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Formal description techniques like Barel's statecharts offer 
a great potential to facilitate the design of complex real time 
systems. The systems are modeled and simulated at a high 
level. Automatic translation from the abstract models into 
implementations significantly reduces overall development 
time. This paper contributes to the optimized code genera­
tion from statechart models. The worst-case execution time 
of the generated code is reduced. 

1. Introduction 

Real Time (RT) systems gain increasing importance through the widespread use of 
embedded systems like automative systems. Computations must fulfill RT require­
ments such as worst case execution times (WCET), i. e., the maximal required compu­
tation time with arbitrary input to the system. 

Formal description techniques like SDL [Itut93] and statecharts [Hare87] allow the 
formal and unambiguous description of systems at a high level enabling the simulation 
of the (informal) system specification. 

Statecharts employ parallel, hierarchical state diagrams. Concurrent processing as 
well as high-level interrupts can be specified appropriately. The semantics are formally 
defined supporting simulation and analysis of dynamic properties. 

To avoid an error-prone manual translation into an implementation and to save 
design time, automatic code generation is seeked bridging the gap between abstract 
model and implementation. Although some code generators for statechart models do 
exist, yet no generator takes into account optimizing the code for small execution 
times. This paper contributes to the optimized translation of statechart models into 
implementations w. r. t. a small WCET. 

1. Technische Universitat Braunschweig, Abteilung Entwurf integrierter Schaltungen, 
Gaussstrasse II, 38106 Braunschweig, Germany, email: ackad@eis.cs.tu-bs.de 

F. J. Rammig (ed.), Distributed and Parallel Embedded Systems
© Springer Science+Business Media New York 1999



74 Software Synthesis from Statechart Models for Real Time Systems 

SENDER 

r---OPEN_OK/~-~ 
DATA 

BEGIN OPENING SENDING 

• I • I I I I ••• I ••••••• I I I I ••••••• 1'1 •••••••••••• I ••••• I •••••• I I I I I ••••••••••• I ••••••• 

RECEIVER 

OPENED 

BEGIN t------+i DATA/ 
ACK 

CLOSE/ 
CLOSE_OK 

1----.. CLOSED 

Figure 1: A simplified Transfer Protocol 

2. Statecharts as a Modeling Language for RT Systems 

Figure 1 shows a statechart example of a simplified transfer protocol consisting of 
the two parallel finite state machines (FSM) SENDER and RECEIVER. In a typical 
statechart, concurrent FSMs exchange data through normal variables such as integers 
or using abstract events which remain valid for one step only. In the remainder, we use 
"variable" for normal variables as well as events. 

All variables are global to the whole model. Each FSM may read or write any vari­
able. Multiple write accesses to the same variable in one step are forbidden and consid­
ered to be a model error. 

In the example, the sender opens a connection by generating the event OPEN, the 
receiver acknowledges with OPEN_OK, enters the hierarchical state OPENED and its 
sub-state RECEIVING. Data are transmitted generating DATA. The transmission is ter­
minated by sending CLOSE in which case a transition occurs from OPENED to 
CLOSED (high-level interrupt). 

Parallel activities, inherent in most real world systems, can be modeled appropri­
ately at different levels in the statechart model. Parallel FSMs may be started dynami­
cally. Similar behavior of states can be expressed using high-level transitions leading 
to more comprehensible models. 
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3. Design Flow of RT System Design using State charts 

Figure 2 shows the design flow using statecharts. The abstract (textual) specifica­
tion for the system often contains contradictions and ambiguities. It cannot be simu­
lated because the specification is not formal, thus leaving errors unrevealed. 

The specification is modeled using statecharts. This model is on the one hand 
"near" the specification by means of the abstract nature of the statecharts and on the 
other hand simulateable because the statechart semantic is formal and unambiguous. 
Specification errors are discovered quickly and different design architectures are 
explored in short time at this abstract level. 

After validation of the model, an implementation must be developed. A manual 
translation is error-prone as well as time consuming violating a short time-to-market. 
Therefore, an automatic transformation into an implementation is required. 

Modeling 

(Optimizing) 

Code generation 

Simulation, 
Evaluation 

Figure 2: Design Flow using Statecharts 

4. Software Synthesis of Statechart Models 

After designing the statechart model, an implementation is derived automatically 
which essentially exhibits the same functionality as the statechart. 
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The real time systems we consider must fulfill constraints on the WCET, e. g. for 
scheduling calculations. Each piece of implementation code takes some amount of exe­
cution time depending on the actual state and the input. The implementation must be 
structured in a way to provide for an automatic execution time analysis to determine 
the WCET of the program. Therefore, recursive function calls and unbounded loops 
are prohibited. 

The WCET of the implementation should be as small as possible, that is, the imple­
mentation should be optimized w. r. t. a small WCET. 

Of course, there are many valid implementations with different WCETs for a given 
statechart. Our contribution lies in the optimized code generation from statechart mod­
els into implementations for single processor target platforms. We consider only a spe­
cial class of implementations derived from parallel execution graphs as explained 
below. 

The execution of statecharts is step-based. In each step, all parallel FSMs synchro­
nously execute transitions, generating events or changing variables. 

Statechart models describe reactive systems which never terminate. Therefore, the 
implementation is a cyclic executive containing a loop construct at the top level. The 
time for the execution of the whole system is infinite. Each loop cycle corresponds to a 
statechart step. The longest execution time for one cycle is the worst-case execution 
time (WCET) of the implementation, which is the longest processing time of a 
response to a stimulus. 

4. 1. Influence of the Statechart Semantics on the Execution Time 

We focus on implementations to be executed on a single processor. Starting with a 
statechart model, an executable program must be generated which has the statechart 
functionality and a small runtime system (RTS) to keep the statechart semantics. 

In each statechart step, many parallel FSMs may switch; these parallel activities 
have to be sequentialized. The more FSMs are active in parallel the longer the execu­
tion time. It is not determined in which order parallel FSMs are processed in the imple­
mentation. This leads to some degrees of freedom (DOF), which can be exploited to 
improve the WCET. 

Like in most formal techniques, the formal semantics result in overhead regarding 
execution speed and/or code size of the implementation. The statechart semantics 
require that changes of variables occur at the beginning of the next step. It is essential 
that the implementation exhibits the same behavior as the statechart model, thus vari­
able changes must be buffered until the end of the current step (variable buffering). 
This buffering consumes execution time delaying writes after all reads to the same 
variable are done. Often, no buffering is needed; the execution time may be improved 
in these cases. 

Events are valid for only one step; after generating the event, it is cleared in the fol­
lowing step. Because non-trivial statecharts contain quite a few events, an efficient 
RTS event handling is crucial. 
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4.2. Existing Code Generators 

Statemate [llog97] is a toolkit containing a statechart editor, a simulator as well as a 
code generator. Unfortunately, the generated code is not optimized for a small WCET; 
furthermore, the implementation contains unbounded loops and calls to library func­
tions like malloc, such that execution time is unpredictable. 

Procors [Spre96] is a code generator developed at BMW AG, Germany. Although 
the code is optimized w. r. t. a small WCET, the generator imposes severe restrictions 
on the allowed statechart models. For example, only one event is consumed by the 
model at each step. Furthermore, the statechart semantics are altered in that variable 
changes occur immediately, even "inside" a step, resulting in behavioral differences 
between the statechart model and its implementation. 

5. SCOT2 Project Description 

Because of the lack of an optimizing code generator for statecharts, we launched 
the project SCOT. The main project objective is the efficient translation of statechart 
models into implementations. The generated machine code should exhibit a small and 
computable WCET, which is to be optimized for a single 68000 processor system. 

Statemate is our statechart modeling tool. It was successfully applied to the rapid 
prototyping of airplanes [RJJC95], automobiles as well as specification of home auto­
mation systems [ScSc96]. 

5. 1. Transformation Flow Using SCOT 

Figure 3 shows the transformation flow using SCOT. After designing the statechart 
model with Statemate, we transform it into an intermediate format, a parallel execu­
tion graph (PEG). The PEG is an acyclic directed graph, which is an abstract scheme 
for the final implementation. The rather complex statechart semantics (evaluation of 
transition trigger expressions, calculation of priorities) are significantly reduced to 
simple branches depending on variable values, and assignments. The time required for 
one step can be estimated more accurately because of the simpler constructs. 

The PEG execution contains some degrees of freedom (DOF), for example, the 
FSM execution order, which are represented using parallel blocks; segments contained 
in parallel blocks can be executed in an arbitrary order. In an iterative optimization 
cycle, this freedom is eliminated. 

The WCET estimator analyzes each node in the graph for its type, data-dependency 
to other nodes, number and type of operands etc., and estimates the execution time 
depending on timing information of the target platform. To all nodes containing vari­
able read or write references, an overhead for the double buffer handling is added. This 
overhead may be reduced later upon fixing the execution order. 

The longest path through the PEG is determined and optimized yielding a new PEG 
with a smaller WCET and less DOF. This step is repeated until no more optimizations 
are possible. 

2. Statechart Compilation for Optimized worst-case execution Time 
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Figure 3: SCOT Transformation Flow 

The C code generator produces C code for the PEG together with a tailored RTS 
which can be compiled, linked, and executed. 

5.2. PEG Optimization 

The PEG consists of conditional branches, variable assignments, parallel blocks, 
and join nodes to collect several path segments. Each path through the PEG corre­
sponds to one possible statechart step. Thus optimizing the longest PEG path means 
optimizing the WCET of the implementation. 

To calculate the WCET, the execution time of each node must be estimated. The 
estimation is based on the analysis of the node execution time on a 68000 platform. 

Optimizations are possible for variables, when a variable is buffered and the buffer­
ing can be eliminated. Remember that in this case, the execution time of all nodes ref­
erencing this variable, is shortened. 
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Figure 4 shows a PEG example. Each path leads from START to END. Both path 

Figure 4: PEG Example 

segments between Parbegin and Parend must be contained in all paths through the 
PEG, but the order is arbitrary. Because of the statechart semantics, changes to vari­
ables must not be observable by other statements before the next step. In all paths, no 
write to a variable may be followed by a read, otherwise, the variable must be buffered 
(changes are applied upon reaching END). In the figure, variable B needs no buffering 
if segment L is executed before R. Thus, selecting the order ilL before R" reduces vari­
able buffering, hence execution time of the nodes referencing B. 

On the other hand, A needs buffering, since it is read after being written in segment 
L. 

For each optimization step, the path through the PEG with the longest WCET is 
detennined. All referenced variables with buffering along the path are collected. For 
each variable all references are checked w. r. t. data dependencies to path segments 
before and after the reference as well as parallel segments. 

The variable contributing most to the execution time of the path is selected for opti­
mization. If an execution order of segments is possible so that the buffering is unneces­
sary, this segment order is fixed, the buffering is deleted, and the execution time is 
fixed. In some situations, no order can be found because of cyclic data dependencies. 
In this case, one variable is marked as unoptimizable breaking the cycle. If there is still 
some DOF left, the next iteration is started. 

5.3. WeET-Optimized Runtime System 

Generated events must be cleared. Both generating and clearing is associated with 
an RTS overhead, in that the event must be generated during step n and cleared at the 
end of step n+l. Generating an event contributes to the execution time of the PEG 
nodes; the RTS is responsible for clearing events. Good average execution times can 
be achieved using an event clear list like in the Statemate-generated code, where all 
generated events are inserted for clearance after the next step. Unfortunately, the length 
of the list contributing to the WCET depends on the number of generated events in the 
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execution of the implementation, which cannot be determined at compile time. Count­
ing all existing events as maximal length would result in an unrealistic WCET estima­
tion. 

To alleviate this problem, we selected a timestamp approach. Generating an event 
means setting the timestamp to the actual step counter (ASC), which is incremented in 
each step. Checking whether an event has been generated in the last step results in a 
comparison between its timestamp and the ASC. 

Since statechart models are reactive systems with continuous use, a simple incre­
mentation of the ASC would not be possible because of the overflow due to the limited 
range of integers. At special re-initialization steps, the ASC and the timestamps must 
be set to zero. This special step would require an extraordinary amount of time result­
ing in a loose WCET prediction. 

Therefore, we partition all existing events in p event groups. Each group is associ­
ated with a individual ASC. In each step, one of the p groups is re-initialized together 
with its ASC. Using this approach, the overhead for the re-initialization is distributed 
equally to p steps. 

6. Application Example 

As an example for the optimization process, a system for an elevator control is 
used. Figure 5 shows the statechart model; it contains parallel and hierarchical con-
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Figure 5: Application Example: Elevator Control System 

structs as well as complex transition triggers. 19 variables and 8 events are used; a 
standard code generator would use double buffering for all of them. 
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After model analysis and selecting an appropriate execution order, the SCOT code 
generator needs buffering for only three variables and three events reducing the execu­
tion time from 1142 to 842 clock cycles (26 % less). 
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