
The development of a method for
integration between different types of
simulators

H Hibino1J, Y. Fukuda2), M Nakan03), S. Sat03)
l)Technical Research Institute of JSPMI(Japan Society for the
Promotion of Machine Industry) ,
1-1-12, Hachiman-cho, Higashikurume, Tokyo,203,Japan
Tel: +81-424-75-1188
Fax: +81-424-75-0947
e-mail: hibino@trijspmi.orjp
2) Hosei University,
3-7-2 Kajino-cho, Koganei, Tokyo,184,Japan
Tel: +81-423-87-6358
Fax: +81-423-87-6126
e-mail: fukuda@is.hosei.acjp
3)Toyota Central R&D Labs., Inc
480-11 Nagakute, Aichi, Japan
Tel: +81-561-63-4604
Fax: +81-561-63-6121
e-mail: nakano@robotics.tytlabs.cojp,
sato@robotics.tytlabs.cojp

Abstract
A manufacturing system simulator plays an important role in designing new
systems. However, as simulators depend on particular usage, the modeling method
of each simulator is different. Therefore simulation users cannot cooperate when
using different models. In order to solve this problem, it is necessary to be able to
integrate different models in each simulator. The purpose of this research is to
develop a method of integration between the simulators which do not have the
rollback function.
In this paper, we propose a: concept for the integration between simulators without
the rollback function using a storage model concept for manufacturing system

K. Mertins et al. (eds.), Global Production Management
© Springer Science+Business Media New York 1999

202 Integration between Types of Simulators

designs. The functions and the implementation method for the proposed concept
are described. Then, a case study carried out to evaluate the performance of the
cooperative work, is presented.

Keywords

Manufacturing system, simulation, distributed simulation, simulation model,
CORBA, TCP/IP socket, client-server application, simulator, system integration,
object-oriented simulator.

1 INTRODUCTION

Manufacturing systems are being created on larger and more complicated scales
than ever before. In designing such a manufacturing system, a manufacturing
system simulator plays an important role. However, as simulators depend on
particular usage, the modeling method of each simulator is different (Fujii, 1999,
Hibino, 1999, Kryssanov, 1998). Simulation users cannot cooperate when using
different models. In order to solve this problem, it is necessary to be able to
integrate different models in each type of simulators.
Many distributed simulation systems have been proposed (e.g. Fujii, 1999,
Fujimoto, 1990, 1995, Jones, 1998, Nicol 1997). A majority of the current methods
can evaluate a variety of systems and areas but are only models to estimate the
design but present problems when adapted to actual system design processes. To
design systems for specific areas, methods which are adapted to specific design
processes and their characteristics are needed. In the case of designing
manufacturing systems, one method has been proposed using the rollback function
which is to return the simulation clock to passed time to synchronize the events
among the simulations leading to more accurate evaluation (Fujii, 1999). However,
commercial based simulators do not include the rollback function. Therefore the
purpose of this research is to develop a method of integration between the
simulators which do not have the rollback function for manufacturing system
designs.
Based on our past research results for analyzing manufacturing system designs, a
manufacturing system is divided into a number of subsystems based on various
specifications required by the system and partial optimization in each subsystem is
attempted (Hibino, 1999). Each subsystem can be modeled as a unit. Relationships
between a subsystem and other subsystems can be arranged and defined as input
and output of material flow. Storage function units such as warehouse and buffers
are usually located intermediately between the subsystems such as machining line
subsystems, assembly line subsystems and so on. Therefore we focus on the
storage function units as interfaces to connect different types of simulators. In
simulators the storage function units are defmed as storage models.
In this paper, we propose a concept for integration between simulators without the
rollback function using a storage model concept for manufacturing system designs.

Integration between Types of Simulators 203

The functions and the implementation method for the proposed concept are
described. Then, a case study was carried out to evaluate the performance of
cooperative work.

2 THE CONCEPT OF STORAGE MODEL

In the case of designing manufacturing systems using simulators, a manufacturing
system is divided into a number of subsystems based on various specifications
required, and then each subsystem is modeled and evaluated using a suitable
simulator in response to the purposes required (Hibino, 1999). However, as
simulators depend on a particular usage, the modeling method of each simulator
varies. Simulation users cannot easily cooperate when using different models. This
creates problems in the manufacturing system design.
In order to connect the subsystem models in particular simulators, we propose a
method of integration between different simulation models using the storage
model.
One of the fundamental assumptions is shown in Figure 1. The manufacturing
system consists of two subsystems; a machining subsystem and an assembly
subsystem. A storage model is located intermediately between the subsystems.
Each subsystem is modeled by different simulators (A and B). The storage is
modeled as a storage model by each simulator. The simulators are then
synchronized via the storage models.
Through analyzing changes in the storage model by considering a kind of products,
the method to synchronize the simulators is described.

Figure 1 Concept of the proposed storage
model

tV~~-----------'~~~
2, vo

l
Vmin __ .. ~v.-

Note: - Vo: Vo .. YO + V!JII- v,_out
tbotlUdtlO1loftbellock
f'arODakbadofproduclt

O"Y'L_-'---______ ;,_ ... -7·)8~mDdcl
To

Figure 2 Outline of the distinction
between the storage model states

First, we analyze the changes in the stock amount. The relationships of the stock
amounts can be expressed using the following formula.

Vc = Vo + Vt_in - Vt_out;
Vc: the volume of the current stock in the storage model
Yo: the volume of the initial stock in the storage model
Vt_in: the total storaging volume into the storage model
Vt out: the total shipping volume from the storage model

The states of the storage model are classified into three statuses labeled starving
status, blocking status, and normal status.

204 Integration between Types of Simulators

Vmin ~ V c : starving status
Vmax:S Vc : blocking status
Vmax > Vc >Vmin : normal status
Vmin : the minimum volume of the stock in the storage model
Vmax : the maximum volume of the stock in the storage model

An outline of the distinction between the storage model states is shown in Figure 2.
Secondly, we describe our proposed method using the results.
The fIrst step in synchronizing the simulators is to detect how long each simulator
is able to run alone. One of the promised periods which are not necessary to carry
out rollback operations can be reached by running one simulator until the current
state of the storage model changes into another state using the initial parameters as
Yo, Vmin, and Vmax. For examples using the case of Figure 1 and Figure 2, the
examined time until the storage state changes the normal status into the starving
status is reached by using the following procedure.

1. The possible shipping volume from the storage model at To is calculated by
(Vo- Vmin).

2. Simulator B runs until the shipping volume equals (Vo - Vmin).
3. The examined time (Tl) is reached.

The second step to synchronizing the simulators is to maintain consistency of the
events in the storage model. After the fIrst step, simulator A is made to run until
Tl. At that time the events which occurred for the storage model on simulator Bare
simulated on simulator A using a log from simulator B. In the log the events are
written along with the simulation clock in simulator A. Then the storage model
volume at Tl is reached. The same procedure is continued to synchronize the
simulators. An outline of this procedure is shown in Figure 3.
Furthermore the procedures to synchronize the simulators are different in response
to the storage model states. Excepting the normal status, there are two storage
model states, starving and blocking. When the storage model state is in blocking
status, the same procedure as above is followed. When the storage model state is in
starving status, another type of procedure must be taken. An outline of this
procedure is shown in Figure 4. When the storage model state is in normal status,
either procedure can be chosen.

Integration between Types of Simulators 205

.",:i",.,iC~;~:~.·.·.·.·.:on;T!r~ans-:s·~un.~,·.~ti~~~on~a~to~B;r::A~':1 • ---11 I I"",·

Vrni-' +1 ' '.i... ,~ i
Jr···· ~

1. ,9 ,.J.~ , T.~ " .. ~.~ " ... J

, , no 1> '
L~ " " " " "." .. " " " "",,;

Design Time

Figure 3 Outline of the procedure of the proposed method (1)

206 Integration between Types of Simulators

r·~·"··""··"········"····.>j:·::::::::::::::~~=~::::·~:;;:::::::::·:·:::r···· .. · .. ·j
i ."" i the possible storaging volume ; i

V:J i < ."" i into the storage model at 1b i !
_.: 0 .. : ... : :

[I r vma>r-I:· 7/< ··· Note:-!::;::;i~~OfthesJ
sa !;; ,/' ! in the storage model !
~ i a. ~ in rcspons,e to i
~ ! ~ the s~ragmg events l

L.."" ... ".~~.:· ~:,:~·ip " ... "i!... ~; .. ~=:~:~ .. ~!

: rl~I~::=,=-~~~!=1
~ l !. ... ~ :A ... L.~ : .. 1
"::: -----------------------------,:l.;.~:~~~·~~·!!t.·~·::::::·~·::::::·::::::·::::::·:::·I

a ··" ·· .. ·· ·······::~· .. ~:~ .. ::·.·~i::~::[Note:

:n .; Transition A

r v'--NI.! ~~E- "~I
on simulator B

, ~ + ~~!
Figure 4 Outline of the procedure of the proposed method (2)

Using these two above procedures, we propose a method of integration between
simulators which do not have the rollback function for manufacturing system
designs.

3 IMPLEMENTATION

In order to synchronize simulators, manager and simulator control modules are
developed under the client-server environment.
The main role of the manager as the server is to command operations such as
starting, and resuming for each simulator through a simulator control module in
response to the simulation clocks and the storage model state. The manager
behavior depends on a production management of a modeled manufacturing
system such as push types and pull types. In the case of Figure 1, the manager
behavior using the pull type is shown in Figure 5.

Integration between Types of Simulators 207

The main role of the simulator control module as the client, is to control a
simulator directly in response to the manager commands. The simulator control
module is located intermediately between the manager and each simulator. The
proposed system under the client-server environment is shown in Figure 6.

Yes

Primal Parameter Definitions

Simulation Start

TA - TB

Yes

Yes

Conunand the
simulator B

control module to
run the sinulator

B until the
storage nodel

state turns into
another state.

clock_time _in_the _simulator _ A
clock_time _in_the _simulator _ B
Storage_status _in_the _simulator _ A
Storage status_in the simulator B

TA;
TB;

storage_state_A;
storage state Bl

No

~~ Yes No TA<TB

No
Yes

Send the storaging
works log of the Send the shipping

storage model on works log of the

No the simulator A to storage model on
the simulator B to the simulator B

control module. the sinulator A
control module.

Yes

Conmand the Cozmnand the Command the
simulator A simulator B simulator A

control module to control module to control module to
run the simUlator run the simulator run the sinulator

A until the B until the A until the
storage model simulation clock simulation clock

state turns into time is TA. time is TB.
another state.

L-______________ ~=====~+---L-----------~

s there an
infonnation from

the control
modules?

Figure 5 Manager behavior using the pull type

208 Integration between Types of Simulators

Server

Note: Communication

Figure 6 Proposed system under the client-server envirorunent

The control module has principally eight functions which are classified into two
groups.
Group 1 : The functions to be used between the control module and the manager.

1. The function to get the commands such as starting, resuming and so on from
the manager.

2. The function to inform about completion of the simulation by the indicated
time to the manager.

3. The function to inform of changes in the storage model state to the manager.
4. The function to send and get the logs of storaging jobs or shipping jobs in

the storage model.
Group2 : The functions to be used between the control module and a simulator.

5. The function to command the operations such as starting, resuming and so
on for the simulator.

6. The function to stop the simulation when a change in the storage model
states occurs.

7. The function to record events which occur in the storage model along with
the simulation clock on a log file.

8. The function to create events in the storage model in response to the passed
events using the log of the companion simulator on which the storage model
is modeled. In the case of storage in the storage model, transactions are
created and stored in the storage model. In the case of shipping the works
from storage, transactions are shipped from the storage model and
terminated.

Integration between Types of Simulators 209

As the manager and the simulation module are developed using our proposed
methods, simulators can be synchronized without the rollback fimction.

4 A CASE STUDY

A case study in an automobile parts supplier was carried out to verify the proposed
method.
The manufacturing system has the following features;

1. Flow shop type
2. Pull type production management
3. A machining line subsystem , two assembly line subsystems, a

transfer subsystem using AGVs, and the storage unit

=~L-_$._"'_'"_"il----,=g @

i Ii

1< DEPROS Y .. l(:'------=-=RO=-=PS:----~
uMachtntng@Ltne and so on V

Manager

Figure 7 A case study

I!I 'I. •• ' ,. . ~.-.- "~,,,,';I

.17 1.' Jo;.· .~ "' .. t.· r-'--
~
.1.T..ltt,f!i!m, .. d

No[e: L.AJL : Load~ng and Unll)ading
AM :AssembJing Mae-binc

Two kinds of simulators were used for modeling the manufacturing system. The
machining line subsystem was modeled on the DEPROS (Fukuda, 1994, Hibino,

210 Integration between Types of Simulators

1999, Kryssanov, 1998). The assembly line subsystems and the transfer subsystem
were modeled on the ROPS (Nakano, 1994, Noritake, 1997). The storage unit was
modeled as the storage model on both simulators. DEPROS is an object oriented
simulator. ROPS is an agent type simulator. DEPROS and ROPS were
implemented in the client systems. These client systems had a developed
simulation control module. The client systems were connected with the server
system which was implemented as the manager. The network systems to
implement the client-server system used the CORBA protocol and the TCPIIP
socket protocol. The outline of the case study model is shown in Figure 7.
The potential applicability for the developed model and client-server system was
confIrmed through this case study.

5 SUMMARY

We addressed a method of integration between simulators which do not have the
rollback function using a storage model concept.
Our research showed:
1. A storage model concept for integration between the simulators which do not
have the rollback function.
2. The development of a system confIguration and its function as the storage
model.
3. The implementation of the storage model using two different types of
simulators.
4. ConfIrmation of the potential applicability for the storage model through a case
study.

6 ACKNOWLEDGMENTS

This research is a part of the "IMS9810: MISSION; Modeling and Simulation
Environments for Design, Planning, and Operation of Globally Distributed
Enterprises" research project of the IMS program.
We thank Prof. Ronald S. Zavislak for his helpful comments.

7 REFERENCES

Fukuda Y, Hibino H, Mitsuyuki K, Kojima F, Ikeda Y, Aratake T, Tukada M,
Suzuki K (1994) Integrated Environment for Production System Design
Simulations: Proceedings of Simulation for Manufacturing and
Communications, p434-438, Japan.

Fujii S, Kidani Y, Ogita A, Kaihara T (1999) Synchronization Mechanisms for
Integration of Distributed Manufacturing Simulation Systems: International
Journal of Simulation, Vol. 71, No.3, pI87-197.

Integration between Types of Simulators 211

Fujimoto R (1990) Parallel Discrete Event Simulation: Communication of ACM,
Vol. 33, No.10, p30-53.

Fujimoto R (1995) Parallel and Distribured Simulation: Proceedings of the 1995
Winter Simulation Conference, pI18-125, U.S.

Hibino H, Fukuda Y, Fujii S, Kojima F, Mitsuyuki K, Yura Y (1999) The
Development of an Object-Oriented Simulation System Based on the Thought
Process of the Manufacturing System Design: International Journal of
Production Economics, Vol. 60-61 p343-351.

Jones K, Das S (1998) Combing Optimism Limiting Schemes in Time Warp Based
Parallel simulations: Proceedings of the 1998 Winter Simulation Conference,
p499-505, U.S.

Kryssanov V, Abramov V, Hibino H, Fukuda Y (1998) A Framework for the
Development of Manufacturing Simulators: Towards New Generation of
Simulation Systems: Proceedings of 1998 Japan-US.A. Symposium on
Flexible Automation, p1307-1314, Japan.

Nakano M, Sugiura N, Tanaka M, Kuno T (1994) RaPS II: Agent-Oriented
Manufacturing Simulator on the Basis of Robot Simulator: Proceedings of
1994 Japan-US.A. Symposium on Flexible Automation, p201-208, Japan.

Nicol D, Johnson M, Yoshimura A (1997) The IDES Framework: A Case Study in
Development of a Parallel Discrete-event Simulation System: Proceedings of
the 1997 Winter Simulation Conference, p93-99, u.s.

Noritake S, Tanaka M, Nakano M (1997) Manufacturing Simulation Language
"RaPS" to Build Optimization Agents: Proceedings of 14th International
Conference on Production Research Dp270-273 , Japan.

