
Remote testing can be as
powerful as local testing*

Claude Jard, Thierry Jeron, Lenai"ck Tanguy & Cesar Viho
IRISA - Campus de Beaulieu, F:J5042 Rennes, France
e-mail: {jard, jeron, ltanguy, viho} @irisa.fr

This work is partially supported by the French Army (CELAR).

C. Jard is member of CNRS, T. Jeron of INRIA,
L. Tanguy and C. Viho of IFSIC/Uniuersity of Rennes I

Abstract
Designing test cases for remote asynchronous testing is error-prone. This is
due to the difficulty to foresee all the disorders on the observations collected by
the tester as well as the possible collisions between stimuli and observations.
Designing correct synchronous test cases is easier, but transforming .them
into correct asynchronous ones is a difficult task. Moreover, it is difficult to
compare remote testing and local testing as in general sets of conformant
implementations are not comparable.

In this paper, we prove that by the use of logical stamps, remote testing can
gain the same power as local testing: the conformant implementations in an
asynchronous environment are exactly the same ones as in a synchronous en­
vironment. We give an operational method to derive the correct test cases for
remote testing with this testing power. Furthermore, we show that test cases
designed for a synchronous environment can test synchronous conformance in
an asynchronous environment. This is achieved by the implementation of a
test driver executed at runtime on the tester.

Keywords
Conformance Testing, Test Generation, Local and Remote Testing, Asynchro­
nism, Stamp

1 INTRODUCTION

We consider the context of black box conformance testing in which an imple­
mentation under test (JUT for short) is tested in order to obtain the conviction
that its behaviour conforms with its specification. The tester stimulates the
JUT by sending messages on points of control and observation (PCOs) and
observes on these same PCOs the reactions of the JUT (see figure 1, part A).
Within sight of the reactions, a verdict (Fail, Pass or Inconclusive) is emitted.
The underlying concepts have been formalized since the last years leading to
the so called testing theory which identifies the notion of formal conformance

J. Wu et al. (eds.), Formal Methods for Protocol Engineering and Distributed Systems
© Springer Science+Business Media Dordrecht 1999

26

~ U pco2

Contex p<;o I

~~ :EJ
._D==-c=lll:::ll!_, pco2

A: Synchronous interaction B: Asynchronous interaction

Figure 1 Synchronous and asynchronous testing

relation and gives a precise meaning of the verdicts (see (11) for example).
Originally, the theory considered a synchronous interaction between the tester
and the JUT. This made the implicit assumption that an JUT can refuse an
event and that the tester can observe the refusal (1]. In practice however, one
cannot always avoid taking into account the test environment intercalated be­
tween the tester and the JUT. As advocated in (4], conformance must then be
defined as the conformance of the JUT in its test environment with the spec­
ification in a model of this environment. The most frequent example is that
of remote testing architecture in which the tester reaches the JUT through a
network connection. In this case, PCOs can be seen as composed of two FIFO
queues, one for each direction of the interaction. The communication between
the tester and the IUT is then asynchronous as illustrated in figure 1, part B.

The asynchronous nature of the PCOs poses some difficulties to design
correct test cases. The possibility of disorder on the observations collected on
different PCOs as well as the possible collision on a PCO between stimuli and
observations have to be taken into account. This should be achieved by the
inclusion of this asynchronous behaviour in the specification. But during the
examination of existing test suites, one realizes (see for instance [2]) that this
is not always done and it is the main reason of non-validity of some tests.

Another problem is the fundamental difference between conformance in
synchronous or asynchronous environment. Precisely, for a particular specifi­
cation, the sets of conformant IUTs in synchronous or asynchronous environ­
ment are in general not comparable. This explains why transforming a correct
synchronous test case into a correct asynchronous test case is a difficult task.

It appears nevertheless that under certain conditions, the asynchronous
deformation is foreseeable and even invertible. This topic is investigated in
this paper and our main results are shortly described here:

1. We show that the ioconf conformance relation (12] has a simple char­
acterization in terms of trace inclusion for input complete specifications.
Moreover a specification can always be completed without modification of
its set of conformant implementations.

2. We deduce that for complete specifications, syn((hronous conformance is
preserved by the asynchronous environment. This means that a conformant
IUT in synchronous environment is still conformant in an asynchronous
environment. But asynchronous conformance is still more permissive: some

27

non conformant IUTs in synchronous environment can be conformant in
an asynchronous environment.

3. Under the assumption of one PCO linking the IUT and its environment,
and by using stamps (a simple counting mechanism), we prove that the per­
missiveness of remote asynchronous testing can be suppressed: conformant
IUTs in synchronous environment are exactly the same ones as in asyn­
chronous environment. From the preceding results, we deduce a method
for the automatic generation of tests with synchronous testing power.

4. Furthermore, still in the case of one PCO, synchronous test cases can be
used for asynchronous testing. This is achieved by a specific driver which
inverts the asynchronous transformation using stamps. We think that this
new mechanism can be of a great utility. It makes possible to conceive
tests in a synchronous way while carrying out them in an asynchronous
environment.

The presentation is organized as follows. We start by the definition of mod­
els. Then, we recall the local synchronous approach and the need to complete
specifications to prepare their use in an asynchronous environment. Secondly,
we present the distortions induced by the PCO queues and deduce the asyn­
chronous conformance relation. Then we define the counting mechanism in the
case of one PCO. We deduce a transformation of the specification allowing to
generate automatically test cases for asynchronous testing with the power of
synchronous testing. The next part is devoted to a possible implementation
of a test driver which controls a synchronous test case in an asynchronous
environment with the information acquired dynamically from the IUT. We
finish by some prospects of generalization in the case of multiple PCOs.

2 LOCAL SYNCHRONOUS TESTING

Because of the asymmetrical nature of the testing activity, the models have to
differentiate input and output actions. In this paper, we will use the model of
IOLTS (Input-Output Labeled Transition Systems) to describe the different
objects involved in the conformance testing.

2.1 Models

Definition 21 An JOLTS is a tuple M=(QM, Pf, P0, A7, A0, TM, qrnit) where
QM is a set of states, qrnit E QM is the initial state, Pf and P0 are finite
sets of input and output ports. A7 and A0 respectively are finite input and
output alphabets. AM ~ Pf x {?} x A7 u Pf3 x {!} x A0 is the alphabet of
observable actions constructed from the sets of input-output ports and input­
output alphabets. r fj AM denotes an internal action. TM ~ QM x A MU { r} x QM
is the transition relation, we note p ~ M q for (p, a, q) E TM.

Let ai E AM, f..Li E AM U {r}, a E (AM)*, q,q',qi E QM:
/"1 · "l!-n 1 • W

• q ~ q =def 3qo = q,Ql· .. ,Qn = q',\:1~ E [l,n],qi-1 !:t Qi,

28

J.lt ···J.In 1 J.lt .. •J.In 1 J.lt .. ·J.In I J.ll ... J.In
• q ~ =de/ 3q, q =........:t q and q I--* q =de/ -.(q =........:t),

< I I T···T I d q I 3 < Ct. <'. I • q =? q =def q = q or q --t q an q =? q =de/ Q1, Q2, q =? Q1 -t Q2 =? q ,
O<t• .. !ln 1 3 I w· (1 J ~ • q ==? q =def Qo = q,ql ... ,Qn = q, vl E ,n ,Qi-1 =? q;,

• enable(q) =de/ { o: E AM I 3q1 and q :%-M q1} is the set of observable actions
possible in q, In(q) =de/ {a EAr I 3p E Pf,p?a E enable(q)} is the set of
possible inputs in q, and Out(q) =def {a E A~ l3p E P0 ,p!a E enable(q)} is
the set of possible outputs in q,
• q after a =def { q E QM I q ~M q} is the set of reachable states from q by
the sequence of observable actions a,
• Traces(q) =def {a E (AM)* I q after a =f. 0},
• if o: E AM is an observable action, we note a its mirror action: if o: = p!a
then a= p?a else a= p!a. This can be extended to sequences of actions.

Definition 22 An JOLTS M is said
• deterministic if V a E (AM)*, IM after al :$ 1 where lXI is the cardinality
of the set X,
• controllable if in each state of M, either only one output is enabled or all
inputs are enabled: for any sequence a E (AM)*,
In(M aftera) = Af or {In(M aftera) = 0 1\ IOut(M aftera)l :$ 1},
• input-complete if any input is possible after each trace: Va E (AM)*,
In(M aftera) = Af.

As usual (10, 12], a specification of a system S will be modeled by an
IOLTS S = (Q 5 ,PJ,P(J,Aj, Ab,T5 ,qrnit) and an implementation by a
deterministic input-complete IOLTS I= (Q',PJ,Pb, A~,A0 ,T',q{nit), with
P} = PJ, Pb = P(J, Aj ~A~, and Ab ~ A0. A test case is a set of sequences
of actions describing all the interactions occurring between an IUT and a tester
which wants to verify that an IUT conforms with its specification. A test case
is modeled by a deterministic IOLTS T = (QT, PJ, P6, Aj, Ab, TT, q~it) such
that: Aj = A0 (every possible output of the IUT must be considered as
an input of the test case), Ab = AJ (a test case should only send outputs
that are waited by the specification), {pass,Jail} E QT with enable(pass) =
enable(fai~ = 0, and the last transition leading to fail is an input. In general,
it is assumed that a test case is controllable and input-complete.

Remark: In practice Aj = Ab is unknown. Thus, only inputs not leading
to fail can be denoted, the other inputs are implicitly leading to fail or are
denoted by "? otherwise Fail", like in TTCN (see (9]-part 3). o

2.2 Conformance

Formalizing conformance testing (4] necessitates to define a conformance re­
lation relating models of IUTs to specifications. We will consider here a con­
formance relation which states that outputs produced by an IUT after a trace
of the specification are foreseen by the specification [10, 12].

29

Definition 23 (Conformance relation) Let S be the JOLTS describing the
specification and I an (input-complete} JOLTS describing an implementation:
I ioconf S <==> 'fluE Traces(S), Out(I after u) ~ Out(S after u).

Definition 24 (Synchronous Testing) The synchronous application of a test
case to an JUT is defined as a parallel composition II of the test case T and

thelUTI:\faEATUAT T~T' 1~1'.
I 0 ' TIII~T'III'

Definition 25 (Test failure and unbiased test case)
T fails I =de/ 3 I', 3u, Till ~ fail II I'. A test case T is unbiased with respect
to S if and only if \1 I, T fails I ::} not (I ioconf S).

The definition of ioconf authorizes IUTs to diverge from the specification
starting from unspecified inputs: the specification implicitly authorizes any
behaviour in the IUT after an unspecified input. We may need to make these
behaviours explicit by considering input-complete specification. Moreover for
input complete specifications, ioconf has a very simple characterization as
stated by the following proposition.

Proposition 21 LetS and I be two input-complete JOLTS.
We have I ioconf S <==> Traces(I) ~ Traces(S)

Proof: Suppose I ioconf S and let w E Traces(I). Suppose w !/. Traces(S),
then w can be split in two sequences w = WI· w2 where WI is the maximal
prefix of w E Traces(S). Let a be the first action in w2 . If a is an input, as
S is input complete, WI.a E Traces(S). If a is an output, as w1 E Traces(S)
and I ioconf S, a E Out(S after wi), and w1 .a E Traces(S) which contradicts
the hypothesis. Thus, Traces(!) ~ Traces(S). Thus in both cases w1 is not
maximal and proves that wE Traces(S).

The converse i.e. Traces(!) ~ Traces(S) ::} I ioconf S is evident even for
a non input-complete specificationS. •

As we may have to deal with specifications which are not input complete,
we may want to complete them in order to benefit from the preceding result.
But this completion should not alterate the set of conformant IUTs. This
is achieved by using the following completion similar to the notion of trap­
state [13] and illustrated by figure 2.

Definition 26 (Completion}
Let S be an JOLTS. Comp(S) is defined as an JOLTS such that:

Traces(Comp(S)) = Traces(S) U(UweTraces(S),aEU(w)w.?a.({?}X AI U {!}X Ao)*)
where U(w) = AI \ In(S after w) is the set of unspecified inputs of the state of S
reached after the trace w.

30

Figure 2 Example illustrating the completion (dotted lines represent tran­
sitions added by the transformation)

Proposition 22 LetS be an JOLTS and Camp(S) its input completion. For
all input complete JOLTS I, I ioconf S <===> I ioconf Camp(S).

Proof: Suppose -,(J ioconf S). By definition of ioconf, this means 3a E

Traces(S), 3z E Out(! after a), and z (j. Out(S after a). By definition of
Camp, we have Traces(S) ~ Traces(Camp(S)), so a E Traces(Camp(S)).
But a.z (j. Traces(Comp(S)) as z E Ao and the input completion only adds
a E A1\In(S after a). This implies •(I ioconfCamp(S)).
Suppose now -,(J ioconf Comp(S)), this means 3a E Traces(Comp(S)),
3z E Out(! after a), and z (j. Out(Camp(S) after a). If a E Traces(S)
then z (j. Out(Comp(S) after a) induces z (j. Out(S after a) as Traces(S) ~
Traces(Comp(S)). Otherwise a E Traces(Comp(S))\Traces(S) is of the
form a 1 .a.a2 with a 1 E Traces(S) and a E A1. In this case, a1 .a.a2 .z E

Traces(Comp(S)), i.e. z E Out(Camp(S) after a) which contradicts the hy­
~~. .
Remark: The validity of the proposition 22 heavily depends on the notion
of completion used. For example completing with loops on unspecified inputs
does not work.

There also exist different notions of input completion. For instance in SDL,
input completion is implicit in the case of unspecified inputs. This means
that in any control state, if an unspecified input occurs it is consumed. But as
transitions are atomic, this happens only in any control (stable) states. Thus
in terms of transition systems, only some states are input complete. The other
states should be completed with Camp in order to apply 22.

Notice also that the notion of completeness of Mealy machines (see [8] for
example) corresponds more to this implicit completeness of SDL than to the
notion of input-completeness of definition 26. o

Propositions 21 and 22 lead to the following proposition 23 which gives a
very simple characterization of ioconf.

Proposition 23 I ioconf S <==:>Traces(!)~ Traces(Camp(S)).

31

3 REMOTE ASYNCHRONOUS TESTING

In practice, the testing activity is generally done through an environment
intercalated between the tester and the IUT. As advocated in [4] the con­
formance of an IUT with respect to a specification in a context should be
defined as the conformance of the implementation in its context with respect
to the specification in a model of the context. For example, in the context of
a remote testing architecture, the tester reaches the IUT through a network.
In this case, the interaction between the tester and the IUT is asynchronous
and PCOs can be seen as composed of two FIFO queues.

We first define the asynchronous transformation A on IOLTS which de­
scribes the impact of FIFO queues on observable behaviours. We use A to
define the conformance relation in an asynchronous environment. We notice
how this affects conformance: the set of conformant IUTs in synchronous or
asynchronous architectures are not comparable in general. However, we show
that for input-complete specifications, synchronous conformance implies asyn­
chronous conformance.

3.1 Asynchronous testing

As already done in [14], we define the asynchronous transformation A as
follows:

Definition 31 Let M = (QM,Pt,P0,Af,A0,TM,qt:,it) be an JOLTS.
A(M) = (QAtMJ, Pf1M1, p~rMJ, A11M1, A6MJ, TAIMJ, q1~7t1) with:
• QA!M) = QM X ITpEPf Af* X ITpEP~ Aa· and q1~7t) =< M, (t: ... t:), (t: ... t:) >
• Pf!M) = Pt and p~rMJ =Po, A1(M) = Af and A6M) = Ao,
• TAIMJ is described by the tollowing ~erational rules defined for all q, q' E
QM,a E Af,b E A0,plk E PI ,Pot E Po:

Rl (inputs of A(M) from Env)
Plk ?a ,

< q, (PI!··· Pik = w ··-),(Poi · ·-) > -+ A!MJ< q, (Pit · · · Pik = w.a ···),(Pol · · ·) >

R2 (outputs of A(M) to Env)
P01!b

< q,(PII···),(pol···pol =b.w···) >-+AIM)< q,(PII···),(Po!···pol =w···) >

R3 (internal actions)
Q~M q'

< q, (PI!···), (POI···) >~A!MJ< q', (pi!···), (Pot···)>

R4(inputs of M from queues)
Plk ?a 1 q -+ M q

< q,(Prl···Prk = a.w···),(Pol···) >~AtMJ< q',(Pri ... Pik = w···),(Pol ···) >

R5 (outputs of M to queues)
PO!!b I

q -+ M q

32

Remark: V JOLTS M, Traces(M) ~ Traces(A(M)). ¢

For the asynchronous context the conformance relation now becomes:

Definition 32 (Conformance in an asynchronous environment} Let I and S
be two JOLTS with I input-complete. I ioconfA S =def A(I) ioconf A(S).

The notion of test failure and unbias in an asynchronous environment are
then straightforward.

3.2 Problems in asynchronous testing

Let us consider the specification S described on the left part of figure 3.
For sake of clarity, we will suppose that all the indicated observable actions
occur on the same PCO. Notice also that S is not input-complete. The right

ioconf not ioconf

S iocont

c;:l~y ?a
?b ?a -,:::);b

!!x

~!?b
?a I !y not ioco10

?De;:+ R

11 ~ !y ?a 12 ?b ~~?a
?b ra--,:::)

~ !x ?b
?a

+ !y

foP~ ?b
~

?b

?b?a +!y ~ ·~ .. a
13 C¥~ -_J] •• 14 ~ ?b ~ -..:::J?b ?b ~.?. a.

!x. ?b ~ 0

C¥ 'z t !z 1il
?a~?b .?a ?a

~

?b ?b
?a ~!y

?b.C¥

Figure 3 Difference between synchronous and asynchronous testing

part of figure 3 contains different implementations which show that testing
synchronously or asynchronously is not comparable. More precisely, they show
two main problems when testing in an asynchronous environment.

Permissiveness: The IUT 12 shows that asynchronous testing is more per­
missive than synchronous testing: -.(Iz ioconf S) but (Iz ioconfA S). We have
-.(12 ioconf S) because Out(Iz after ?a)= {y} ~ Out(S after ?a)= {x}. In
an asynchronous environment, outputs can be delayed. Thus the trace !y.?a
of S can be observed as ?a.!y in A(S). Thus, we have (Iz ioconfA S) as
Out(A(Iz) after?a) = {y} ~ Out(A(S) after?a) = {x,y}.

Non preservation of conformance: This problem is brought to light by
the IUT !3: 13 ioconf S but -.(J3 ioconfA S)). In fact, !3 ioconf S even
though ?a.?b.!z is not a trace of S. This is because ioconf authorizes diver­
gence from the specification starting from an unspecified input. The sequence

33

?a.?b is in Traces(A(S)), and we have Out(A(S) after ?a.?b) = {x,y} but
Out(A(I3) after ?a.?b) = {x, y, z }. Thus -.(!3 ioconfA S).

Notice that these problems are more complex in the context of several PCOs
as inputs and outputs orders are not preserved. Similar remarks concerning the
non preservation of conformance in asynchronous environment have been done
in [14]. But these were made regarding the synchronous conformance relation
conf (which does not distinguish inputs and outputs) and an asynchronous
conformance relation similar to ioconf A-

The problem of permissiveness is inherent to the transformation by a con­
text. But the non preservation of conformance is due to the fact that Sis not
input-complete. Lemma 31 states that this can be avoided input-complete
specifications and monotonic transformations by contexts. A transforma­
tion T on IOLTS is monotonic if it preserves trace inclusion:
Traces(M) ~ Traces(M') => Traces(T(M)) ~ Traces(T(M')).

Lemma 31 LetS and I be input complete JOLTS. IfT is a monotonic trans­
formation, I ioconf S => T(I) ioconfT(S).

Proof: Suppose I ioconf S and S and I are input complete. By proposi­
tion 21 we have Traces(!) ~ Traces(S). By monotonicity ofT, this implies
Traces(T(I)) ~ Traces(T(S)) which implies T(I) ioconfT(S). •

The asynchronous transformation A is monotonic because it is applied on
traces independently of others. Application of lemma 31 gives the corollary:

Corollary 31 For input complete I 0 LTS S and I, I ioconf S => I ioconf A S.

As a consequence, the only difference between iocanf and iocanf A is per­
missiveness. We show in the next section that this can be avoided if the order
of occurrence of events on the IUT is captured by an appropriate stamp mech­
anism.

4 STAMPED ASYNCHRONOUS TESTING

The idea is to instrument the IUT so that each output from the IUT to the
tester (via the environment) can bring to the tester an additional information
on the real order in which the IUT has produced the events. Linking time
stamp techniques used in observing distributed systems to the problem of
generating tests has been already advocated in different contexts like in [6, 7].

This instrumentation can be defined by the synchronous parallel composi­
tion of the IUT with a stamp process ST (as illustrated in figure 4). The role
of the stamp process ST is to code the history of occurrence of events on the
IUT and to transmit it to the environment by piggybacking each output.

We will consider the particular case of one PCO in which history is coded
by an integer counter.

34

I ~· 81. IUT?xl ~~~0 Env?a/ I il!ii!llii .. ._~'lest~:r
jEnv!(!x,CT)t._..... --.) CT := CT++; I !
, CT := CT ++ IUT!(?a) I

Figure 4 Implementation of the counting mechanism st

This stamping process ST implements a function st defined on traces as
follows.

Definition 41 st: (AI U Ao)* --+ (AI U (Ao x IN))*, Va E (AI U Ao)*, a E
A1, and z E Ao: st(c:) = c:, st(a.!z) = st(a).(!z,length(a)), and st(a.?a) =
st(a).?a.

By extension, one can regard the transformation st as being carried out
on the IOLTS by an on-the-fly traversal of the graph. Let us consider the
example of an interaction between an IUT and its environment illustrated
on figure 5. From the point of view of events produced on the IUT, one
has: st(?x.!s.?y.?t.?u.!z) =?x.(!s, l).?y.?t.?u.(!z, 5).

cr2= cr'2.cr"2
crl .-----~"·2-----...-

M ~ -?-y -~ ~,-?t---::?---,u' !z

- / \ / / / \{!z,5) a"2

Env // /~~s.I) // // ~'
!x !y ?s !t !u !v !w ?z

"--/
())

Figure 5 Illustration of the computation of st and st

This counting information is intended to be decoded by the tester as de­
scribed in section 5. We thus define an opposite transformation st (illustrated
in figure 5), which orders events of a system M in the environment. From
a sequence of events w in the environment Env, st computes two sequences
of events st(w)[l) and st(w)[2) using the counting information associated to
outputs of the system M:

• st(w)[l] is the sequence of events of the system M which precede the last
output z of M received by the environment and including this output.

• st(w)[2) is the sequence of inputs of M (corresponding to outputs of Env)
which were not received before the sending by M of z. As we assume a
FIFO channel between Env and M, this sequence will be received in this
order but M may have some intercalated outputs of M.

Notice that st can be computed on-the-fly by Env. When Env makes an

35

output, the corresponding input is added to the tail of st(w)[2]. When Env
makes an input z with the counting information, st(w)[l] and st(w)[2] are
updated accordingly.

Definition 42 st: (AIU(Ao xiN))* --+ (A1UAo)* xAj is defined recursively
as: st(f.) = (f., f.), and Vw E (AI U (Ao x IN))*, if st(w) = (st(w)[l], st(w)[2])
then st(w.?a) = (st(w)[l],st(w)[2].?a) and st(w.(!z,i)) = (st(w)[l].a~.!z,a~)
where a~ and a~ are sequences such that st(w)[2] = a~.a~ with length(a~) =
i -length(st(w)[l]).

For example, let us consider the sequence of events occurring on the tester
in figure 5 (denoted by their corresponding names on the IUT). Then we have
st(?x.?y.(!s, l).?t.?u.?v.?w) = (?x.!s, ?y.?t.?u.?v.?w), and st(?x.?y.(!s, l).?t.
?u.?v.?w.(!z,5)) = (?x.!s.?y.?t.?u.!z, ?v.?w). In this last case, this means that
upon reception of z, the tester knows that ?x.!s.?y.?t.?u.!z has occurred in
this order on the IUT, but it does not know yet what will be the order in the
future including the receptions of v and w. The counting information gives
the index for inserting the output in the sequence.

The following proposition states that the composition of st with the asyn­
chronous transformation st o A is invertible: for a trace a, the application of
st on any trace of st o A(a) = A(st(a)) can reconstruct a.

Proposition 41 VM E JOLTS, Va E Traces(M), Vw E Traces(A(st(a))),
we have: st(w) = (a1,a2) witha = 0"1.0"2.

Proof: st associates with each output the index of this output in the se­
quence. This information can be used by st to recover the order since the
transformation A (in the case of only one FIFO queue in each direction) pre­
serves the relative order of inputs and the relative order of outputs. Notice
that outputs do not need to be FIFO ordered as they are numbered by st. •

We can now prove the main theorem which says that for input complete
IOLTS communicating asynchronously with their environment using one FIFO
in each direction, remote asynchronous testing using stamps has the same
testing power as local synchronous testing.

Theorem 41 LetS and I be two input complete JOLTS communicating asyn­
chronously with their environment using one FIFO in each direction.
We have: I ioconf S ¢::::::> st(I) ioconfA st(S)

Proof: We first prove that lioconfS => A(st(I)) ioconfA(st(S)). Since A
and st are monotonic (st is defined on traces), st o A is also monotonic and
lemma 31 applies.

Let us prove the converse: if -.(I ioconf S) then -.(A(st(I)) ioconf A(st(S))).
By definition of ioconf, -.(lioconfS) => 3a E Traces(S),3z E Out(Iajtera)
such that z ~ Out(Saftera). Letw = st(a). For any JOLTS M,a E Traces(M)
implies st(a) E Traces(st(M)) and Traces(M) ~ Traces(A(M)). Thus, we

36

have: w E Traces(A(st(S))) and w.(z,length(u)) E Traces(A(st(I))). We
want to prove that w.(z,length(u)) ~ Traces(A(st(S))).
Since z ~ Out(Safteru), we must show that the output (z, length(u)) after
w cannot be created by the st o A transformation. First, note that the traces
of A(u) are produced from u by the following semi-commutation !x.?y-t?y.!x
which can only delay the outputs with respect to inputs. Let us suppose
that z belongs to a trace u' of S. We show that u' is identical to u. '1:/u' E
Traces(S),3w E A(st(u')) and w = st(u) => u = u'. This is based on the
properties of A: a) length(u) = length(u'), b) u and u' are on the same al­
phabet, c) the outputs are numbered by the same stamps, d) the inputs are
not changed by the transformation.
Thus, 3w E Traces(A(st(S))),w.(z,length(u)) ~ Traces(A(st(S))) which
implies 3w E Traces(A(st(S))), (z, length(u)) E Out(A(st(I) after w), and
(z, length(u)) fj. Out(A(st(S) after w). •

Stamped asynchronous tests generation Theorem 41 induces a method
for the generation of test cases for asynchronous testing with the power of syn­
chronous testing.

Proposition 22 says that for any specificationS its input completion Comp(S)
has the same set of conformant implementations. Theorem 41 says that if we
assume a communication with the environment with one FIFO in each direc­
tion, an IUT I is conformant to Comp(S) if and only if A(st(I)) is tonformant
with A(st(Comp(S))). Now, there exists test generation algorithms imple­
mented in tools [3, 15). Applied to a specification S, they produce unbiased
test cases with respect to S and·ioconf. These methods are (theoretically) ex­
haustive: assuming bounded fairness of implementations, all non conformant
implementations may be rejected by a test case. Using these algorithms on
A(st(Comp(S))) will thus produce a test suite which is unbiased and exhaus­
tive with respect to A(st(Comp(S))) and ioconf. Moreover, by theorem 41 this
test suite has exactly the same testing power as the synchronous test suite.

But, generating tests from A(st(Comp(S))) has some drawbacks. The first
one is the state space explosion due to the asynchronous transformation and
the unfolding caused by st. A second one is the relevance of test cases. In
the example of figure 3, ?a.?b.(!x, 1) and ?a.(!x, 1).?b are both sequences
of A(st(Comp(S))). So one could generate a test case with a sequence !a.!b.(?x, 1).
But this would be artificial because as S sends x after the input a, it is prefer­
able to wait for x before sending b.

So, when testing the conformance of I with respect to S in a remote testing
architecture, we are mainly interested in traces of S but not in all traces
of A(st(Comp(S))), even if we have to consider them as possible traces. One
way to limit these drawbacks is thus to use test purposes which accept traces in
Traces(S) in order to select test cases from A(st(Comp(S))) and to generate

37

test cases on-the-fly as in [3]. Another completely different and more efficient
solution is investigated in the following section.

5 REMOTE ASYNCHRONOUS TESTING WITH
SYNCHRONOUS TEST CASES

The idea is that from a sequence of events of A(st(I)), st can reconstruct,
with a certain latency due to the asynchronous communication, the sequence
of events which occurred on I. Thus this sequence can be checked on test
cases produced from S to check the conformance of I with respect to S and
ioconf as in a local synchronous testing architecture. Thus local synchronous
test cases are generated from Camp(S). Then, test cases are decorated with
counters using the transformation st. They can then be played in a remote
asynchronous testing architecture with a kind of test driver implementing st.
This is illustrated in figure 6.

B ST , ~ pco 'leste~
IU IUT?x/ ~ CT := 0 Env?a/ IIJJJ B I s~mJ

Env!(!x,CT);[:; ::J CT := CT++; [[Jll Test I
CT := CT ++ IUT!(?a)

~~====================--

Figure 6 Architecture for "remote local" testing

The mechanism necessitates some attention. In fact the difference between
synchronous local testing and asynchronous testing is that the control of the
tester on the IUT is weakened. Inputs of the IUT cannot be completely con­
trolled by the tester. This can be illustrated on the example of figure 3. Accord­
ing to the specification, the tester may choose an output (say a) and computes
st(?a) = (E, ?a). But between the output !a by the tester and its corresponding
input ?a by the IUT, the IUT may decide to perform the output !y associated
with the counter 0. When receiving (y, 0), st(?a.(!y, 0)) = (!y, ?a). Thus the
tester knows that the IUT has performed !y first and will later receive a. The
IUT has thus chosen a different behaviour from the one chosen by the tester.
Nevertheless, the tester must evolve according to the behavior of the IUT but
also to its own past behavior. In particular, a has been sent and this cannot
be cancelled. Thus the tester will have to wait for a new input from the IUT
or choose a new output according to the sequence !y.?a. All this information
is contained in st(?a.(!y,O)).

The tester thus computes st(w) on-the-fly. Only st(w)[l] should be used for
verdicts because it is a sequence of I. The information on the sequence of
inputs of the IUT of st(w)[2] is not complete as outputs can be intercalated
in the sequence. The tester may sometimes choose to wait for an output of
the IUT to complete its information. But this is not always possible because

38

the IUT may also wait for an input. So outputs of the tester must be chosen
and this is done according to st(w)[l].st(w)[2].

A fundamental difference with synchronous local testing is that test cases
are controllable in synchronous local testing: a test case never has the choice
between two outputs or between an input and an output. This comes from
the fact that the tester controls the inputs of the IUT. This is not anymore
the case when synchronous test cases are played in an asynchronous envi­
ronment. In this case, in any state all possible outputs of the IUT must be
taken into account. The controllability property thus has to be relaxed into
semi-controllability. An IOLTS is said semi-controllable if in any state
at most one output is possible and all possible inputs are considered:
Va E (AM)*, In(M after a) = Ar A IOut(M aftera)i ~ 1.

Also specifications have to be input complete or completed by Comp. In fact
if st(w)[l) = a.!z E Traces(!), either z f/. Traces(S after a) and in this case !z
should produce a fail verdict, or z E Traces(S after a) and st(w)[l].st(w)[2]
must be in Traces(S). As st(w)[2] is composed of inputs, input completeness
always ensures this.

Notice that the first component of st is monotonic for the prefix ordering
i.e. w ~ w' for the prefix ordering implies st(w)[l] ~ st(w')[l].

The algorithm which has to be performed on the test driver is described
below. It uses two sequences a 1 and a 2 which respectively contain the two
components of the sequence of events w performed by the tester: a 1 = st(w)[l]
and a2 = st(w)[2]. The variable w is only used to describe the invariant.

• Input: TC: test case. Output: verdict
Invariant a1 = st(w)[l] and a2 = st(w)[2]
Initialization: w := t; a1 := t; a2 := t; verdict:= nil
(* st(t) = (t, t) *)
while verdict = nil do

end

non-deterministic choice
if Out(TC after a1.a2) :/; 0

send(a) where {a}= Out(TC aftera1.a2)
(* a is unique as test cases are semi-controllable *)

w := w.?a; a2 := a2.?a; (*i.e. st(w.?a) = (st(w)[l), st(w)[2].?a*)
if input queue is not empty

receive((z,i)); w = w.(!z,i)
let a~, a~ s.t. length(a1.a~) = i and a2 = a~.a~
a1 := a1.a2-!z; a2 :=a~;(* st(w.(!z,i)) = (st(w)[l].a2.!z,a~) *)

verdict := verdict assigned to the state (TC after a1)

39

6 CONCLUSION AND PERSPECTIVES

We have described how remote asynchronous testing with counters could have
the same testing power as local synchronous testing in the case where the
communication between the IUT and the environment is done through one
PCO. This can be generalized to multiple PCOs but needs more sophisticated
mechanisms. The general idea is that the tester needs to reorder events of the
IUT in order to reach the same testing power as in the synchronous case. It is
natural to suppose that the IUT can only transmit information to the tester by
piggybacking its outputs. In order to emit a correct verdict on an output of the
IUT, the tester needs to know the whole sequence of events of the IUT which
precedes this output (see figure 7). Thus a theoretical instrumentation consists
in associating to each output of the IUT the sequence of its predecessors in
the IUT.

!x

!x.?b.!y.?a)

!a

Figure 7 Theoretical instrumentation in the general case

This instrumentation is not realistic because this induces redundant infor­
mation and the piggybacked sequences continuously grow. A non redundant
instrumentation consists in segmenting the information into sub-sequences
between two consecutive outputs. But as an output can be overtaken by a
following one, the order of this output in the sequence should be piggybacked
as in the case of one PCO. The functions st and st must be extended in the
case of multiple PCOs.

Another prospect is timers management. Deadlocks and output quiescence
are considered as outputs in the testing theory [12]. In our framework of
asynchronous instrumented testing, inputs of test cases (outputs of the IUT)
carry counters. This must be generalized to timeouts but suggests that timers
should be managed by the instrumentation of the IUT. Moreover starting and
cancelling a timer must be done by the instrumentation but initiated by the
tester with messages.

REFERENCES

[1] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. Sab­
nani, editors, Protocol Specification, Testing and Verification, North Holland,
1988. IFIP Transactions.

[2] L. Doldi, V. Encontre, J.-C. Fernandez, T. Jeron, S. Le Bricquir, N. Texier, and
M. Phalippou. Assessment of automatic generation methods of conformance
test suites in an industrial context. In B. Baumgarten, H.-J. Burkhardt,

40

and A. Giessler, editors, IFIP TC6 gth International Workshop on Testing
of Communicating Systems. Chapman & Hall, p. 346-361, September 1996.

[3] J.-C. Fernandez, C. Jard, T. Jeron, and C. Viho. Using on-the-fly verifica­
tion techniques for the generation of test suites. In A. Alur and T. Hen­
zinger, editors, Conference on Computer-Aided Verification (CAV '96}, New
Brunswick, New Jersey, USA, LNCS 1102. Springer, July 1996.

[4] FMCT ISO/IEC JTC1/SC21 WG7, ITU-T. SG 10/Q.S. Information Retrieval,
Transfer ad Management for OSI; Framework: Formal Methods in Confor­
mance Testing. Committee Draft CD 13245-1, ITU-T proposed recommen­
dation Z 500. ISO- ITU-T, Geneve, 1996.

[5] ITU-T Z.lOO. Specification and Description Language (SDL). Recommenda­
tion ITU Z.lOO, 1996.

[6] C. Jard. How to observe interoperability at the service layer of protocols. In
T. Mizuno, T Higashino, and N. Shiratori, editors, IFIP TC6 'fh Interna­
tional Workshop on Protocol Test Systems. Chapman & Hall, p. 259-270,
November 1994.

[7] M. Kim, S.T. Chanson, S. Kang, and J. Shin. An approach for testing asyn­
chronous communicating systems. In B. Baumgarten, H.-J. Burkhardt, and
A. Giessler, editors, IFIP TC6 gth International Workshop on Testing of
Communicating Systems. Chapman & Hall, p. 141-155, September 1996.

[8] D. Lee and M. Yannakakis. Principles and Methods of Testing Finite State
Machines- A survey. In Proceedings of the IEEE, vol. 84(8), p. 1090-1123,
August 1996.

[9] OSI Open Systems Interconnection. Information Technology - Open Systems
Interconnection Conformance Testing Methodology and Framework - Part
1 : General Concept - part 2 : Abstract Test Suite Specification - part 3 :
The Tree and Tabular Combined Notation (TTCN). International Standard
ISO/IEC 9646-1/2/3, 1996.

[10] M. Phalippou. Relations d'implantations et Hypotheses de test sur les auto­
mates d entrees et sorties. PhD thesis, Universite de Bordeaux, 1994.

[11] J. Tretmans. A formal approach to conformance testing. PhD thesis, University
of Twente, Enschede, The Netherlands, 1992.

[12] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software- Concepts and Tools. Springer-Verlag, vol. 17, No.3, p. 103-120,
1996.

[13] S. H. Unger. Asynchronous sequential switching circuits. John Wiley and Sons,
1969.

[14] L. Verhaard, J. Tretmans, P. Kars, and E. Brinksma. On Asynchronous Test­
ing. In G. Von Bochman, R. Dssouli, and A. Das, editors, Fifth International
Workshop on Protocol Test Systems, North Holland, 1993. IFIP Transactions.

[15] R.G. de Vries, and J. Tretmans. On-the-Fly Conformance Testing using SPIN.
In Holzmann, G. and Najm, E. and Serhrouchni, A., editors, Fourth Work­
shop on Automata Theoretic Verification with the SPIN Model Checker.
ENST 98 S 002, p. 115-128, November 1998, Paris, France.

