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Abstract 
Designing test cases for remote asynchronous testing is error-prone. This is 
due to the difficulty to foresee all the disorders on the observations collected by 
the tester as well as the possible collisions between stimuli and observations. 
Designing correct synchronous test cases is easier, but transforming .them 
into correct asynchronous ones is a difficult task. Moreover, it is difficult to 
compare remote testing and local testing as in general sets of conformant 
implementations are not comparable. 

In this paper, we prove that by the use of logical stamps, remote testing can 
gain the same power as local testing: the conformant implementations in an 
asynchronous environment are exactly the same ones as in a synchronous en­
vironment. We give an operational method to derive the correct test cases for 
remote testing with this testing power. Furthermore, we show that test cases 
designed for a synchronous environment can test synchronous conformance in 
an asynchronous environment. This is achieved by the implementation of a 
test driver executed at runtime on the tester. 

Keywords 
Conformance Testing, Test Generation, Local and Remote Testing, Asynchro­
nism, Stamp 

1 INTRODUCTION 

We consider the context of black box conformance testing in which an imple­
mentation under test (JUT for short) is tested in order to obtain the conviction 
that its behaviour conforms with its specification. The tester stimulates the 
JUT by sending messages on points of control and observation (PCOs) and 
observes on these same PCOs the reactions of the JUT (see figure 1, part A). 
Within sight of the reactions, a verdict (Fail, Pass or Inconclusive) is emitted. 
The underlying concepts have been formalized since the last years leading to 
the so called testing theory which identifies the notion of formal conformance 
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Figure 1 Synchronous and asynchronous testing 

relation and gives a precise meaning of the verdicts (see (11) for example). 
Originally, the theory considered a synchronous interaction between the tester 
and the JUT. This made the implicit assumption that an JUT can refuse an 
event and that the tester can observe the refusal (1]. In practice however, one 
cannot always avoid taking into account the test environment intercalated be­
tween the tester and the JUT. As advocated in (4], conformance must then be 
defined as the conformance of the JUT in its test environment with the spec­
ification in a model of this environment. The most frequent example is that 
of remote testing architecture in which the tester reaches the JUT through a 
network connection. In this case, PCOs can be seen as composed of two FIFO 
queues, one for each direction of the interaction. The communication between 
the tester and the IUT is then asynchronous as illustrated in figure 1, part B. 

The asynchronous nature of the PCOs poses some difficulties to design 
correct test cases. The possibility of disorder on the observations collected on 
different PCOs as well as the possible collision on a PCO between stimuli and 
observations have to be taken into account. This should be achieved by the 
inclusion of this asynchronous behaviour in the specification. But during the 
examination of existing test suites, one realizes (see for instance [2]) that this 
is not always done and it is the main reason of non-validity of some tests. 

Another problem is the fundamental difference between conformance in 
synchronous or asynchronous environment. Precisely, for a particular specifi­
cation, the sets of conformant IUTs in synchronous or asynchronous environ­
ment are in general not comparable. This explains why transforming a correct 
synchronous test case into a correct asynchronous test case is a difficult task. 

It appears nevertheless that under certain conditions, the asynchronous 
deformation is foreseeable and even invertible. This topic is investigated in 
this paper and our main results are shortly described here: 

1. We show that the ioconf conformance relation (12] has a simple char­
acterization in terms of trace inclusion for input complete specifications. 
Moreover a specification can always be completed without modification of 
its set of conformant implementations. 

2. We deduce that for complete specifications, syn((hronous conformance is 
preserved by the asynchronous environment. This means that a conformant 
IUT in synchronous environment is still conformant in an asynchronous 
environment. But asynchronous conformance is still more permissive: some 
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non conformant IUTs in synchronous environment can be conformant in 
an asynchronous environment. 

3. Under the assumption of one PCO linking the IUT and its environment, 
and by using stamps (a simple counting mechanism), we prove that the per­
missiveness of remote asynchronous testing can be suppressed: conformant 
IUTs in synchronous environment are exactly the same ones as in asyn­
chronous environment. From the preceding results, we deduce a method 
for the automatic generation of tests with synchronous testing power. 

4. Furthermore, still in the case of one PCO, synchronous test cases can be 
used for asynchronous testing. This is achieved by a specific driver which 
inverts the asynchronous transformation using stamps. We think that this 
new mechanism can be of a great utility. It makes possible to conceive 
tests in a synchronous way while carrying out them in an asynchronous 
environment. 

The presentation is organized as follows. We start by the definition of mod­
els. Then, we recall the local synchronous approach and the need to complete 
specifications to prepare their use in an asynchronous environment. Secondly, 
we present the distortions induced by the PCO queues and deduce the asyn­
chronous conformance relation. Then we define the counting mechanism in the 
case of one PCO. We deduce a transformation of the specification allowing to 
generate automatically test cases for asynchronous testing with the power of 
synchronous testing. The next part is devoted to a possible implementation 
of a test driver which controls a synchronous test case in an asynchronous 
environment with the information acquired dynamically from the IUT. We 
finish by some prospects of generalization in the case of multiple PCOs. 

2 LOCAL SYNCHRONOUS TESTING 

Because of the asymmetrical nature of the testing activity, the models have to 
differentiate input and output actions. In this paper, we will use the model of 
IOLTS (Input-Output Labeled Transition Systems) to describe the different 
objects involved in the conformance testing. 

2.1 Models 

Definition 21 An JOLTS is a tuple M=(QM, Pf, P0, A7, A0, TM, qrnit) where 
QM is a set of states, qrnit E QM is the initial state, Pf and P0 are finite 
sets of input and output ports. A7 and A0 respectively are finite input and 
output alphabets. AM ~ Pf x {?} x A7 u Pf3 x {!} x A0 is the alphabet of 
observable actions constructed from the sets of input-output ports and input­
output alphabets. r fj AM denotes an internal action. TM ~ QM x A MU { r} x QM 
is the transition relation, we note p ~ M q for (p, a, q) E TM. 

Let ai E AM, f..Li E AM U {r}, a E (AM)*, q,q',qi E QM: 
/"1 · "l!-n 1 • W 

• q ~ q =def 3qo = q,Ql· .. ,Qn = q',\:1~ E [l,n],qi-1 !:t Qi, 
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J.lt ···J.In 1 J.lt .. •J.In 1 J.lt .. ·J.In I J.ll ... J.In 
• q ~ =de/ 3q, q =........:t q and q I--* q =de/ -.(q =........:t ), 

< I I T···T I d q I 3 < Ct. <'. I • q =? q =def q = q or q --t q an q =? q =de/ Q1, Q2, q =? Q1 -t Q2 =? q , 
O<t• .. !ln 1 3 I w· (1 J ~ • q ==? q =def Qo = q,ql ... ,Qn = q, vl E ,n ,Qi-1 =? q;, 

• enable(q) =de/ { o: E AM I 3q1 and q :%-M q1} is the set of observable actions 
possible in q, In(q) =de/ {a EAr I 3p E Pf,p?a E enable(q)} is the set of 
possible inputs in q, and Out(q) =def {a E A~ l3p E P0 ,p!a E enable(q)} is 
the set of possible outputs in q, 
• q after a =def { q E QM I q ~M q} is the set of reachable states from q by 
the sequence of observable actions a, 
• Traces(q) =def {a E (AM)* I q after a =f. 0}, 
• if o: E AM is an observable action, we note a its mirror action: if o: = p!a 
then a= p?a else a= p!a. This can be extended to sequences of actions. 

Definition 22 An JOLTS M is said 
• deterministic if V a E (AM)*, IM after al :$ 1 where lXI is the cardinality 
of the set X, 
• controllable if in each state of M, either only one output is enabled or all 
inputs are enabled: for any sequence a E (AM)*, 
In(M aftera) = Af or {In(M aftera) = 0 1\ IOut(M aftera)l :$ 1}, 
• input-complete if any input is possible after each trace: Va E (AM)*, 
In(M aftera) = Af. 

As usual (10, 12], a specification of a system S will be modeled by an 
IOLTS S = (Q 5 ,PJ,P(J,Aj, Ab,T5 ,qrnit) and an implementation by a 
deterministic input-complete IOLTS I= (Q',PJ,Pb, A~,A0 ,T',q{nit), with 
P} = PJ, Pb = P(J, Aj ~A~, and Ab ~ A0. A test case is a set of sequences 
of actions describing all the interactions occurring between an IUT and a tester 
which wants to verify that an IUT conforms with its specification. A test case 
is modeled by a deterministic IOLTS T = (QT, PJ, P6, Aj, Ab, TT, q~it) such 
that: Aj = A0 (every possible output of the IUT must be considered as 
an input of the test case), Ab = AJ (a test case should only send outputs 
that are waited by the specification), {pass,Jail} E QT with enable(pass) = 
enable(fai~ = 0, and the last transition leading to fail is an input. In general, 
it is assumed that a test case is controllable and input-complete. 

Remark: In practice Aj = Ab is unknown. Thus, only inputs not leading 
to fail can be denoted, the other inputs are implicitly leading to fail or are 
denoted by "? otherwise Fail", like in TTCN (see (9]-part 3). o 

2.2 Conformance 

Formalizing conformance testing (4] necessitates to define a conformance re­
lation relating models of IUTs to specifications. We will consider here a con­
formance relation which states that outputs produced by an IUT after a trace 
of the specification are foreseen by the specification [10, 12]. 
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Definition 23 (Conformance relation) Let S be the JOLTS describing the 
specification and I an (input-complete} JOLTS describing an implementation: 
I ioconf S <==> 'fluE Traces(S), Out( I after u) ~ Out(S after u). 

Definition 24 (Synchronous Testing) The synchronous application of a test 
case to an JUT is defined as a parallel composition II of the test case T and 

thelUTI:\faEATUAT T~T' 1~1'. 
I 0 ' TIII~T'III' 

Definition 25 (Test failure and unbiased test case) 
T fails I =de/ 3 I', 3u, Till ~ fail II I'. A test case T is unbiased with respect 
to S if and only if \1 I, T fails I ::} not (I ioconf S). 

The definition of ioconf authorizes IUTs to diverge from the specification 
starting from unspecified inputs: the specification implicitly authorizes any 
behaviour in the IUT after an unspecified input. We may need to make these 
behaviours explicit by considering input-complete specification. Moreover for 
input complete specifications, ioconf has a very simple characterization as 
stated by the following proposition. 

Proposition 21 LetS and I be two input-complete JOLTS. 
We have I ioconf S <==> Traces(I) ~ Traces(S) 

Proof: Suppose I ioconf S and let w E Traces(I). Suppose w !/. Traces(S), 
then w can be split in two sequences w = WI· w2 where WI is the maximal 
prefix of w E Traces(S). Let a be the first action in w2 . If a is an input, as 
S is input complete, WI.a E Traces(S). If a is an output, as w1 E Traces(S) 
and I ioconf S, a E Out(S after wi), and w1 .a E Traces(S) which contradicts 
the hypothesis. Thus, Traces(!) ~ Traces(S). Thus in both cases w1 is not 
maximal and proves that wE Traces(S). 

The converse i.e. Traces(!) ~ Traces(S) ::} I ioconf S is evident even for 
a non input-complete specificationS. • 

As we may have to deal with specifications which are not input complete, 
we may want to complete them in order to benefit from the preceding result. 
But this completion should not alterate the set of conformant IUTs. This 
is achieved by using the following completion similar to the notion of trap­
state [13] and illustrated by figure 2. 

Definition 26 (Completion} 
Let S be an JOLTS. Comp(S) is defined as an JOLTS such that: 

Traces(Comp(S)) = Traces(S) U(UweTraces(S),aEU(w)w.?a.( {?}X AI U {!}X Ao)*) 
where U(w) = AI \ In(S after w) is the set of unspecified inputs of the state of S 
reached after the trace w. 
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Figure 2 Example illustrating the completion (dotted lines represent tran­
sitions added by the transformation) 

Proposition 22 LetS be an JOLTS and Camp(S) its input completion. For 
all input complete JOLTS I, I ioconf S <===> I ioconf Camp(S). 

Proof: Suppose -,(J ioconf S). By definition of ioconf, this means 3a E 

Traces(S), 3z E Out(! after a), and z (j. Out(S after a). By definition of 
Camp, we have Traces(S) ~ Traces(Camp(S)), so a E Traces(Camp(S)). 
But a.z (j. Traces(Comp(S)) as z E Ao and the input completion only adds 
a E A1\In(S after a). This implies •(I ioconfCamp(S)). 
Suppose now -,(J ioconf Comp(S)), this means 3a E Traces(Comp(S)), 
3z E Out(! after a), and z (j. Out(Camp(S) after a). If a E Traces(S) 
then z (j. Out(Comp(S) after a) induces z (j. Out(S after a) as Traces(S) ~ 
Traces(Comp(S)). Otherwise a E Traces(Comp(S))\Traces(S) is of the 
form a 1 .a.a2 with a 1 E Traces(S) and a E A1. In this case, a1 .a.a2 .z E 

Traces(Comp(S)), i.e. z E Out(Camp(S) after a) which contradicts the hy­
~~. . 
Remark: The validity of the proposition 22 heavily depends on the notion 
of completion used. For example completing with loops on unspecified inputs 
does not work. 

There also exist different notions of input completion. For instance in SDL, 
input completion is implicit in the case of unspecified inputs. This means 
that in any control state, if an unspecified input occurs it is consumed. But as 
transitions are atomic, this happens only in any control (stable) states. Thus 
in terms of transition systems, only some states are input complete. The other 
states should be completed with Camp in order to apply 22. 

Notice also that the notion of completeness of Mealy machines (see [8] for 
example) corresponds more to this implicit completeness of SDL than to the 
notion of input-completeness of definition 26. o 

Propositions 21 and 22 lead to the following proposition 23 which gives a 
very simple characterization of ioconf. 

Proposition 23 I ioconf S <==:>Traces(!)~ Traces(Camp(S)). 
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3 REMOTE ASYNCHRONOUS TESTING 

In practice, the testing activity is generally done through an environment 
intercalated between the tester and the IUT. As advocated in [4] the con­
formance of an IUT with respect to a specification in a context should be 
defined as the conformance of the implementation in its context with respect 
to the specification in a model of the context. For example, in the context of 
a remote testing architecture, the tester reaches the IUT through a network. 
In this case, the interaction between the tester and the IUT is asynchronous 
and PCOs can be seen as composed of two FIFO queues. 

We first define the asynchronous transformation A on IOLTS which de­
scribes the impact of FIFO queues on observable behaviours. We use A to 
define the conformance relation in an asynchronous environment. We notice 
how this affects conformance: the set of conformant IUTs in synchronous or 
asynchronous architectures are not comparable in general. However, we show 
that for input-complete specifications, synchronous conformance implies asyn­
chronous conformance. 

3.1 Asynchronous testing 

As already done in [14], we define the asynchronous transformation A as 
follows: 

Definition 31 Let M = (QM,Pt,P0,Af,A0,TM,qt:,it) be an JOLTS. 
A(M) = ( QAtMJ, Pf1M1, p~rMJ, A11M1, A6MJ, TAIMJ, q1~7t1 ) with: 
• QA!M) = QM X ITpEPf Af* X ITpEP~ Aa· and q1~7t) =< M, (t: ... t:), (t: ... t:) > 
• Pf!M) = Pt and p~rMJ =Po, A1(M) = Af and A6M) = Ao, 
• TAIMJ is described by the tollowing ~erational rules defined for all q, q' E 
QM,a E Af,b E A0,plk E PI ,Pot E Po: 

Rl (inputs of A(M) from Env) 
Plk ?a , 

< q, (PI!··· Pik = w ··-),(Poi · ·-) > -+ A!MJ< q, (Pit · · · Pik = w.a ···),(Pol · · ·) > 

R2 (outputs of A(M) to Env) 
P01!b 

< q,(PII···),(pol···pol =b.w···) >-+AIM)< q,(PII···),(Po!···pol =w···) > 

R3 (internal actions) 
Q~M q' 

< q, (PI!···), (POI···) >~A!MJ< q', (pi!···), (Pot···)> 

R4(inputs of M from queues) 
Plk ?a 1 q -+ M q 

< q,(Prl···Prk = a.w···),(Pol···) >~AtMJ< q',(Pri ... Pik = w···),(Pol ···) > 

R5 (outputs of M to queues) 
PO!!b I 

q -+ M q 



32 

Remark: V JOLTS M, Traces(M) ~ Traces(A(M)). ¢ 

For the asynchronous context the conformance relation now becomes: 

Definition 32 (Conformance in an asynchronous environment} Let I and S 
be two JOLTS with I input-complete. I ioconfA S =def A(I) ioconf A(S). 

The notion of test failure and unbias in an asynchronous environment are 
then straightforward. 

3.2 Problems in asynchronous testing 

Let us consider the specification S described on the left part of figure 3. 
For sake of clarity, we will suppose that all the indicated observable actions 
occur on the same PCO. Notice also that S is not input-complete. The right 

ioconf not ioconf 

S iocont 

c;:l~y ?a 
?b ?a -,:::);b 

!!x 

~!?b 
?a I !y not ioco10 

?De;:+ R 

11 ~ !y ?a 12 ?b ~~?a 
?b ra--,:::) 

~ !x ?b 
?a 

+ !y 

foP~ ?b 
~ 

?b 

?b?a +!y ~ ·~ .. a 
13 C¥~ -_J] •• 14 ~ ?b ~ -..:::J?b ?b ~.?. a. 

!x. ?b ~ 0 

C¥ 'z t !z 1il 
?a~?b .?a ?a 

~ 

?b ?b 
?a ~!y 

?b.C¥ 

Figure 3 Difference between synchronous and asynchronous testing 

part of figure 3 contains different implementations which show that testing 
synchronously or asynchronously is not comparable. More precisely, they show 
two main problems when testing in an asynchronous environment. 

Permissiveness: The IUT 12 shows that asynchronous testing is more per­
missive than synchronous testing: -.(Iz ioconf S) but (Iz ioconfA S). We have 
-.(12 ioconf S) because Out(Iz after ?a)= {y} ~ Out(S after ?a)= {x}. In 
an asynchronous environment, outputs can be delayed. Thus the trace !y.?a 
of S can be observed as ?a.!y in A(S). Thus, we have (Iz ioconfA S) as 
Out(A(Iz) after?a) = {y} ~ Out(A(S) after?a) = {x,y}. 

Non preservation of conformance: This problem is brought to light by 
the IUT !3: 13 ioconf S but -.(J3 ioconfA S)). In fact, !3 ioconf S even 
though ?a.?b.!z is not a trace of S. This is because ioconf authorizes diver­
gence from the specification starting from an unspecified input. The sequence 



33 

?a.?b is in Traces(A(S)), and we have Out(A(S) after ?a.?b) = {x,y} but 
Out(A(I3) after ?a.?b) = {x, y, z }. Thus -.(!3 ioconfA S). 

Notice that these problems are more complex in the context of several PCOs 
as inputs and outputs orders are not preserved. Similar remarks concerning the 
non preservation of conformance in asynchronous environment have been done 
in [14]. But these were made regarding the synchronous conformance relation 
conf (which does not distinguish inputs and outputs) and an asynchronous 
conformance relation similar to ioconf A-

The problem of permissiveness is inherent to the transformation by a con­
text. But the non preservation of conformance is due to the fact that Sis not 
input-complete. Lemma 31 states that this can be avoided input-complete 
specifications and monotonic transformations by contexts. A transforma­
tion T on IOLTS is monotonic if it preserves trace inclusion: 
Traces(M) ~ Traces(M') => Traces(T(M)) ~ Traces(T(M')). 

Lemma 31 LetS and I be input complete JOLTS. IfT is a monotonic trans­
formation, I ioconf S => T(I) ioconfT(S). 

Proof: Suppose I ioconf S and S and I are input complete. By proposi­
tion 21 we have Traces(!) ~ Traces(S). By monotonicity ofT, this implies 
Traces(T(I)) ~ Traces(T(S)) which implies T(I) ioconfT(S). • 

The asynchronous transformation A is monotonic because it is applied on 
traces independently of others. Application of lemma 31 gives the corollary: 

Corollary 31 For input complete I 0 LTS S and I, I ioconf S => I ioconf A S. 

As a consequence, the only difference between iocanf and iocanf A is per­
missiveness. We show in the next section that this can be avoided if the order 
of occurrence of events on the IUT is captured by an appropriate stamp mech­
anism. 

4 STAMPED ASYNCHRONOUS TESTING 

The idea is to instrument the IUT so that each output from the IUT to the 
tester (via the environment) can bring to the tester an additional information 
on the real order in which the IUT has produced the events. Linking time 
stamp techniques used in observing distributed systems to the problem of 
generating tests has been already advocated in different contexts like in [6, 7]. 

This instrumentation can be defined by the synchronous parallel composi­
tion of the IUT with a stamp process ST (as illustrated in figure 4). The role 
of the stamp process ST is to code the history of occurrence of events on the 
IUT and to transmit it to the environment by piggybacking each output. 

We will consider the particular case of one PCO in which history is coded 
by an integer counter. 
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I ~· 81. IUT?xl ~~~0 Env?a/ I il!ii!llii .. ._~'lest~:r 
jEnv!(!x,CT)t._..... --.) CT := CT++; I ! 
, CT := CT ++ IUT!(?a) I 

Figure 4 Implementation of the counting mechanism st 

This stamping process ST implements a function st defined on traces as 
follows. 

Definition 41 st: (AI U Ao)* --+ (AI U (Ao x IN))*, Va E (AI U Ao)*, a E 
A1, and z E Ao: st(c:) = c:, st(a.!z) = st(a).(!z,length(a)), and st(a.?a) = 
st(a).?a. 

By extension, one can regard the transformation st as being carried out 
on the IOLTS by an on-the-fly traversal of the graph. Let us consider the 
example of an interaction between an IUT and its environment illustrated 
on figure 5. From the point of view of events produced on the IUT, one 
has: st(?x.!s.?y.?t.?u.!z) =?x.(!s, l).?y.?t.?u.(!z, 5). 

cr2= cr'2.cr"2 
crl .-----~"·2-----...-

M ~ -?-y -~ ~,-?t---::?---,u' !z .... 

- / \ / / / \{!z,5) a"2 

Env // /~~s.I) // // ~' 
!x !y ?s !t !u !v !w ?z 

"--/ 
()) 

Figure 5 Illustration of the computation of st and st 

This counting information is intended to be decoded by the tester as de­
scribed in section 5. We thus define an opposite transformation st (illustrated 
in figure 5), which orders events of a system M in the environment. From 
a sequence of events w in the environment Env, st computes two sequences 
of events st(w)[l) and st(w)[2) using the counting information associated to 
outputs of the system M: 

• st(w)[l] is the sequence of events of the system M which precede the last 
output z of M received by the environment and including this output. 

• st(w)[2) is the sequence of inputs of M (corresponding to outputs of Env) 
which were not received before the sending by M of z. As we assume a 
FIFO channel between Env and M, this sequence will be received in this 
order but M may have some intercalated outputs of M. 

Notice that st can be computed on-the-fly by Env. When Env makes an 
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output, the corresponding input is added to the tail of st(w)[2]. When Env 
makes an input z with the counting information, st(w)[l] and st(w)[2] are 
updated accordingly. 

Definition 42 st: (AIU(Ao xiN))* --+ (A1UAo)* xAj is defined recursively 
as: st(f.) = (f., f.), and Vw E (AI U (Ao x IN))*, if st(w) = (st(w)[l], st(w)[2]) 
then st(w.?a) = (st(w)[l],st(w)[2].?a) and st(w.(!z,i)) = (st(w)[l].a~.!z,a~) 
where a~ and a~ are sequences such that st(w)[2] = a~.a~ with length(a~) = 
i -length(st(w)[l]). 

For example, let us consider the sequence of events occurring on the tester 
in figure 5 (denoted by their corresponding names on the IUT). Then we have 
st(?x.?y.(!s, l).?t.?u.?v.?w) = (?x.!s, ?y.?t.?u.?v.?w), and st(?x.?y.(!s, l).?t. 
?u.?v.?w.(!z,5)) = (?x.!s.?y.?t.?u.!z, ?v.?w). In this last case, this means that 
upon reception of z, the tester knows that ?x.!s.?y.?t.?u.!z has occurred in 
this order on the IUT, but it does not know yet what will be the order in the 
future including the receptions of v and w. The counting information gives 
the index for inserting the output in the sequence. 

The following proposition states that the composition of st with the asyn­
chronous transformation st o A is invertible: for a trace a, the application of 
st on any trace of st o A( a) = A( st( a)) can reconstruct a. 

Proposition 41 VM E JOLTS, Va E Traces(M), Vw E Traces(A(st(a))), 
we have: st(w) = (a1,a2) witha = 0"1.0"2. 

Proof: st associates with each output the index of this output in the se­
quence. This information can be used by st to recover the order since the 
transformation A (in the case of only one FIFO queue in each direction) pre­
serves the relative order of inputs and the relative order of outputs. Notice 
that outputs do not need to be FIFO ordered as they are numbered by st. • 

We can now prove the main theorem which says that for input complete 
IOLTS communicating asynchronously with their environment using one FIFO 
in each direction, remote asynchronous testing using stamps has the same 
testing power as local synchronous testing. 

Theorem 41 LetS and I be two input complete JOLTS communicating asyn­
chronously with their environment using one FIFO in each direction. 
We have: I ioconf S ¢::::::> st(I) ioconfA st(S) 

Proof: We first prove that lioconfS => A(st(I)) ioconfA(st(S)). Since A 
and st are monotonic (st is defined on traces), st o A is also monotonic and 
lemma 31 applies. 

Let us prove the converse: if -.(I ioconf S) then -.(A(st(I)) ioconf A(st(S))). 
By definition of ioconf, -.(lioconfS) => 3a E Traces(S),3z E Out(Iajtera) 
such that z ~ Out(Saftera). Letw = st(a). For any JOLTS M,a E Traces(M) 
implies st(a) E Traces(st(M)) and Traces(M) ~ Traces(A(M)). Thus, we 
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have: w E Traces(A(st(S))) and w.(z,length(u)) E Traces(A(st(I))). We 
want to prove that w.(z,length(u)) ~ Traces(A(st(S))). 
Since z ~ Out(Safteru), we must show that the output (z, length(u)) after 
w cannot be created by the st o A transformation. First, note that the traces 
of A(u) are produced from u by the following semi-commutation !x.?y-t?y.!x 
which can only delay the outputs with respect to inputs. Let us suppose 
that z belongs to a trace u' of S. We show that u' is identical to u. '1:/u' E 
Traces(S),3w E A(st(u')) and w = st(u) => u = u'. This is based on the 
properties of A: a) length(u) = length(u'), b) u and u' are on the same al­
phabet, c) the outputs are numbered by the same stamps, d) the inputs are 
not changed by the transformation. 
Thus, 3w E Traces(A(st(S))),w.(z,length(u)) ~ Traces(A(st(S))) which 
implies 3w E Traces(A(st(S))), (z, length(u)) E Out(A(st(I) after w), and 
(z, length(u)) fj. Out(A(st(S) after w). • 

Stamped asynchronous tests generation Theorem 41 induces a method 
for the generation of test cases for asynchronous testing with the power of syn­
chronous testing. 

Proposition 22 says that for any specificationS its input completion Comp(S) 
has the same set of conformant implementations. Theorem 41 says that if we 
assume a communication with the environment with one FIFO in each direc­
tion, an IUT I is conformant to Comp(S) if and only if A(st(I)) is tonformant 
with A(st(Comp(S))). Now, there exists test generation algorithms imple­
mented in tools [3, 15). Applied to a specification S, they produce unbiased 
test cases with respect to S and·ioconf. These methods are (theoretically) ex­
haustive: assuming bounded fairness of implementations, all non conformant 
implementations may be rejected by a test case. Using these algorithms on 
A(st(Comp(S))) will thus produce a test suite which is unbiased and exhaus­
tive with respect to A(st(Comp(S))) and ioconf. Moreover, by theorem 41 this 
test suite has exactly the same testing power as the synchronous test suite. 

But, generating tests from A(st(Comp(S))) has some drawbacks. The first 
one is the state space explosion due to the asynchronous transformation and 
the unfolding caused by st. A second one is the relevance of test cases. In 
the example of figure 3, ?a.?b.(!x, 1) and ?a.(!x, 1).?b are both sequences 
of A(st(Comp(S))). So one could generate a test case with a sequence !a.!b.(?x, 1). 
But this would be artificial because as S sends x after the input a, it is prefer­
able to wait for x before sending b. 

So, when testing the conformance of I with respect to S in a remote testing 
architecture, we are mainly interested in traces of S but not in all traces 
of A(st(Comp(S))), even if we have to consider them as possible traces. One 
way to limit these drawbacks is thus to use test purposes which accept traces in 
Traces(S) in order to select test cases from A(st(Comp(S))) and to generate 



37 

test cases on-the-fly as in [3]. Another completely different and more efficient 
solution is investigated in the following section. 

5 REMOTE ASYNCHRONOUS TESTING WITH 
SYNCHRONOUS TEST CASES 

The idea is that from a sequence of events of A(st(I)), st can reconstruct, 
with a certain latency due to the asynchronous communication, the sequence 
of events which occurred on I. Thus this sequence can be checked on test 
cases produced from S to check the conformance of I with respect to S and 
ioconf as in a local synchronous testing architecture. Thus local synchronous 
test cases are generated from Camp(S). Then, test cases are decorated with 
counters using the transformation st. They can then be played in a remote 
asynchronous testing architecture with a kind of test driver implementing st. 
This is illustrated in figure 6. 

B ST , ~ pco 'leste~ 
IU IUT?x/ ~ CT := 0 Env?a/ IIJJJ ..... B I s~mJ 

Env!(!x,CT);[:; ::J CT := CT++; [[Jll Test I 
CT := CT ++ IUT!(?a) 

~~====================--

Figure 6 Architecture for "remote local" testing 

The mechanism necessitates some attention. In fact the difference between 
synchronous local testing and asynchronous testing is that the control of the 
tester on the IUT is weakened. Inputs of the IUT cannot be completely con­
trolled by the tester. This can be illustrated on the example of figure 3. Accord­
ing to the specification, the tester may choose an output (say a) and computes 
st(?a) = (E, ?a). But between the output !a by the tester and its corresponding 
input ?a by the IUT, the IUT may decide to perform the output !y associated 
with the counter 0. When receiving (y, 0), st(?a.(!y, 0)) = (!y, ?a). Thus the 
tester knows that the IUT has performed !y first and will later receive a. The 
IUT has thus chosen a different behaviour from the one chosen by the tester. 
Nevertheless, the tester must evolve according to the behavior of the IUT but 
also to its own past behavior. In particular, a has been sent and this cannot 
be cancelled. Thus the tester will have to wait for a new input from the IUT 
or choose a new output according to the sequence !y.?a. All this information 
is contained in st(?a.(!y,O)). 

The tester thus computes st(w) on-the-fly. Only st(w)[l] should be used for 
verdicts because it is a sequence of I. The information on the sequence of 
inputs of the IUT of st(w)[2] is not complete as outputs can be intercalated 
in the sequence. The tester may sometimes choose to wait for an output of 
the IUT to complete its information. But this is not always possible because 
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the IUT may also wait for an input. So outputs of the tester must be chosen 
and this is done according to st(w)[l].st(w)[2]. 

A fundamental difference with synchronous local testing is that test cases 
are controllable in synchronous local testing: a test case never has the choice 
between two outputs or between an input and an output. This comes from 
the fact that the tester controls the inputs of the IUT. This is not anymore 
the case when synchronous test cases are played in an asynchronous envi­
ronment. In this case, in any state all possible outputs of the IUT must be 
taken into account. The controllability property thus has to be relaxed into 
semi-controllability. An IOLTS is said semi-controllable if in any state 
at most one output is possible and all possible inputs are considered: 
Va E (AM)*, In(M after a) = Ar A IOut(M aftera)i ~ 1. 

Also specifications have to be input complete or completed by Comp. In fact 
if st(w)[l) = a.!z E Traces(!), either z f/. Traces(S after a) and in this case !z 
should produce a fail verdict, or z E Traces(S after a) and st(w)[l].st(w)[2] 
must be in Traces(S). As st(w)[2] is composed of inputs, input completeness 
always ensures this. 

Notice that the first component of st is monotonic for the prefix ordering 
i.e. w ~ w' for the prefix ordering implies st(w)[l] ~ st(w')[l]. 

The algorithm which has to be performed on the test driver is described 
below. It uses two sequences a 1 and a 2 which respectively contain the two 
components of the sequence of events w performed by the tester: a 1 = st(w)[l] 
and a2 = st(w)[2]. The variable w is only used to describe the invariant. 

• Input: TC: test case. Output: verdict 
Invariant a1 = st(w)[l] and a2 = st(w)[2] 
Initialization: w := t; a1 := t; a2 := t; verdict:= nil 
(* st(t) = (t, t) *) 
while verdict = nil do 

end 

non-deterministic choice 
if Out(TC after a1.a2) :/; 0 

send(a) where {a}= Out(TC aftera1.a2) 
(* a is unique as test cases are semi-controllable *) 

w := w.?a; a2 := a2.?a; (*i.e. st(w.?a) = (st(w)[l), st(w)[2].?a*) 
if input queue is not empty 

receive((z,i)); w = w.(!z,i) 
let a~, a~ s.t. length(a1.a~) = i and a2 = a~.a~ 
a1 := a1.a2-!z; a2 :=a~;(* st(w.(!z,i)) = (st(w)[l].a2.!z,a~) *) 

verdict := verdict assigned to the state (TC after a1) 
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6 CONCLUSION AND PERSPECTIVES 

We have described how remote asynchronous testing with counters could have 
the same testing power as local synchronous testing in the case where the 
communication between the IUT and the environment is done through one 
PCO. This can be generalized to multiple PCOs but needs more sophisticated 
mechanisms. The general idea is that the tester needs to reorder events of the 
IUT in order to reach the same testing power as in the synchronous case. It is 
natural to suppose that the IUT can only transmit information to the tester by 
piggybacking its outputs. In order to emit a correct verdict on an output of the 
IUT, the tester needs to know the whole sequence of events of the IUT which 
precedes this output (see figure 7). Thus a theoretical instrumentation consists 
in associating to each output of the IUT the sequence of its predecessors in 
the IUT. 

!x 

!x.?b.!y.?a) 

!a 

Figure 7 Theoretical instrumentation in the general case 

This instrumentation is not realistic because this induces redundant infor­
mation and the piggybacked sequences continuously grow. A non redundant 
instrumentation consists in segmenting the information into sub-sequences 
between two consecutive outputs. But as an output can be overtaken by a 
following one, the order of this output in the sequence should be piggybacked 
as in the case of one PCO. The functions st and st must be extended in the 
case of multiple PCOs. 

Another prospect is timers management. Deadlocks and output quiescence 
are considered as outputs in the testing theory [12]. In our framework of 
asynchronous instrumented testing, inputs of test cases (outputs of the IUT) 
carry counters. This must be generalized to timeouts but suggests that timers 
should be managed by the instrumentation of the IUT. Moreover starting and 
cancelling a timer must be done by the instrumentation but initiated by the 
tester with messages. 
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