
PROOFS OF WORK AND BREAD
PUDDING PROTOCOLS
(EXTENDED ABSTRACT)

Markus Jakobsson
Information Sciences Research Center, Bell Labs, Murray Hili, New Jersey 07974

www.bell-Iabs.com/user Irnarkusj

Ari Juels
RSA Laboratories, 20 Crosby Drive, Bedford, MA 01730

ariClrsa.com

Abstract
We formalize the notion of a proof of work (POW). In many crypto­

graphie protocols, a prover seeks to convince a verifier that she possesses
knowledge of a secret or that a certain mathematical relation holds true.
By contrast, in a POW, a prover demonstrates to a verifier that she has
performed a certain amount of computational work in a specified inter­
val of time. POWs have served as the basis of a number of security
protocols in the literat ure, but have hitherto lacked careful characteri­
zation. In this paper, we offer definitions treating the notion of a POW
and related concepts.

We also introduce the dependent idea of a bread pudding protocol.
Bread pudding is a dish that originated with the purpose of reusing
bread that has gone stale. In the same spirit, we define a bread pudding
protocol to be a POW such that the computational effort invested in
the proof may be reused by the verifier to achieve aseparate, useful,
and verifiably correct computation. As an example of a bread pudding
protocol, we show how the MicroMint scheme of Rivest and Shamir can
be broken up into a collection of POW s. These POW s can not only serve
in their own right as mechanisms for security protocols, but can also be
harvested in order to outsource the MicroMint minting operation to a
large group of untrusted computational devices.

B. Preneel (ed.), Secure Information Networks
© Springer Science+Business Media Dordrecht 1999

259

1. INTRODUCTION
Proof protocols serve as the cornerstone of most algorithms in data

security. In a typical cryptographic scenario, one party, the prover ,
aims to convince another party, the verifier, that it possesses a secret
of a certain form, or that a certain mathematical statement holds true.
For example, in the Schnorr identification protocol, the prover seeks
to demonstrate possession of a secret key corresponding to a specific
authenticated public key.

In this paper, we deviate from the standard cryptographic aim of
proving knowledge of a secret, or the truth of a mathematical state­
ment. Instead, our goal is to characterize the notion of a proof of work,
abbreviated POW. This is a protocol in which a prover demonstrates to
a verifier that she has expended a certain level of computational effort
in a specified interval of time. Although not defined as such or treated
formally, POWs have been proposed as a mechanism for a number of
security goals, including server access metering, construction of digital
time capsules, uncheatable benchmarks, and protection against spam­
ming and other denial-of-service attacks [5, 6, 7, 8, 9, 11, 17].

The contribution of this paper is twofold. First, we offer definitions
of the not ion of a proof of work (POW) and of related concepts. These
definitions are informal; formal definitions will appear in the full version
of this paper. As mentioned above, POWs have ademonstrated utility
in a number of data security applications. A drawback to their use,
however, is the fact that they im pose a significant computationalload in
excess of that associated with many conventional cryptographic proto­
cols. This observation motivates the second contribution of our paper:
the idea of bread pudding protocols. A bread pudding protocol is based
on the same principle as the dish from which it takes its name, namely
that of reuse in order to minimize waste. Whereas the traditional bread
pudding recipe [18] recycles stale bread, a bread pudding protocol re­
cycles computation. We define a bread pudding protocol to be a POW
such that the computational effort invested in the proof may be har­
vested to achieve aseparate, useful, and verifiably correct computation.
This idea was first sketched in relation to the anti-spamming technique
of Dwork and Naor, who write, "[One] possible scenario would be that
in order to send a user a letter, some computation that is useful to the
recipient must be done. We currently have no candidates for such useful
computation" [6].

In this paper, we propose just such a candidate. As an example of
a bread pudding protocol, we consider the MicroMint scheme of Rivest
and Shamir [16]. We show how the task of minting in this scheme can

260

be partitioned into a collection of small POWs. These POWs can not
only serve in their own right as mechanisms for security protocols, but
can also be used to shift the burden of the MicroMint minting operation
onto a large group of untrusted computational devices.

The remainder of the paper is organized as follows. In Section 2, we
review some of the literature related to POWs, We give definitions of
POWs, bread pudding protocols, and related ideas in Section 3. We
present our bread pudding protocol for the MicroMint minting opera­
tion in Section 4, and conclude in Section 5 with some ideas for future
research.

2. PREVIOUS WORK
A number of security protocols in the literat ure have relied on the

use of POWs. Researchers have not previously formalized the notion
of a POW, however, and have adopted a wide ranging terminology to
describe their constructions.

POWs were perhaps first advocated as a way of attaching a computa­
tional cost to resource allocation requests by Dwork and Naor [6]. They
propose the use of POWs based on extraction of square roots over prime
moduli; on the Fiat-Shamir signature scheme; and on the (broken but
still useful) Ong-Schnorr-Shamir signature scheme. POWs in the Dwork
and Naor scheme are based on a hash of the time, destination, and the
message, and are non-interactive. The sender of a piece of e-mail is re­
quired to enclose a POW. Dwork and Naor also introduce the idea of a
POW with a trap door, Le., a function that is moderately hard to com­
pute without knowledge of the secret key, but easy to compute given
this key. The availability of trap doors allows designated authorities to
generate "postage" without significant expenditure of resources.

A method of controlling spam that may be regarded as an extension of
[6] was introduced by Gabber et al. [8] (and further explored by Jakob­
sson and Müller [10]). These proposals also involve use of POWs. The
idea is that a server distributes permission - known as ahandshake -
for asender to transmit mail to a recipient. This handshake is granted
only upon receipt of a valid POW transcript from the sender.

Juels and Brainard [11] propose a related use of POWs as a deterrent
against denial-of-service attacks against connection protocols such as
88L. In their scheme, if a malicious party mounts an attack against a
server by making many connection requests, the server begins to require
clients to perform POWs in order to initiate requests. Their scheme can
be extended to non-attack scenarios in which equitable distribution of
resources is desired.

261

POWs have not only been suggested for limiting access, but also for
metering it. Franklin and Malkhi [7] describe a scheme that makes use
of POWs for third-party verifiable usage metering. A Web site adminis­
trator requires users of her site to provide a POW for every access. To
demonstrate to an auditor that her site has received a certain amount
of usage, she presents the auditor with an audit log consisting of the set
of POW transcripts. The auditor verifies the correctness of the audit
log. The underlying assumption in this scheme is that many users will
have a combined computational power far exceeding that readily avail­
able to the site administrator. (Another solution to this problem - but
one which does not rely on POWs - was presented in [14].)

Furthermore, POWs have been proposed as a tool to implement de­
lays. Rivest et al. [17] discuss the creation of digital time capsules,
employing a construction wh ich they call a "time-lock puzzle". Their
aim is to encrypt data in such a way that the decryption time can be
carefully controlled. By discarding the encryption secrets, the data can
thus be protected for aperiod of time designated by the creator. One
important feature of the Rivest et al. scheme is that the verifier is "im­
plicit" (as defined in Section 3). In particular, a correct POW transcript
serves as a means of performing a particular task, namely decrypting
an encrypted document, rat her than a means of convincing a verifier.
Another distinctive feature is that only feasible way for the prover to
complete the POW is sequential and deterministic. This is in contrast
to most other POW constructions in the literature, where the prover
may use parallel computation. An idea similar to that of time-lock puz­
zles, namely that of using non-interactive POWs to protect escrowed
keys, has been explored in [2, 3, 12].

Another use of POW s to introd uce delays was suggested by Goldschlag
and Stubblebine [9]. Their aim is to enable verification of the fact that
a lottery (or similar application) has been properly administered, w hile
at the same time preventing apremature disclosure of the associated
secrets.

Monrose et al. [13] propose a method of verifying that a computation
is correct by breaking it into multiple pieces and then performing "spot
checks" on some random subset of these pieces. Also in this vein is
the weIl established idea of program checking (see [4] for a survey). A
program checker is a fast program that verifies the correctness of a larger,
slower computation. Program checkers have been proposed for a number
of program types. Program checkers and other schemes such as that of
Monrose et al. can both be used directly to create POWs.

Finally, Cai et al. [5] propose use of POWs as uncheatable bench­
marks. These are computational tasks that can effectively be performed

262

in only one way, and enforce a mmlmum computational load on the
executing entity. Such benchmarks can be crafted in such a way as to
prevent vendors from making false daims about the performance of their
machines by exploiting computational shortcuts or fine-tuning their lan­
guage compilers, as is possible with conventional benchmarks. In [5], Cai
et al. define a benchmark roughly as follows. The benchmark is a task
whose performance for the prover represents a problem in some complex­
ity dass P. Any algorithm in an easier com plexity dass can solve the
task with probability at most 1/4. The verifier possesses a secret s that
enables verification of the benchmark as a problem in some complexity
dass V. The complexity dass V is easier than the complexity dass P.
Thus the prover performs a substantial amount of computation that the
verifier can check with relative ease.

This definition of an uncheatable benchmark captures some of the
major elements important in the definition of a POW. In particular, it
exdudes the possibility of a "shortcut" for solving the problem at hand.
A correct answer is a demonstration of some minimum expenditure of
computational effort. Moreover, this definition imposes the requirement
that the verifier be able to check the work of the prover quickly. On
the other hand, the definition falls short in several respects of our re­
quirements for a POW. We enumerate some of these here, as they help
motivate our own definitions.

• Precomputation The attack model elaborated in Cai et al. fails
to take into account the effect of pre-computation on the part of
the prover . Recall that a POW aims to show that a certain amount
of computation was performed in a particular interval of time. A
prover with sufficient memory resources and time prior to a POW
execution, however, can precompute information that makes the
POW substantially easier.1 The effect of precomputation on pro­
tocol security is weH illustrated by a potential vulnerability in the
anti-spamming technique of Dwork and Naor [6]. A POW in their
protocol is based on the source and destination addresses of a piece
of mail, as well as the current time. An attacker can therefore
spend an arbitrarily long period of time pre-computing POWs for
a large batch of mail prior to mounting a spamming attack. Our
definition of a POW takes pre-computation into account by char­
acterizing the time interval over which the protocol takes place, as
weH as the memory resources of the prover .

• Bounds on cheating. The definition of [5] gives a loose co m­
plexity theoretic characterization of the computation required to
perform a POW. This definition is often not useful for practical

263

security analyses, such as that in, e.g., [11]. Our definition of a
proof of work is more amenable to such analyses, as it establishes
more precise bounds on hardness.

• Interleaving. Cai et al. do not characterize the hardness of inde­
pendent, interleaved POWs. For example, their definition does not
exdude the possibility that a prover can successfully execute, e.g.,
two interleaved POWs as quickly as one. Our definitions account
for this possibility.

• Interactive protocols. The Cai et al. definition can be extended
to cover interactive protocols, e.g., protocols involving more than
two rounds. Cai et al. offer adefinition covering a three round
protocol. We offer a more general definition allowing an arbitrary
number of rounds of interaction.

As mentioned above, we introduce another (and orthogonal) use of
POWs known as bread pudding protocols. The aim of this type of pro­
tocol is to outsource robustly some of the work associated with a useful
computation. This can be done in combination with any of many uses
for POWs described in the literature. Thus, completion of a POW in
the context of a bread pudding protocol involves a fusion of two aims:
the first is to achieve some security goal, such as restricting resource
access; the second is to perform what amounts to a computational mi­
cropayment, in the form of the computation harvested by the verifier.
The first aim is the conventional one for a POW. The second aim is
related in spirit to an idea recently proposed by Ostrovsky [15]. Ostro­
vsky suggested as an alternative to micropayment schemes the idea of
having a dient pay for access to a resource by offering a small amount
of her computational power. He did not, however, seek to offer any
guarantees of correctness/robustness or information hiding. We shall
show in our MicroMint scheme an example of how to achieve both cor­
rectness/robustness and information hiding in a bread pudding setting.
Although we do not offer formal definitions in this extended abstract,
the notions of correctness, robustness, and information hiding tie quite
naturally into the ideas underlying bread pudding protocols.

3. DEFINITIONS
In this section, we offer a set of definitions enabling us to charac­

terize POWs and their associated properties. Again, in this extended
abstract, we offer informal definitions, reserving more precise definitions
for exposition in the full version of the paper.

264

Like any other type of proof protocol, a POW may be either interactive
or non-interactive. Recall that an interactive prooj is a multi-round
protocol executed by a prover P and a verifier V. In our consideration
of POWs, we assume that both P and V may perform an arbitrary
number of private coin flips during the protocol execution. At the end
of the protocol, V decides either to accept or reject. If V accepts, then
the protocol is successful. Otherwise, it has failed. Recall that a non­
interactive prooj involves only one round of communication from the
prover . Let Cv denote the private coin flips of V. In order to ensure
the security of the proof, it is necessary to generate Cv in a manner
that cannot be effectively controlled by the prover. By analogy with
non-interactive proofs for standard cryptographic properties, we may
accomplish this by reference to a public source of randomness or by
some other appropriate means such as, e.g., generating cv using the
hash of some protocol-specific value. Thus, in a non-interactive proof
protocol, the prover simulates a communication from the verifier, and
then sends its transcript to the verifier.

An important variant on these ideas is that of an implicit POW. An
implicit POW is a type of non-interactive proof protocol in which verifi­
cation is not performed by a verifier, but is determined by the ability of
the prover to perform a given task. For example, a correct POW tran­
script can serve as a decryption key for some escrowed key or document,
as in, for example, [12] or [17]. Thus the prover or any other party is
capable of verifying a correct implicit POW without the active partic­
ipation of the verifier. As an example of an implicit POW, we briefly
describe in Section 1 the notion of a time-lock puzzle, as proposed by
Rivest et al.

Let us assume in our definitions, for the sake of simplicity, that no
communications latency is incurred in a POW. (Our definitions can be
modified to accommodate communications latency as appropriate.) We
define the start time t s of a POW execution to be the time at which the
verifier initiates its first round of communication. The completion time tc

is the time at which the last round of a POW execution is complete. The
aim of a POW is to enable P to demonstrate that she has performed a
certain amount of computation within the time interval [ts, t c]. Let poly
denote any polynomial in a given variable. (We use the informal notation
poly(x) to denote a polynomial in the variable x, and o(l/poly(x)) to
denote a quantity that is asymptotically smaller than the inverse of any
polynomial in x.) Finally, let I be a security parameter. Finally, let
us assume that the prover is permitted to perform an arbitrarily large
amount of computation prior to the protocol execution. Thus, in fact,
our definitions assume that the prover may perform computation over

265

the time interval [-00, tel. We characterize the hardness of a pow using
the following two definitions, where probabilities are over the coin flips
of both parties, and computational steps and memory resources are as
measured in any suitable model. Definition 1 provides the notion of a
lower bound on POW hardness, while Definition 2 provides that of an
upper bound.

Definition 1 We say that a proof of work POW is (w,p)-hard if the
following is true. Suppose prover P with memory resources bounded by
m performs an average, over all coinflips by P and V, of at most w steps
of computation in the time interval [ts, tel. Then the verifier V accepts
with probability at most p + o(poi;;(i)) , where 1 is a security parameter.

Definition 2 We say that a proof of work POW is (w,p, m)-feasible if
there exists a prover P with memory resources bounded by m such that
with an average of w steps of computation in the time interval [ts, te],
the prover can cause the verifier V to accept with probability at least p.

This leads to the following definition. Note that it is possible to relax
both this and the next definition to allow for, e.g., (w,l - f,poly(l))­
feasibility, where f is quantity negligible with respect to the security
parameter l. For the sake of simplicity, we do not consider such defini­
tional variants.

Definition 3 We say that a proof of work POW is complete, ij, for
some w, POW is (w, 1,poly(l))-feasible, where 1 is a security parameter.

A POW may be regarded as efficient if the verifier performs substan­
tially less computation than the prover. In keeping with the definition
of Cai et al. [5], we say that such a proof has a large advantage, defined
as follows.

Definition 4 Let POW be a complete proof of work, and w be the mini­
mum value such that POW is (w, 1,poly(l))-feasible, where 1 is a security
parameter. Let z be the maximum amount of computation performed by
the verifier on a correct transcript? for POW. The advantage of POW
is equal to w/ z.

Recall that one of the aims of our definitions is to consider whether
it is possible for a prover to "cheat" somehow on batches of POWs. In
particular, we consider whether it is possible for the prover to perform
multiple, possibly interleaved proofs of work successfully with less com­
putation than that required for performing the POWs individually. This
leads us to define the notion of independence on POWs. Our definition

266

ensures that independent POWs are not vulnerable to prover cheating
in the form of batch processing.

Definition 5 Let POWI and POW2 be two proofs of work for which
the respective coin flips of the verifier are generated independently. Let
POW' be a proof of work constructed by combining (possibly interleav­
ing) POWI and POW2. In other words, the verifier accepts for POW'
if it accepts for POWI and for POW2. We say that POWI and POW2
are independent if the following is true. If POW' is (w, p, m) -feasible,
then for some WI, W2, PI, and P2 such that w = WI + W2 and p =
PIP2 + o(m/poly(l)), where I is a security parameter, it is the case that
POWI is (WllPI, m)-feasible and POW2 is (W2,P2, m)-feasible.

The final definition we present he re relates to the notion of a bread
pudding protocol.

Definition 6 Suppose that POWI is a (w,p)-hard proof of work. Let
PI denote the prover involved in this proof of work, and VI the corre­
sponding verifier. Suppose that PI is also a verifier (denoted V2) in a
proof of work POW2, for which the prover is denoted P2. We say that
POW2 is a bread pudding protocol for POWI if the following is true.
If PI (= V2) accepts the transcript for POW2, then PI can perform W - E

computational steps over the duration of POWI for E > 0, and convince
VI to accept its transcript with probability at least p.

In this definition, we see that the computation that P2 performs in
POW2 is recyded for use in POW1 • In asense, we may regard POW2 as
an orade for POW1 • A bread pudding protocol POW2 is one in which
this orade reduces the computational burden of prover PI in the POW1 •

If POWI is an implicit bread pudding protocol, then POW2 may be
viewed as helping to solve a computational problem, rather than aiding
in successful completion of an interactive POW. Of course, trivially, if
POW2 = POWI , then POW2 is a bread pudding protocol for POWI . In
order for POW2 to be of interest as a bread pudding protocol, it must be
efficient, in the sense that E must be reasonably large. It must also have
additional properties, such as robustness, or information hiding (see,
e.g., [1]) or divisibility, i.e., the ability to generate independent copies
such that it is possible to derive useful work from multiple, independent
provers. Due to lack of space, we do not explore the definitions of these
properties in this extended abstract. Our bread pudding protocol for
MicroMint, however, has all of them, as we shall see.

267

3.1 EXAMPLE OF A POW
In order to make our definitions more concrete, we now present an

example of a POW. This POW is very similar to that employed in several
proposed security protocols, including those in [8, 11]. It is also similar
to the basis of our bread pudding protocol for MicroMint in Section 4.
This POW, which we call a partial inversion prool 01 work (PIPOW),
requires two rounds.

Example 1 (PIPOW) Let h : {O, I}l -----'> {O, 1}1 represent a one-way
lunction. The verifier V generates a random bitstring x 01 length land
computes the image y = h (x). Let x' be the first I - k bits 01 x, where
k :S 1. V sends the pair (x', y) to P. In order to complete the POW
successfully, P must calculate a valid pre-image x of y.

It is easy to see that PIPOW is (w, I/(2k - w),O(I))-feasible for any
integer w E [0,2 k - 1]. The hardness associated with this POW may
be characterized by the following claim (wh ich states that the observed
feasibility is a tight). We defer a proof of this claim, to be given in the
random oracle model on h, for the full version of this paper.

Claim 1 PIPOW is (w,p)-hard for any integer wE [0, 2k - 1] and p =
I/(2k - w).

4. BREAD PUDDING FOR MICROMINT
As an example of a bread pudding protocol, we consider the highly

computationally intensive operation of minting in the MicroMint scheme.
We show how to partition this task into a collection of POWs, enabling
minting to be distributed among a collection of low power, untrusted
entities. This is done without allowing the successful collisions (corre­
sponding to micro-coins) to be "stolen" by the prover. Thus the bread
pudding protocol we elaborate for MicroMint has the properties of in­
formation hiding, divisibility, and robustness. The associated POWs are
also independent, under certain assumptions about the underlying hash
function. Let us begin by describing how MicroMint works.

4.1 MICROMINT
MicroMint is a micropayment system developed by Rivest and Shamir

[16]. Its security is based on the hardness of finding hash function colli­
sions. A coin in this scheme consists of a k-way hash function collision,
that is, a set {Xl, XZ, ••• , xd of pre-images that map to a single image.
A number of variants and deterrents, which we do not describe here,
create strong deterrents to coin theft and double-spending.

268

The security of MicroMint against forgery derives from the large base
computational costs associated with the minting operation. With ap­
propriate parameterization of the scheme, minting a single coin is dif­
ficult, while the marginal cost associated with minting many coins is
relatively small. (The use of k-way collisions, rather than 2-way colli­
sions, increases the computational threshold required for producing the
first coin.) Thus, minting requires a substantial base investment in hard­
ware. For forgery to be successful, it must take place on too large a scale
to make the effort worthwhile. By limiting the per iod of validity of a
given coin issue and computing the issue over an extended period of
time, the minter can even make the job of a forger harder than his own.

Suppose that the hash function h used for minting maps [-bit pre­
images to [-bit images. The process of finding collisions may be thought
of as that of throwing balls uniformly at random into a set of 2/ bins.
Throwing a ball corresponds in this model to choosing a pre-image x
and placing it in the bin with index h(x). When k balls land in a single
bin, they together constitute a coin.

If [is to be large enough to ensure an adequate level of security,
the storage overhead associated with maintaining 2/ bins will be pro­
hibitively large. Rivest and Shamir thus describe the following variation
on the basic scheme. Let [= t + U. A ball (pre-image) x is considered
valid only if the t least significant bits of h(x) match some pre-selected,
random value S. (If invalid, the ball may be considered to miss the set of
bins.) A valid ball is thrown into one of a set of 2u bins, according to the
value of the u most significant bits. With the right parameterization,
the computational effort associated with minting is still high, but the
number of bins is smaller. Rivest and Shamir recommend, heuristically,
the use of k2u balls.

Note that to prevent a potential forger from initiating her effort prior
to a given coin issue, it is possible in Rivest and Shamir's original scheme
to key the hash function h with a secret value r that is only released on
the issue date. For additional details and descriptions of a number of
variants, the reader is advised to see [16].

4.2 BREAD PUDDING MINTING
We now demonstrate a simple bread pudding protocol for MicroMint,

that is, a MicroMint variant in which the computation associated with
minting may be embodied in a set of POWs. This bread pudding pro­
tocol has robustness, independence, and information hiding properties,
as we shall see.

269

Let h be a suitable hash function and 11 denote string concatenation.
We define a ball to be a triplet (i, x, y), where y = h(r 11 i) and r is a
secret value as above. A valid ball is one in which the t least significant
bits of h(x 11 y) are equal to s. The bin into which a ball is thrown is
determined by the u most significant bits of h(x 11 y).

The computational cost associated with minting in this MicroMint
variant remains the same as in the original scheme. Verifying the va­
lidity of a coin in the variant requires twice the number of hashes as
the original. The advantage of the variant scheme, however, is that the
problem of finding a single, valid ball may be distributed as a POW. By
distributing enough of these POWs, the minter may omoad the majority
of the computation associated with the minting operation.

In this scheme, the verifier initiates the POW by sending to the dient
(prover) the pair (i, y), where i is a session identifier or other protocol­
specific value, and y = h(r 11 i). The verifier also sends the parameter
pair (s, t). The task of the dient is to find a value x such that the first t
bits of h(x 11 y) are equal to s, i.e., such that tripie (i, x, y) is a valid ball.
The dient returns this tripie to the verifier (assuming that the verifier, to
achieve statelessness, does not store it). This POW requires an average
computational effort of 2t - 1 hashes for the prover. In fact, it may be seen
that this is a (w, 1/(2t -w), O(1))-feasible and also a (w, 1/(2t -w))-hard
POW, in accordance with the definitions and example in Section 3. The
verifier requires two hashes to check the validity of abalI: one hash to
verify that y = h(r 11 i), where, again, r is the secret minting value, and
one hash to verify that the first t bits of h(x 11 y) are equal to s.

Note that the secret value r is not revealed in a POW. Thus, even
when minting is performed by way of POWs, this secret value need only
be released on the day of coin issue. This information hiding ensures
that security comparable to that of the original scheme is achieved. In
particular, an adversary sees only the valid balls that he hirnself com­
putes or which he has access to through colluding parties. Unless he can
collect the vast majority of valid balls, though, the minting operation
remains infeasible for hirn. In particular, it is infeasible for hirn to obtain
rand create new balls. Observe also, that the POWs in this scheme, as­
suming that h has random-oracle like properties, are independent. Due
to constraints of space, we omit a formal analysis of the information
hiding and other security properties of this scheme.

Rivest and Shamir pro pose sam pie parameters in their paper of k = 4,
1 = 52, and t = 21 for achieving a viable minting setup. Thus, the POW
based on finding a valid ball requires an average of 220 hash opera­
tions for the prover . This is, as it happens, exactly the hardness of the
POW proposed in [8], requiring about 2 seconds on a 266 MHz Pen-

270

tium 11 processor under the hash function MD5. If the minter offioads
the problem of finding valid balls onto dients, then his own computa­
tional effort is equal to at most two hashes per ball: two for verification,
of which one determines which bin a given ball belongs in. Given the
number k2u = 233 of balls suggested by the heuristic calculations in [16],
the minter would thus have to perform 234 hash function computations.
This can be computed in well less than a day on a standard workstation
with sufficient available memory. Without outsourcing the minting op­
eration, the minter would be forced to perform roughly 253 hash function
computations on average.

Altogether, a set of 233 POWs requiring an average of 2 seconds of
computation apiece represents a substantial amount of computation to
offioad onto dients. With one million dients, for instance, it would be
necessary for each dient to perform almost five hours of computation
to complete the solution of all POWs. In many cases - as when dients
can perform computation overnight using idle cydes - this is reasonable.
Nonetheless, in some scenarios, as when dients are very low power de­
vices, it may be desirable to make the POWs somewhat easier. We can
do this as follows. Let us require that y in a valid ball have v leading
'0' bits, and that only the first t - v bits in h(x 11 y) be equal to a
value s. Now a POW requires only 2f - v - 1 hash computations on av­
erage for a dient. A POW, of course, is harder for the minter in this
case: the minter effectively compensates for the reduced computational
burden on dients by performing substantially more computation itself.
The memory requirements in this variant of our scheme, however, are
unchanged.

5. CONCLUSION: SOME OPEN PROBLEMS

We condude by offering brief mention of some open problems mo­
tivated by this paper. The first of these is the problem of devising
other useful bread pudding protocols. Other examples of bread pudding
protocols would be desirable not only in themselves, but perhaps as a
step toward defining a large dass of computational problems amenable
to partitioning into POWs. Another open problem relates to proving
results about the hardness of POWs. We offer in this paper some ex­
amples of POWs based on the properties of one-way functions in the
random orade model. Of use would be a result precisely characterizing
the required properties of hash functions for this purpose. This line of
exploration might yield additional results. For example, since POWs
generally involve only a few seconds of computation, it seems likely that
weak cryptographic functions would serve in lieu of the conventional

271

strong ones. This might yield more efficient POWs. It might also have
the interesting incidental consequence (as in [6]) offurnishing a means of
re-using for certain cryptographic algorithms that have been broken in
a conventional sense - in keeping with the spirit of reuse that motivates
bread pudding.

Acknowledgments

We wish to thank Burt Kaliski and J ulien Stern as weH as the anony­
mous reviewers of this paper for providing references and suggestions.

Notes

1. Trivially, even a slow prover can, with an arbitrarily large amount of time and memory,
pre-compute all possible proof-of-work transcripts and therefore complete a POW instanta­
neously. For a benchmark, this is particularly problematic, as it means that the prover can
convince the verifier that he has an arbitrarily large amount of computing power.

2. We consider the number of steps of computation performed by the verifier on a correct
transcript, as the verifier can always terminate its computation after this many steps.

References

[1] M. Abadi, J. Feigenbaum, and J. Kilian. On hiding information from
an orade. Journal 0/ Computer and System Sciences, 39(1):21-50,
Aug 1989.

[2] M. Bellare and S. Goldwasser. Encapsulated key escrow. Techni­
cal Report Technical Report 688, MIT Laboratory for Computer
Science, April 1996.

[3] M. Bellare and S. Goldwasser. Verifiable partial key escrow. In
Proceedings 0/ the 4th A CM Con/erence on Computer and Commu­
nications Security, pages 78-91, April 1997.

[4] M. Blum and H. Wasserman. Software reliability via run-time
result-checking. Journal 0/ the ACM. To appear. Preliminary ver­
sion: 'Program Result-Checking: A Theory of Testing Meets a Test
of Theory,' Proc. 35th IEEE FOCS, 1994, pp. 382-392.

[5] J. Cai, R. Lipton, R. Sedgewick, and A. Yao. Towards uncheatable
benchmarks. IEEE Structures, pages 2-11, 1993.

[6] C. Dwork and M. Naor. Pricing via processing or combatting junk
mail. In Ernest F. Brickell, editor, Proc. CRYPTO '92, pages 139-
147. Springer-Verlag, 1992. Lecture Notes in Computer Science No.
740.

[7] M.K. Franklin and D. Malkhi. Auditable mete ring with lightweight
security. In R. Hirschfeld, editor, Proc. Financial Cryptography '97

272

(FG '97), pages 151-160. Springer-Verlag, 1997. Lecture Notes in
Computer Science No. 1318.

[8] E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer. Curbing junk
e-mail via secure classification. In R. Hirschfeld, editor, Financial
Gryptography '98. Springer-Verlag, 1998.

[9] D. Goldschlag and S. Stubblebine. Publicly verifiable lotteries: Ap­
plications of delaying functions. In R. Hirschfeld, editor, Financial
Gryptography '98. Springer-Verlag, 1998.

[10] M. Jakobsson and J. Müller. How to defend against a militant
spammer, 1999. manuscript.

[11] A. J uels and J. Brainard. Client puzzles: A cryptographic defense
against connection depletion attacks. In Proceedings 01 the 1999
ISOG Network and Distributed System Security Symposium, pages
151-165,1999.

[12] S. Micali. Guaranteed partial key escrow. Technical Report Techni­
cal Memo 537, MIT Laboratory for Computer Science, September
1995.

[13] F. Monrose, P. Wyckoff, and A. Rubin. Distributed execution with
remote audit. In Proceedings 01 the 1999 ISOG Network and Dis­
tributed System Security Symposium, pages 103-113, 1999.

[14] M. Naor and B. Pinkas. Secure and efficient metering. In K. Ny­
berg, editor, Advances in Gryptology - Eurocrypt '98, pages 576-
590. Springer-Verlag, 1998.

[15] R. Ostrovsky. A proposal for internet computational commerce: How
to tap the power of the WEB, 1998. Presentation at CRYPTO '98
Rump Session.

[16] R.L. Rivest and A. Shamir. PayWord and MicroMint-two simple
micropayment schemes. RSA Laboratories. GryptoBytes, 2(1):7-11,
Spring 1996.

[17] R.L. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles and
timed-release crypto. To appear, 10 March 1996.

[18] Irma S. Rombauer and Marion Rombauer. Bread-pudding with
meringue (six servings). In Joy 01 Gooking, page 751. Penguin
Group, 1997.

