
SOFTWARE SYNTHESIS FROM
STATECHART MODELS

FOR REAL TIME SYSTEMS

Claude Ackad1

Formal description techniques like Barel's statecharts offer
a great potential to facilitate the design of complex real time
systems. The systems are modeled and simulated at a high
level. Automatic translation from the abstract models into
implementations significantly reduces overall development
time. This paper contributes to the optimized code genera­
tion from statechart models. The worst-case execution time
of the generated code is reduced.

1. Introduction

Real Time (RT) systems gain increasing importance through the widespread use of
embedded systems like automative systems. Computations must fulfill RT require­
ments such as worst case execution times (WCET), i. e., the maximal required compu­
tation time with arbitrary input to the system.

Formal description techniques like SDL [Itut93] and statecharts [Hare87] allow the
formal and unambiguous description of systems at a high level enabling the simulation
of the (informal) system specification.

Statecharts employ parallel, hierarchical state diagrams. Concurrent processing as
well as high-level interrupts can be specified appropriately. The semantics are formally
defined supporting simulation and analysis of dynamic properties.

To avoid an error-prone manual translation into an implementation and to save
design time, automatic code generation is seeked bridging the gap between abstract
model and implementation. Although some code generators for statechart models do
exist, yet no generator takes into account optimizing the code for small execution
times. This paper contributes to the optimized translation of statechart models into
implementations w. r. t. a small WCET.

1. Technische Universitat Braunschweig, Abteilung Entwurf integrierter Schaltungen,
Gaussstrasse II, 38106 Braunschweig, Germany, email: ackad@eis.cs.tu-bs.de

F. J. Rammig (ed.), Distributed and Parallel Embedded Systems
© Springer Science+Business Media New York 1999

74 Software Synthesis from Statechart Models for Real Time Systems

SENDER

r---OPEN_OK/~-~
DATA

BEGIN OPENING SENDING

• I • I I I I ••• I ••••••• I I I I ••••••• 1'1 •••••••••••• I ••••• I •••••• I I I I I ••••••••••• I •••••••

RECEIVER

OPENED

BEGIN t------+i DATA/
ACK

CLOSE/
CLOSE_OK

1----.. CLOSED

Figure 1: A simplified Transfer Protocol

2. Statecharts as a Modeling Language for RT Systems

Figure 1 shows a statechart example of a simplified transfer protocol consisting of
the two parallel finite state machines (FSM) SENDER and RECEIVER. In a typical
statechart, concurrent FSMs exchange data through normal variables such as integers
or using abstract events which remain valid for one step only. In the remainder, we use
"variable" for normal variables as well as events.

All variables are global to the whole model. Each FSM may read or write any vari­
able. Multiple write accesses to the same variable in one step are forbidden and consid­
ered to be a model error.

In the example, the sender opens a connection by generating the event OPEN, the
receiver acknowledges with OPEN_OK, enters the hierarchical state OPENED and its
sub-state RECEIVING. Data are transmitted generating DATA. The transmission is ter­
minated by sending CLOSE in which case a transition occurs from OPENED to
CLOSED (high-level interrupt).

Parallel activities, inherent in most real world systems, can be modeled appropri­
ately at different levels in the statechart model. Parallel FSMs may be started dynami­
cally. Similar behavior of states can be expressed using high-level transitions leading
to more comprehensible models.

Software Synthesis from Statechart Models for Real Time Systems 75

3. Design Flow of RT System Design using State charts

Figure 2 shows the design flow using statecharts. The abstract (textual) specifica­
tion for the system often contains contradictions and ambiguities. It cannot be simu­
lated because the specification is not formal, thus leaving errors unrevealed.

The specification is modeled using statecharts. This model is on the one hand
"near" the specification by means of the abstract nature of the statecharts and on the
other hand simulateable because the statechart semantic is formal and unambiguous.
Specification errors are discovered quickly and different design architectures are
explored in short time at this abstract level.

After validation of the model, an implementation must be developed. A manual
translation is error-prone as well as time consuming violating a short time-to-market.
Therefore, an automatic transformation into an implementation is required.

Modeling

(Optimizing)

Code generation

Simulation,
Evaluation

Figure 2: Design Flow using Statecharts

4. Software Synthesis of Statechart Models

After designing the statechart model, an implementation is derived automatically
which essentially exhibits the same functionality as the statechart.

76 Software Synthesis from Statechart Models for Real Time Systems

The real time systems we consider must fulfill constraints on the WCET, e. g. for
scheduling calculations. Each piece of implementation code takes some amount of exe­
cution time depending on the actual state and the input. The implementation must be
structured in a way to provide for an automatic execution time analysis to determine
the WCET of the program. Therefore, recursive function calls and unbounded loops
are prohibited.

The WCET of the implementation should be as small as possible, that is, the imple­
mentation should be optimized w. r. t. a small WCET.

Of course, there are many valid implementations with different WCETs for a given
statechart. Our contribution lies in the optimized code generation from statechart mod­
els into implementations for single processor target platforms. We consider only a spe­
cial class of implementations derived from parallel execution graphs as explained
below.

The execution of statecharts is step-based. In each step, all parallel FSMs synchro­
nously execute transitions, generating events or changing variables.

Statechart models describe reactive systems which never terminate. Therefore, the
implementation is a cyclic executive containing a loop construct at the top level. The
time for the execution of the whole system is infinite. Each loop cycle corresponds to a
statechart step. The longest execution time for one cycle is the worst-case execution
time (WCET) of the implementation, which is the longest processing time of a
response to a stimulus.

4. 1. Influence of the Statechart Semantics on the Execution Time

We focus on implementations to be executed on a single processor. Starting with a
statechart model, an executable program must be generated which has the statechart
functionality and a small runtime system (RTS) to keep the statechart semantics.

In each statechart step, many parallel FSMs may switch; these parallel activities
have to be sequentialized. The more FSMs are active in parallel the longer the execu­
tion time. It is not determined in which order parallel FSMs are processed in the imple­
mentation. This leads to some degrees of freedom (DOF), which can be exploited to
improve the WCET.

Like in most formal techniques, the formal semantics result in overhead regarding
execution speed and/or code size of the implementation. The statechart semantics
require that changes of variables occur at the beginning of the next step. It is essential
that the implementation exhibits the same behavior as the statechart model, thus vari­
able changes must be buffered until the end of the current step (variable buffering).
This buffering consumes execution time delaying writes after all reads to the same
variable are done. Often, no buffering is needed; the execution time may be improved
in these cases.

Events are valid for only one step; after generating the event, it is cleared in the fol­
lowing step. Because non-trivial statecharts contain quite a few events, an efficient
RTS event handling is crucial.

Software Synthesis from Statechart Models for Real Time Systems 77

4.2. Existing Code Generators

Statemate [llog97] is a toolkit containing a statechart editor, a simulator as well as a
code generator. Unfortunately, the generated code is not optimized for a small WCET;
furthermore, the implementation contains unbounded loops and calls to library func­
tions like malloc, such that execution time is unpredictable.

Procors [Spre96] is a code generator developed at BMW AG, Germany. Although
the code is optimized w. r. t. a small WCET, the generator imposes severe restrictions
on the allowed statechart models. For example, only one event is consumed by the
model at each step. Furthermore, the statechart semantics are altered in that variable
changes occur immediately, even "inside" a step, resulting in behavioral differences
between the statechart model and its implementation.

5. SCOT2 Project Description

Because of the lack of an optimizing code generator for statecharts, we launched
the project SCOT. The main project objective is the efficient translation of statechart
models into implementations. The generated machine code should exhibit a small and
computable WCET, which is to be optimized for a single 68000 processor system.

Statemate is our statechart modeling tool. It was successfully applied to the rapid
prototyping of airplanes [RJJC95], automobiles as well as specification of home auto­
mation systems [ScSc96].

5. 1. Transformation Flow Using SCOT

Figure 3 shows the transformation flow using SCOT. After designing the statechart
model with Statemate, we transform it into an intermediate format, a parallel execu­
tion graph (PEG). The PEG is an acyclic directed graph, which is an abstract scheme
for the final implementation. The rather complex statechart semantics (evaluation of
transition trigger expressions, calculation of priorities) are significantly reduced to
simple branches depending on variable values, and assignments. The time required for
one step can be estimated more accurately because of the simpler constructs.

The PEG execution contains some degrees of freedom (DOF), for example, the
FSM execution order, which are represented using parallel blocks; segments contained
in parallel blocks can be executed in an arbitrary order. In an iterative optimization
cycle, this freedom is eliminated.

The WCET estimator analyzes each node in the graph for its type, data-dependency
to other nodes, number and type of operands etc., and estimates the execution time
depending on timing information of the target platform. To all nodes containing vari­
able read or write references, an overhead for the double buffer handling is added. This
overhead may be reduced later upon fixing the execution order.

The longest path through the PEG is determined and optimized yielding a new PEG
with a smaller WCET and less DOF. This step is repeated until no more optimizations
are possible.

2. Statechart Compilation for Optimized worst-case execution Time

78 Software Synthesis from Statechart Models for Real Time Systems

State chart model

PEG generator) Timing information of target platform

Parallel execution graph (PEG)

~ C code generator)
C code

')
C code compiler, linker

0
Executable program

Data

o
Tool

Figure 3: SCOT Transformation Flow

The C code generator produces C code for the PEG together with a tailored RTS
which can be compiled, linked, and executed.

5.2. PEG Optimization

The PEG consists of conditional branches, variable assignments, parallel blocks,
and join nodes to collect several path segments. Each path through the PEG corre­
sponds to one possible statechart step. Thus optimizing the longest PEG path means
optimizing the WCET of the implementation.

To calculate the WCET, the execution time of each node must be estimated. The
estimation is based on the analysis of the node execution time on a 68000 platform.

Optimizations are possible for variables, when a variable is buffered and the buffer­
ing can be eliminated. Remember that in this case, the execution time of all nodes ref­
erencing this variable, is shortened.

Software Synthesis from Statechart Models for Real Time Systems 79

Figure 4 shows a PEG example. Each path leads from START to END. Both path

Figure 4: PEG Example

segments between Parbegin and Parend must be contained in all paths through the
PEG, but the order is arbitrary. Because of the statechart semantics, changes to vari­
ables must not be observable by other statements before the next step. In all paths, no
write to a variable may be followed by a read, otherwise, the variable must be buffered
(changes are applied upon reaching END). In the figure, variable B needs no buffering
if segment L is executed before R. Thus, selecting the order ilL before R" reduces vari­
able buffering, hence execution time of the nodes referencing B.

On the other hand, A needs buffering, since it is read after being written in segment
L.

For each optimization step, the path through the PEG with the longest WCET is
detennined. All referenced variables with buffering along the path are collected. For
each variable all references are checked w. r. t. data dependencies to path segments
before and after the reference as well as parallel segments.

The variable contributing most to the execution time of the path is selected for opti­
mization. If an execution order of segments is possible so that the buffering is unneces­
sary, this segment order is fixed, the buffering is deleted, and the execution time is
fixed. In some situations, no order can be found because of cyclic data dependencies.
In this case, one variable is marked as unoptimizable breaking the cycle. If there is still
some DOF left, the next iteration is started.

5.3. WeET-Optimized Runtime System

Generated events must be cleared. Both generating and clearing is associated with
an RTS overhead, in that the event must be generated during step n and cleared at the
end of step n+l. Generating an event contributes to the execution time of the PEG
nodes; the RTS is responsible for clearing events. Good average execution times can
be achieved using an event clear list like in the Statemate-generated code, where all
generated events are inserted for clearance after the next step. Unfortunately, the length
of the list contributing to the WCET depends on the number of generated events in the

80 Software Synthesis from Statechart Models for Real Time Systems

execution of the implementation, which cannot be determined at compile time. Count­
ing all existing events as maximal length would result in an unrealistic WCET estima­
tion.

To alleviate this problem, we selected a timestamp approach. Generating an event
means setting the timestamp to the actual step counter (ASC), which is incremented in
each step. Checking whether an event has been generated in the last step results in a
comparison between its timestamp and the ASC.

Since statechart models are reactive systems with continuous use, a simple incre­
mentation of the ASC would not be possible because of the overflow due to the limited
range of integers. At special re-initialization steps, the ASC and the timestamps must
be set to zero. This special step would require an extraordinary amount of time result­
ing in a loose WCET prediction.

Therefore, we partition all existing events in p event groups. Each group is associ­
ated with a individual ASC. In each step, one of the p groups is re-initialized together
with its ASC. Using this approach, the overhead for the re-initialization is distributed
equally to p steps.

6. Application Example

As an example for the optimization process, a system for an elevator control is
used. Figure 5 shows the statechart model; it contains parallel and hierarchical con-

In.-, lUll t>r nt'1! ..not

,-_...L._..., .UJ •• t,.II\ .1 U . fl

~u ., rtrtJl "'J 91' nrIII' 91" I'P'Ul

,~_W

I~J ... 101

rtJII:.r '" IIt1 f'VP)j

""""'-"

Figure 5: Application Example: Elevator Control System

structs as well as complex transition triggers. 19 variables and 8 events are used; a
standard code generator would use double buffering for all of them.

Software Synthesis from Statechart Models for Real Time Systems 81

After model analysis and selecting an appropriate execution order, the SCOT code
generator needs buffering for only three variables and three events reducing the execu­
tion time from 1142 to 842 clock cycles (26 % less).

References

[Hare87] D. Harel; Statecharts: a Visual Formalismfor Complex Systems; Science
of Computer Programming, Vol. 8, August 1987.

[nog97] Statemate Magnum Reference Manual; i-Logix Inc., Andover, USA,
1997.

[ltut93] CCITT Specification and Description Language; Recommendation
Z.100, ITU-T, Geneva, Switzerland, 1993.

[RJJC95] M. Romdhani, A. A. Jerraya, A. Jeffroy, P. de Chazelles, A.-EI­
K. Sahraoui; Modeling and Rapid Prototyping of Avionics Using
STATEMATE; 6th IEEE International Workshop on Rapid Systems Proto­
typing, Chapel Hill, North Carolina, USA, 1995.

[ScSc96] S. Schulz, M. Schiitze; Modeling and Simulating an Home Automation
System Using STATEMATE (in German); 4th German User Meeting for
STATEMATE, Munich, Germany, 1996.

[Spre96] M. Spreng; Rapid Prototyping of electronic Control Systems in the Car
Development (in German); Thesis, University of Karlsruhe, Germany,
1996.

