test tree in construction must not contain the path ~·
This can be done by recording the path in the test tree and whenever
a new edge is added, it is compared against the complements of all i­
cycles. The recording starts when the context enters into a state on an
i-cycle. The test tree avoids the last step of an i-cycle complement by
simply not choosing the output of that last step. This way the loop is
broken and the test tree can be terminated in finite steps.

This technique is integrated into the TT construction algorithm to
generate finite test trees. The trees are then fed to the tool COV to
produce all T-conforming machines, which gives us the value of I<rcM·

4. NP-COMPLETENESS OF COVERAGE
MEASURE CALCULATION

We already know from [8] that the calculation of the coverage measure
Cov(S, T, n) for single machine testing is NP-complete. We now ask the
following question: Given a test suite T, and the test context C, is there
a machine M with n states such that the composition of C and M agrees
with T?

This question is important since during the construction of TCMs, we
are essentially trying to find machines that accept the given test suite
after composition with the test context. We claim that it is NP-complete
and hence the coverage measure computation is also NP-complete. This
result assures us that although embedded testing is in general more
complicated than single machine testing, the computational complexity
of its test coverage evaluation is not.

Theorem 2 Let T be a test suite and C the test context. It is NP­
complete to find an n-state machine M, which interacts with C via a
predefined channel such that the composition of C and M accepts T.

Proof: Let us call this problem ESAT. First we show that ESAT is in
the domain of NP. A non-deterministic algorithm can guess a solution
machine M for ESAT, and then check if the composition of C and M
accepts T. Suppose the length ofT is l, the checking can be done by
applying the test steps one by one. For each test step, we only retain the
stable global states which will be reached unless a livelock occurs. If a
livelock is detected, the checking halts with the answer "no"; otherwise

382

Context

X XIX' Y'IY x·
CJr) f--"--

1- MUT
Y'

y

Figure 1.2 A special case of ESAT

the test step can be verified in 0 (m) time where m is the number of
internal exchanges between C and M. The whole test suite can then
be checked in O(lmmax) where mmax is the maximal number of internal
exchanges for all test steps. Therefore, the checking of whether M is
indeed a solution can be performed in polynomial time.

Now we show that ESAT contains a known NP-complete problem as
a special case. Consider a restricted case of ESAT: the context machine
C is a one state FSM as in Figure 1.2, and the internal interactions
between C and a MUT is X' and Y', which are simply a renaming of
X and Y respectively. Under this restriction, C is essentially a "pass­
through" module, and ESAT becomes the single machine identification
problem which is known to be NP-complete [1]. 0

The NP-completeness of the ESAT problem indicates that it is un­
likely that there exists polynomial algorithm to compute our coverage
measure. Therefore, heuristics may be the best approach to achieve good
performance. On the other hand, protocols should be structured with
smaller components, and large monolithic systems should be avoided.

5. APPLICATION
To validate the approach, an experimental tool set called ECOV has

been implemented. We applied the tool set to a protocol extracted from
a Universal Personal Computing (UPC) system [9, 4] which we devel­
oped to support personal mobility on the Internet which is indepen­
dent of the user's location, motion, and platforms. This new computing
paradigm retains one's personal computing environment (PCE) and ac­
cess capabilities wherever one happens to be. Personal mobility is one
step further than the traditional terminal mobility where the physical
devices migrate.

UPC is modeled as a set of communicating objects distributed in the
Internet, with some objects invisible to the outside world. Testing of

383

these objects in an embedded manner presents a suitable application of
our method in a multiple module setting.

5.1 UPC PROTOCOLS
The UPC system employs a number of protocols that support personal

mobility on the Internet. This includes the middleware support that
allows a mobile user to access the network wherever he roams, the mobile
user location management protocol, and mobile user PCE management.
We shall focus on the first protocol. The latter two protocols can be
found in the references [4, 9].

The middleware support protocol describes the interactions between
the user home agent (UHA), the terminal initial agent (IA), and the
user terminal agent (UTA). This protocol offers a virtual global network
service to the mobile user. Using the CFSM formalism, we model these
objects as a system of communicating finite state machines. In order
to make thesyste-m more understandable and more manageable, we
abstract away some non-essential events, and take the liberty in choosing
the representative values for the protocol data parameters. Furthermore,
where non-determinism arises, we will determinize it appropriately. The
abstracted protocol is described as two communicating FSMs in Figure
1.3, where the initial agent and the user terminal agent are combined
since the two mostly communicate between themselves. This protocol
can be described as a two-CFSM system.

For demonstrating our embedded testing strategy, we consider the
case where the home agent is an embedded module. This corresponds
to the situation where a mobile user roams to a foreign location, and
wishes to access his personal PCE from there. The user has no direct
access to the home agent; what he directly interacts with is the initial
agent and the terminal agent. The testing issue is therefore how one can
test the functionality of the home agent from the viewpoint of a mobile
user.

We have composed the initial agent, the terminal agent, and the home
agent to produce a composite system (also shown in Figure 1.3). This
global system models the system behavior that a tester can observe and
control.

5.2 UPC TEST SUITE EVALUATION
Test suites for embedded modules can be generated using methods

such as that presented in [5]. However since no tool is available for the
method, we chose to evaluate a test suite directly generated from the
composite system. We use the UIO-method for this purpose, in order

384

(a) Initial Agent + User Tennina/ Agent (M I)

runapp/prompt

loginO~

~_____.jlogge
logout/prompt

update/prompt

updreq/updrsp

(b) UserHomeAgent(M2) (c) The Composite System (M3=MloM2)

Figure 1.3 VPC middleware protocol

to get an idea on how the method fares for embedded module testing.
The composite machine is completed first, with the assumption that for
unspecified transitions, the machine outputs a null output and stays in
the same state. It is easy to verify that loginl/prompt is a UIO sequence
for the idle state, and logout/prompt is a UIO sequence for the logged
state. This leads to the following test suite:

TS = {

}

r/- loginO/fail login1/prompt
r/- runapp/null login1/prompt
r/- update/null login1/prompt
r/- logout/null login1/prompt
r/- login1/prompt loginO/null logout/prompt
r/- login1/prompt login1/null logout/prompt
r/- login1/prompt runapp/prompt logout/prompt
r/- login1/prompt update/prompt logout/prompt
r/- login1/prompt logout/prompt login1/prompt

This test suite has complete fault coverage for the composite system,
as can be verified with our tool COY. The question remains how well it

385

does in testing the UHA as an embedded module. Feeding this to our
tool box ECOV, one test tree was produced. It represents a test suite
for the UHA as follows:

TS = {

}

r/- aureqO/aurspO aureq1/aursp1
r/- aureq1/aursp1 USPreq/USPrsp PCEreq/PCErsp disreq/disrsp
r/- aureq1/aursp1 updreq/updrsp disreq/disrsp
r/- aureq1/aursp1 disreq/disrsp aureq1/aursp1

This tree is then collapsed using the tool COY, and the resulting
FSMs are composed with the context machine lA/UTA to determine
the conformance in context. We did some experiments regarding the
upper bound non number of states for the solution machines (mutants
of the UHA machine). For n = 3, there were 4031 solutions, 5 of which
are conforming, therefore we have I<rcM = 4031, I<scM = 5, and
Cov(S, T, 3) = 1/(lg4031-lg 5 + 1) = 25.6%. For n = 2, there were 196
solutions, with 4 conforming, which leads to Cov(S, T, 2) = 1/(lg 196-
lg 4 + 1) = 37.2%. In the extreme case where n = 1, we get a unique
conforming solution with only one state, ie., Cov(S, T, 1) = 100%. This
indicates that the lower the upper bound n, the higher the fault coverage.

The result shows that it is generally not enough to test an embedded
module with a test suite complete for the composite system. Additional
test cases are needed to detect potential faulty machines. This can
be done by incrementally generating test cases that distinguishes the
potential faulty machines based on test coverage requirement.

6. CONCLUSIONS
We have presented our work on some new results on coverage mea­

sure for embedded testing, and on the application of the measure to a
practical protocol. The work offers a better way to avoid infinite test
trees and a better understanding of the computational complexity for
the coverage measure. The application presents a practical situation
where embedded testing can be applied, and shows that in general we
cannot simply take a test suite generated for the composite system for
embedded testing, as the fault coverage may be weakened depending on
the upper bound of number of states in the mutants.

Our coverage measure is essentially based on machine identification
which offers an accurate fault coverage for a test suite. It allows in­
cremental test suite generation based on coverage requirement and fa­
cilitates fault diagnosis with faulty suspects explicitly constructed. The
price for the advantages is higher computational cost, which can be eased

386

by developing better heuristics and more structured, decomposable pro­
tocols.

The recent development of embedded systems on the Internet has
captured significant 'attentions [2]. It is practically important to see if
these embedded systems can be tested with an embedded testing ar­
chitecture. Internet provides a wide range of testbeds for distributed
computing with many types of embedded systems, such as routers, In­
ternet phones, NetTVs, WebTV set-top boxes, and so on. Modeling
these systems (with their environments) as communicating finite ma­
chines and applying our testing methodology would contribute a lot to
the reliability of the systems.

References

[1] E.M. Gold. Complexity of automaton identification from given data.
Information and Control, 37:302-320, 1978.

[2] IEEE Computer Society. IEEE Internet Computing. July 1998.

[3] Luiz Paula Lima Jr. and Ana R. Cavalli. A pragmatic approach
to generating test sequence for embedded systems. In IFIP 10th
Int. Workshop on Testing of Communicating Systems, Cheju Island,
Korea, September 1997.

[4) Y. Li and V. Leung. Supporting personal mobility for nomadic com­
puting over Internet. ACM Mobile Computing and Communications
Review, 1(1):22-31, April 1997.

[5] A.F. Petrenko and N. Yevtushenko. Fault detection in embedded
components. In IFIP 10th Int. Workshop on Testing of Communi­
cating Systems, Cheju Island, Korea, September 1997.

[6) A.F. Petrenko, N. Yevtushenko, G.v. Bachmann, and R. Dssouli.
Testing in context: framework and test derivation. Computer Com­
munications, 19:1236-1249, 1996.

[7] D. Rayner. OSI conformance testing. Computer Networks and ISDN
Systems, 14(1), 1987.

[8) J. Zhu and S.T. Chanson. Toward evaluating fault coverage of proto­
col test sequences. In Proc. IFIP 14th Int. Symp. on Protocol Speci­
fication, Testing, and Verification, Vancouver, Canada, June 1994.

[9] J. Zhu, M. Toro, V. Leung, and S. Vuong. Supporting universal
personal computing on the Internet with Java and CORBA. Con­
currency: Practice and Experience, 10(1), 1998.

[10) J. Zhu, S.T. Vuong, and S.T. Chanson. Evaluation of test coverage
for embedded system testing. In Proc. IWTCS'98, Tomsk, Russia,
September 1998.

