
PROOFS OF WORK AND BREAD 
PUDDING PROTOCOLS 
(EXTENDED ABSTRACT) 

Markus Jakobsson 
Information Sciences Research Center, Bell Labs, Murray Hili, New Jersey 07974 

www.bell-Iabs.com/user Irnarkusj 

Ari Juels 
RSA Laboratories, 20 Crosby Drive, Bedford, MA 01730 

ariClrsa.com 

Abstract 
We formalize the notion of a proof of work (POW). In many crypto­

graphie protocols, a prover seeks to convince a verifier that she possesses 
knowledge of a secret or that a certain mathematical relation holds true. 
By contrast, in a POW, a prover demonstrates to a verifier that she has 
performed a certain amount of computational work in a specified inter­
val of time. POWs have served as the basis of a number of security 
protocols in the literat ure, but have hitherto lacked careful characteri­
zation. In this paper, we offer definitions treating the notion of a POW 
and related concepts. 

We also introduce the dependent idea of a bread pudding protocol. 
Bread pudding is a dish that originated with the purpose of reusing 
bread that has gone stale. In the same spirit, we define a bread pudding 
protocol to be a POW such that the computational effort invested in 
the proof may be reused by the verifier to achieve aseparate, useful, 
and verifiably correct computation. As an example of a bread pudding 
protocol, we show how the MicroMint scheme of Rivest and Shamir can 
be broken up into a collection of POW s. These POW s can not only serve 
in their own right as mechanisms for security protocols, but can also be 
harvested in order to outsource the MicroMint minting operation to a 
large group of untrusted computational devices. 
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1. INTRODUCTION 
Proof protocols serve as the cornerstone of most algorithms in data 

security. In a typical cryptographic scenario, one party, the prover , 
aims to convince another party, the verifier, that it possesses a secret 
of a certain form, or that a certain mathematical statement holds true. 
For example, in the Schnorr identification protocol, the prover seeks 
to demonstrate possession of a secret key corresponding to a specific 
authenticated public key. 

In this paper, we deviate from the standard cryptographic aim of 
proving knowledge of a secret, or the truth of a mathematical state­
ment. Instead, our goal is to characterize the notion of a proof of work, 
abbreviated POW. This is a protocol in which a prover demonstrates to 
a verifier that she has expended a certain level of computational effort 
in a specified interval of time. Although not defined as such or treated 
formally, POWs have been proposed as a mechanism for a number of 
security goals, including server access metering, construction of digital 
time capsules, uncheatable benchmarks, and protection against spam­
ming and other denial-of-service attacks [5, 6, 7, 8, 9, 11, 17]. 

The contribution of this paper is twofold. First, we offer definitions 
of the not ion of a proof of work (POW) and of related concepts. These 
definitions are informal; formal definitions will appear in the full version 
of this paper. As mentioned above, POWs have ademonstrated utility 
in a number of data security applications. A drawback to their use, 
however, is the fact that they im pose a significant computationalload in 
excess of that associated with many conventional cryptographic proto­
cols. This observation motivates the second contribution of our paper: 
the idea of bread pudding protocols. A bread pudding protocol is based 
on the same principle as the dish from which it takes its name, namely 
that of reuse in order to minimize waste. Whereas the traditional bread 
pudding recipe [18] recycles stale bread, a bread pudding protocol re­
cycles computation. We define a bread pudding protocol to be a POW 
such that the computational effort invested in the proof may be har­
vested to achieve aseparate, useful, and verifiably correct computation. 
This idea was first sketched in relation to the anti-spamming technique 
of Dwork and Naor, who write, "[One] possible scenario would be that 
in order to send a user a letter, some computation that is useful to the 
recipient must be done. We currently have no candidates for such useful 
computation" [6]. 

In this paper, we propose just such a candidate. As an example of 
a bread pudding protocol, we consider the MicroMint scheme of Rivest 
and Shamir [16]. We show how the task of minting in this scheme can 
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be partitioned into a collection of small POWs. These POWs can not 
only serve in their own right as mechanisms for security protocols, but 
can also be used to shift the burden of the MicroMint minting operation 
onto a large group of untrusted computational devices. 

The remainder of the paper is organized as follows. In Section 2, we 
review some of the literature related to POWs, We give definitions of 
POWs, bread pudding protocols, and related ideas in Section 3. We 
present our bread pudding protocol for the MicroMint minting opera­
tion in Section 4, and conclude in Section 5 with some ideas for future 
research. 

2. PREVIOUS WORK 
A number of security protocols in the literat ure have relied on the 

use of POWs. Researchers have not previously formalized the notion 
of a POW, however, and have adopted a wide ranging terminology to 
describe their constructions. 

POWs were perhaps first advocated as a way of attaching a computa­
tional cost to resource allocation requests by Dwork and Naor [6]. They 
propose the use of POWs based on extraction of square roots over prime 
moduli; on the Fiat-Shamir signature scheme; and on the (broken but 
still useful) Ong-Schnorr-Shamir signature scheme. POWs in the Dwork 
and Naor scheme are based on a hash of the time, destination, and the 
message, and are non-interactive. The sender of a piece of e-mail is re­
quired to enclose a POW. Dwork and Naor also introduce the idea of a 
POW with a trap door, Le., a function that is moderately hard to com­
pute without knowledge of the secret key, but easy to compute given 
this key. The availability of trap doors allows designated authorities to 
generate "postage" without significant expenditure of resources. 

A method of controlling spam that may be regarded as an extension of 
[6] was introduced by Gabber et al. [8] (and further explored by Jakob­
sson and Müller [10]). These proposals also involve use of POWs. The 
idea is that a server distributes permission - known as ahandshake -
for asender to transmit mail to a recipient. This handshake is granted 
only upon receipt of a valid POW transcript from the sender. 

Juels and Brainard [11] propose a related use of POWs as a deterrent 
against denial-of-service attacks against connection protocols such as 
88L. In their scheme, if a malicious party mounts an attack against a 
server by making many connection requests, the server begins to require 
clients to perform POWs in order to initiate requests. Their scheme can 
be extended to non-attack scenarios in which equitable distribution of 
resources is desired. 
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POWs have not only been suggested for limiting access, but also for 
metering it. Franklin and Malkhi [7] describe a scheme that makes use 
of POWs for third-party verifiable usage metering. A Web site adminis­
trator requires users of her site to provide a POW for every access. To 
demonstrate to an auditor that her site has received a certain amount 
of usage, she presents the auditor with an audit log consisting of the set 
of POW transcripts. The auditor verifies the correctness of the audit 
log. The underlying assumption in this scheme is that many users will 
have a combined computational power far exceeding that readily avail­
able to the site administrator. (Another solution to this problem - but 
one which does not rely on POWs - was presented in [14].) 

Furthermore, POWs have been proposed as a tool to implement de­
lays. Rivest et al. [17] discuss the creation of digital time capsules, 
employing a construction wh ich they call a "time-lock puzzle". Their 
aim is to encrypt data in such a way that the decryption time can be 
carefully controlled. By discarding the encryption secrets, the data can 
thus be protected for aperiod of time designated by the creator. One 
important feature of the Rivest et al. scheme is that the verifier is "im­
plicit" (as defined in Section 3). In particular, a correct POW transcript 
serves as a means of performing a particular task, namely decrypting 
an encrypted document, rat her than a means of convincing a verifier. 
Another distinctive feature is that only feasible way for the prover to 
complete the POW is sequential and deterministic. This is in contrast 
to most other POW constructions in the literature, where the prover 
may use parallel computation. An idea similar to that of time-lock puz­
zles, namely that of using non-interactive POWs to protect escrowed 
keys, has been explored in [2, 3, 12]. 

Another use of POW s to introd uce delays was suggested by Goldschlag 
and Stubblebine [9]. Their aim is to enable verification of the fact that 
a lottery (or similar application) has been properly administered, w hile 
at the same time preventing apremature disclosure of the associated 
secrets. 

Monrose et al. [13] propose a method of verifying that a computation 
is correct by breaking it into multiple pieces and then performing "spot 
checks" on some random subset of these pieces. Also in this vein is 
the weIl established idea of program checking (see [4] for a survey). A 
program checker is a fast program that verifies the correctness of a larger, 
slower computation. Program checkers have been proposed for a number 
of program types. Program checkers and other schemes such as that of 
Monrose et al. can both be used directly to create POWs. 

Finally, Cai et al. [5] propose use of POWs as uncheatable bench­
marks. These are computational tasks that can effectively be performed 
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in only one way, and enforce a mmlmum computational load on the 
executing entity. Such benchmarks can be crafted in such a way as to 
prevent vendors from making false daims about the performance of their 
machines by exploiting computational shortcuts or fine-tuning their lan­
guage compilers, as is possible with conventional benchmarks. In [5], Cai 
et al. define a benchmark roughly as follows. The benchmark is a task 
whose performance for the prover represents a problem in some complex­
ity dass P. Any algorithm in an easier com plexity dass can solve the 
task with probability at most 1/4. The verifier possesses a secret s that 
enables verification of the benchmark as a problem in some complexity 
dass V. The complexity dass V is easier than the complexity dass P. 
Thus the prover performs a substantial amount of computation that the 
verifier can check with relative ease. 

This definition of an uncheatable benchmark captures some of the 
major elements important in the definition of a POW. In particular, it 
exdudes the possibility of a "shortcut" for solving the problem at hand. 
A correct answer is a demonstration of some minimum expenditure of 
computational effort. Moreover, this definition imposes the requirement 
that the verifier be able to check the work of the prover quickly. On 
the other hand, the definition falls short in several respects of our re­
quirements for a POW. We enumerate some of these here, as they help 
motivate our own definitions. 

• Precomputation The attack model elaborated in Cai et al. fails 
to take into account the effect of pre-computation on the part of 
the prover . Recall that a POW aims to show that a certain amount 
of computation was performed in a particular interval of time. A 
prover with sufficient memory resources and time prior to a POW 
execution, however, can precompute information that makes the 
POW substantially easier.1 The effect of precomputation on pro­
tocol security is weH illustrated by a potential vulnerability in the 
anti-spamming technique of Dwork and Naor [6]. A POW in their 
protocol is based on the source and destination addresses of a piece 
of mail, as well as the current time. An attacker can therefore 
spend an arbitrarily long period of time pre-computing POWs for 
a large batch of mail prior to mounting a spamming attack. Our 
definition of a POW takes pre-computation into account by char­
acterizing the time interval over which the protocol takes place, as 
weH as the memory resources of the prover . 

• Bounds on cheating. The definition of [5] gives a loose co m­
plexity theoretic characterization of the computation required to 
perform a POW. This definition is often not useful for practical 
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security analyses, such as that in, e.g., [11]. Our definition of a 
proof of work is more amenable to such analyses, as it establishes 
more precise bounds on hardness. 

• Interleaving. Cai et al. do not characterize the hardness of inde­
pendent, interleaved POWs. For example, their definition does not 
exdude the possibility that a prover can successfully execute, e.g., 
two interleaved POWs as quickly as one. Our definitions account 
for this possibility. 

• Interactive protocols. The Cai et al. definition can be extended 
to cover interactive protocols, e.g., protocols involving more than 
two rounds. Cai et al. offer adefinition covering a three round 
protocol. We offer a more general definition allowing an arbitrary 
number of rounds of interaction. 

As mentioned above, we introduce another (and orthogonal) use of 
POWs known as bread pudding protocols. The aim of this type of pro­
tocol is to outsource robustly some of the work associated with a useful 
computation. This can be done in combination with any of many uses 
for POWs described in the literature. Thus, completion of a POW in 
the context of a bread pudding protocol involves a fusion of two aims: 
the first is to achieve some security goal, such as restricting resource 
access; the second is to perform what amounts to a computational mi­
cropayment, in the form of the computation harvested by the verifier. 
The first aim is the conventional one for a POW. The second aim is 
related in spirit to an idea recently proposed by Ostrovsky [15]. Ostro­
vsky suggested as an alternative to micropayment schemes the idea of 
having a dient pay for access to a resource by offering a small amount 
of her computational power. He did not, however, seek to offer any 
guarantees of correctness/robustness or information hiding. We shall 
show in our MicroMint scheme an example of how to achieve both cor­
rectness/robustness and information hiding in a bread pudding setting. 
Although we do not offer formal definitions in this extended abstract, 
the notions of correctness, robustness, and information hiding tie quite 
naturally into the ideas underlying bread pudding protocols. 

3. DEFINITIONS 
In this section, we offer a set of definitions enabling us to charac­

terize POWs and their associated properties. Again, in this extended 
abstract, we offer informal definitions, reserving more precise definitions 
for exposition in the full version of the paper. 
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Like any other type of proof protocol, a POW may be either interactive 
or non-interactive. Recall that an interactive prooj is a multi-round 
protocol executed by a prover P and a verifier V. In our consideration 
of POWs, we assume that both P and V may perform an arbitrary 
number of private coin flips during the protocol execution. At the end 
of the protocol, V decides either to accept or reject. If V accepts, then 
the protocol is successful. Otherwise, it has failed. Recall that a non­
interactive prooj involves only one round of communication from the 
prover . Let Cv denote the private coin flips of V. In order to ensure 
the security of the proof, it is necessary to generate Cv in a manner 
that cannot be effectively controlled by the prover. By analogy with 
non-interactive proofs for standard cryptographic properties, we may 
accomplish this by reference to a public source of randomness or by 
some other appropriate means such as, e.g., generating cv using the 
hash of some protocol-specific value. Thus, in a non-interactive proof 
protocol, the prover simulates a communication from the verifier, and 
then sends its transcript to the verifier. 

An important variant on these ideas is that of an implicit POW. An 
implicit POW is a type of non-interactive proof protocol in which verifi­
cation is not performed by a verifier, but is determined by the ability of 
the prover to perform a given task. For example, a correct POW tran­
script can serve as a decryption key for some escrowed key or document, 
as in, for example, [12] or [17]. Thus the prover or any other party is 
capable of verifying a correct implicit POW without the active partic­
ipation of the verifier. As an example of an implicit POW, we briefly 
describe in Section 1 the notion of a time-lock puzzle, as proposed by 
Rivest et al. 

Let us assume in our definitions, for the sake of simplicity, that no 
communications latency is incurred in a POW. (Our definitions can be 
modified to accommodate communications latency as appropriate.) We 
define the start time t s of a POW execution to be the time at which the 
verifier initiates its first round of communication. The completion time tc 

is the time at which the last round of a POW execution is complete. The 
aim of a POW is to enable P to demonstrate that she has performed a 
certain amount of computation within the time interval [ts, t c]. Let poly 
denote any polynomial in a given variable. (We use the informal notation 
poly(x) to denote a polynomial in the variable x, and o(l/poly(x)) to 
denote a quantity that is asymptotically smaller than the inverse of any 
polynomial in x.) Finally, let I be a security parameter. Finally, let 
us assume that the prover is permitted to perform an arbitrarily large 
amount of computation prior to the protocol execution. Thus, in fact, 
our definitions assume that the prover may perform computation over 



265 

the time interval [-00, tel. We characterize the hardness of a pow using 
the following two definitions, where probabilities are over the coin flips 
of both parties, and computational steps and memory resources are as 
measured in any suitable model. Definition 1 provides the notion of a 
lower bound on POW hardness, while Definition 2 provides that of an 
upper bound. 

Definition 1 We say that a proof of work POW is (w,p)-hard if the 
following is true. Suppose prover P with memory resources bounded by 
m performs an average, over all coinflips by P and V, of at most w steps 
of computation in the time interval [ts, tel. Then the verifier V accepts 
with probability at most p + o( poi;;(i)) , where 1 is a security parameter. 

Definition 2 We say that a proof of work POW is (w,p, m)-feasible if 
there exists a prover P with memory resources bounded by m such that 
with an average of w steps of computation in the time interval [ts, te], 
the prover can cause the verifier V to accept with probability at least p. 

This leads to the following definition. Note that it is possible to relax 
both this and the next definition to allow for, e.g., (w,l - f,poly(l))­
feasibility, where f is quantity negligible with respect to the security 
parameter l. For the sake of simplicity, we do not consider such defini­
tional variants. 

Definition 3 We say that a proof of work POW is complete, ij, for 
some w, POW is (w, 1,poly(l))-feasible, where 1 is a security parameter. 

A POW may be regarded as efficient if the verifier performs substan­
tially less computation than the prover. In keeping with the definition 
of Cai et al. [5], we say that such a proof has a large advantage, defined 
as follows. 

Definition 4 Let POW be a complete proof of work, and w be the mini­
mum value such that POW is (w, 1,poly(l))-feasible, where 1 is a security 
parameter. Let z be the maximum amount of computation performed by 
the verifier on a correct transcript? for POW. The advantage of POW 
is equal to w/ z. 

Recall that one of the aims of our definitions is to consider whether 
it is possible for a prover to "cheat" somehow on batches of POWs. In 
particular, we consider whether it is possible for the prover to perform 
multiple, possibly interleaved proofs of work successfully with less com­
putation than that required for performing the POWs individually. This 
leads us to define the notion of independence on POWs. Our definition 



266 

ensures that independent POWs are not vulnerable to prover cheating 
in the form of batch processing. 

Definition 5 Let POWI and POW2 be two proofs of work for which 
the respective coin flips of the verifier are generated independently. Let 
POW' be a proof of work constructed by combining (possibly interleav­
ing) POWI and POW2. In other words, the verifier accepts for POW' 
if it accepts for POWI and for POW2. We say that POWI and POW2 
are independent if the following is true. If POW' is (w, p, m) -feasible, 
then for some WI, W2, PI, and P2 such that w = WI + W2 and p = 
PIP2 + o(m/poly(l)), where I is a security parameter, it is the case that 
POWI is (WllPI, m)-feasible and POW2 is (W2,P2, m)-feasible. 

The final definition we present he re relates to the notion of a bread 
pudding protocol. 

Definition 6 Suppose that POWI is a (w,p)-hard proof of work. Let 
PI denote the prover involved in this proof of work, and VI the corre­
sponding verifier. Suppose that PI is also a verifier (denoted V2 ) in a 
proof of work POW2, for which the prover is denoted P2. We say that 
POW2 is a bread pudding protocol for POWI if the following is true. 
If PI (= V2) accepts the transcript for POW2, then PI can perform W - E 

computational steps over the duration of POWI for E > 0, and convince 
VI to accept its transcript with probability at least p. 

In this definition, we see that the computation that P2 performs in 
POW2 is recyded for use in POW1 • In asense, we may regard POW2 as 
an orade for POW1 • A bread pudding protocol POW2 is one in which 
this orade reduces the computational burden of prover PI in the POW1 • 

If POWI is an implicit bread pudding protocol, then POW2 may be 
viewed as helping to solve a computational problem, rather than aiding 
in successful completion of an interactive POW. Of course, trivially, if 
POW2 = POWI , then POW2 is a bread pudding protocol for POWI . In 
order for POW2 to be of interest as a bread pudding protocol, it must be 
efficient, in the sense that E must be reasonably large. It must also have 
additional properties, such as robustness, or information hiding (see, 
e.g., [1]) or divisibility, i.e., the ability to generate independent copies 
such that it is possible to derive useful work from multiple, independent 
provers. Due to lack of space, we do not explore the definitions of these 
properties in this extended abstract. Our bread pudding protocol for 
MicroMint, however, has all of them, as we shall see. 
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3.1 EXAMPLE OF A POW 
In order to make our definitions more concrete, we now present an 

example of a POW. This POW is very similar to that employed in several 
proposed security protocols, including those in [8, 11]. It is also similar 
to the basis of our bread pudding protocol for MicroMint in Section 4. 
This POW, which we call a partial inversion prool 01 work (PIPOW), 
requires two rounds. 

Example 1 (PIPOW) Let h : {O, I}l -----'> {O, 1}1 represent a one-way 
lunction. The verifier V generates a random bitstring x 01 length land 
computes the image y = h (x). Let x' be the first I - k bits 01 x, where 
k :S 1. V sends the pair (x', y) to P. In order to complete the POW 
successfully, P must calculate a valid pre-image x of y. 

It is easy to see that PIPOW is (w, I/(2k - w),O(I))-feasible for any 
integer w E [0,2 k - 1]. The hardness associated with this POW may 
be characterized by the following claim (wh ich states that the observed 
feasibility is a tight). We defer a proof of this claim, to be given in the 
random oracle model on h, for the full version of this paper. 

Claim 1 PIPOW is (w,p)-hard for any integer wE [0, 2k - 1] and p = 
I/(2k - w). 

4. BREAD PUDDING FOR MICROMINT 
As an example of a bread pudding protocol, we consider the highly 

computationally intensive operation of minting in the MicroMint scheme. 
We show how to partition this task into a collection of POWs, enabling 
minting to be distributed among a collection of low power, untrusted 
entities. This is done without allowing the successful collisions (corre­
sponding to micro-coins) to be "stolen" by the prover. Thus the bread 
pudding protocol we elaborate for MicroMint has the properties of in­
formation hiding, divisibility, and robustness. The associated POWs are 
also independent, under certain assumptions about the underlying hash 
function. Let us begin by describing how MicroMint works. 

4.1 MICROMINT 
MicroMint is a micropayment system developed by Rivest and Shamir 

[16]. Its security is based on the hardness of finding hash function colli­
sions. A coin in this scheme consists of a k-way hash function collision, 
that is, a set {Xl, XZ, ••• , xd of pre-images that map to a single image. 
A number of variants and deterrents, which we do not describe here, 
create strong deterrents to coin theft and double-spending. 
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The security of MicroMint against forgery derives from the large base 
computational costs associated with the minting operation. With ap­
propriate parameterization of the scheme, minting a single coin is dif­
ficult, while the marginal cost associated with minting many coins is 
relatively small. (The use of k-way collisions, rather than 2-way colli­
sions, increases the computational threshold required for producing the 
first coin.) Thus, minting requires a substantial base investment in hard­
ware. For forgery to be successful, it must take place on too large a scale 
to make the effort worthwhile. By limiting the per iod of validity of a 
given coin issue and computing the issue over an extended period of 
time, the minter can even make the job of a forger harder than his own. 

Suppose that the hash function h used for minting maps [-bit pre­
images to [-bit images. The process of finding collisions may be thought 
of as that of throwing balls uniformly at random into a set of 2/ bins. 
Throwing a ball corresponds in this model to choosing a pre-image x 
and placing it in the bin with index h( x). When k balls land in a single 
bin, they together constitute a coin. 

If [ is to be large enough to ensure an adequate level of security, 
the storage overhead associated with maintaining 2/ bins will be pro­
hibitively large. Rivest and Shamir thus describe the following variation 
on the basic scheme. Let [ = t + U. A ball (pre-image) x is considered 
valid only if the t least significant bits of h(x) match some pre-selected, 
random value S. (If invalid, the ball may be considered to miss the set of 
bins.) A valid ball is thrown into one of a set of 2u bins, according to the 
value of the u most significant bits. With the right parameterization, 
the computational effort associated with minting is still high, but the 
number of bins is smaller. Rivest and Shamir recommend, heuristically, 
the use of k2u balls. 

Note that to prevent a potential forger from initiating her effort prior 
to a given coin issue, it is possible in Rivest and Shamir's original scheme 
to key the hash function h with a secret value r that is only released on 
the issue date. For additional details and descriptions of a number of 
variants, the reader is advised to see [16]. 

4.2 BREAD PUDDING MINTING 
We now demonstrate a simple bread pudding protocol for MicroMint, 

that is, a MicroMint variant in which the computation associated with 
minting may be embodied in a set of POWs. This bread pudding pro­
tocol has robustness, independence, and information hiding properties, 
as we shall see. 
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Let h be a suitable hash function and 11 denote string concatenation. 
We define a ball to be a triplet (i, x, y), where y = h(r 11 i) and r is a 
secret value as above. A valid ball is one in which the t least significant 
bits of h(x 11 y) are equal to s. The bin into which a ball is thrown is 
determined by the u most significant bits of h(x 11 y). 

The computational cost associated with minting in this MicroMint 
variant remains the same as in the original scheme. Verifying the va­
lidity of a coin in the variant requires twice the number of hashes as 
the original. The advantage of the variant scheme, however, is that the 
problem of finding a single, valid ball may be distributed as a POW. By 
distributing enough of these POWs, the minter may omoad the majority 
of the computation associated with the minting operation. 

In this scheme, the verifier initiates the POW by sending to the dient 
(prover) the pair (i, y), where i is a session identifier or other protocol­
specific value, and y = h(r 11 i). The verifier also sends the parameter 
pair (s, t). The task of the dient is to find a value x such that the first t 
bits of h(x 11 y) are equal to s, i.e., such that tripie (i, x, y) is a valid ball. 
The dient returns this tripie to the verifier (assuming that the verifier, to 
achieve statelessness, does not store it). This POW requires an average 
computational effort of 2t - 1 hashes for the prover. In fact, it may be seen 
that this is a (w, 1/(2t -w), O(1))-feasible and also a (w, 1/(2t -w))-hard 
POW, in accordance with the definitions and example in Section 3. The 
verifier requires two hashes to check the validity of abalI: one hash to 
verify that y = h(r 11 i), where, again, r is the secret minting value, and 
one hash to verify that the first t bits of h(x 11 y) are equal to s. 

Note that the secret value r is not revealed in a POW. Thus, even 
when minting is performed by way of POWs, this secret value need only 
be released on the day of coin issue. This information hiding ensures 
that security comparable to that of the original scheme is achieved. In 
particular, an adversary sees only the valid balls that he hirnself com­
putes or which he has access to through colluding parties. Unless he can 
collect the vast majority of valid balls, though, the minting operation 
remains infeasible for hirn. In particular, it is infeasible for hirn to obtain 
rand create new balls. Observe also, that the POWs in this scheme, as­
suming that h has random-oracle like properties, are independent. Due 
to constraints of space, we omit a formal analysis of the information 
hiding and other security properties of this scheme. 

Rivest and Shamir pro pose sam pie parameters in their paper of k = 4, 
1 = 52, and t = 21 for achieving a viable minting setup. Thus, the POW 
based on finding a valid ball requires an average of 220 hash opera­
tions for the prover . This is, as it happens, exactly the hardness of the 
POW proposed in [8], requiring about 2 seconds on a 266 MHz Pen-
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tium 11 processor under the hash function MD5. If the minter offioads 
the problem of finding valid balls onto dients, then his own computa­
tional effort is equal to at most two hashes per ball: two for verification, 
of which one determines which bin a given ball belongs in. Given the 
number k2u = 233 of balls suggested by the heuristic calculations in [16], 
the minter would thus have to perform 234 hash function computations. 
This can be computed in well less than a day on a standard workstation 
with sufficient available memory. Without outsourcing the minting op­
eration, the minter would be forced to perform roughly 253 hash function 
computations on average. 

Altogether, a set of 233 POWs requiring an average of 2 seconds of 
computation apiece represents a substantial amount of computation to 
offioad onto dients. With one million dients, for instance, it would be 
necessary for each dient to perform almost five hours of computation 
to complete the solution of all POWs. In many cases - as when dients 
can perform computation overnight using idle cydes - this is reasonable. 
Nonetheless, in some scenarios, as when dients are very low power de­
vices, it may be desirable to make the POWs somewhat easier. We can 
do this as follows. Let us require that y in a valid ball have v leading 
'0' bits, and that only the first t - v bits in h(x 11 y) be equal to a 
value s. Now a POW requires only 2f - v - 1 hash computations on av­
erage for a dient. A POW, of course, is harder for the minter in this 
case: the minter effectively compensates for the reduced computational 
burden on dients by performing substantially more computation itself. 
The memory requirements in this variant of our scheme, however, are 
unchanged. 

5. CONCLUSION: SOME OPEN PROBLEMS 

We condude by offering brief mention of some open problems mo­
tivated by this paper. The first of these is the problem of devising 
other useful bread pudding protocols. Other examples of bread pudding 
protocols would be desirable not only in themselves, but perhaps as a 
step toward defining a large dass of computational problems amenable 
to partitioning into POWs. Another open problem relates to proving 
results about the hardness of POWs. We offer in this paper some ex­
amples of POWs based on the properties of one-way functions in the 
random orade model. Of use would be a result precisely characterizing 
the required properties of hash functions for this purpose. This line of 
exploration might yield additional results. For example, since POWs 
generally involve only a few seconds of computation, it seems likely that 
weak cryptographic functions would serve in lieu of the conventional 
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strong ones. This might yield more efficient POWs. It might also have 
the interesting incidental consequence (as in [6]) offurnishing a means of 
re-using for certain cryptographic algorithms that have been broken in 
a conventional sense - in keeping with the spirit of reuse that motivates 
bread pudding. 
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Notes 

1. Trivially, even a slow prover can, with an arbitrarily large amount of time and memory, 
pre-compute all possible proof-of-work transcripts and therefore complete a POW instanta­
neously. For a benchmark, this is particularly problematic, as it means that the prover can 
convince the verifier that he has an arbitrarily large amount of computing power. 

2. We consider the number of steps of computation performed by the verifier on a correct 
transcript, as the verifier can always terminate its computation after this many steps. 
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