
20

PERFORMANCE TESTING AT EARLY DESIGN
PHASES

Peter Csurgay
Department ofTelematics,
Norwegian University of Science and Technology

Peter.Csurgay@eth.ericsson.se

Mazen Malek
Conformance Center, Ericsson Ltd.

Labore u. 1., Budapest, 1037, Hungary

Mazen.Malek@eth.ericsson.se

Abstract Testing non-functional properties based on functional specifications at early de­
sign phases is still a challenge in teleservice and protocol engineering. Modelling
and evaluating performance aspects along with the traditional functional verifica­
tion oriented formal description techniques has to be integrated into one unified
design process to avoid extra effort in maintaining consistency between multiple
design models. The paper introduces PerfSDL, a semantic extension to SDL for
modelling non-functional properties, and a performance evaluation framework
based on PerfSDL and simulation. To verify the feasibility of the approach, three
design alternatives in a small TCP-Iike packet transfer protocol above transport
services of different quality were tested and evaluated by means of simulation
and statistical analysis.

Keywords: Testing, performance evaluation, protocol engineering, formal description tech­
niques, SDL, prototyping

1. INTRODUCTION
Standardised formal techniques for specifying and functionally verifying

telecommunications protocols fail to capture non-functional aspects like per­
formance and Quality of Service (QoS). Thus, protocol engineering is abound
to use separate models for the design of functional and non-functional be-

317

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing

10.1007/978-0-387-35567-2_25

1999
G. Csopaki et al. (eds.), Testing of Communicating Systems

http://dx.doi.org/10.1007/978-0-387-35567-2_25

318 TESTING OF COMMUNICATING SYSTEMS

Simulated
workload

Background
traffic generator

Automatic

design

running
environment

Aggregate
background traffic

Figure 1 Integration of non-functional aspects into early design

haviour. The extra time and cost of keeping the models consistent can be saved
by treating all aspects in one unified model. A feasible approach is to integrate
performance issues into a well settled protocol engineering process. The ITU­
T standardised formal language SDL has a growing acceptance for functional
modelling and verification in practical protocol engineering [4], and ongoing
research explores its applicability to performance engineering with extensions
to modelling non-functional properties [10]. These efforts are summarised in
Section 2.

In the background of this project lies the recognition that while originally
the language was constructed for describing required and actual behaviour of
reactive systems, its use spans into automated implementation of protocols
based on functional specification [1]. Thus, the actual implementation of the
protocol will closely reflect the functional decomposition from early design
phases written in SDL. In order to be able to ask performance-related questions
about the future implementation of a protocol in an earlier design phase, infor­
mation about that implementation must be provided for the design model. Such
information covers the scheduling algorithm of concurrent processes, limited
resources of the target environment (like buffer sizes, channel capacities, etc),
and resource usage of functional building blocks of the protocol. To gain sta­
tistical performance data by means of simulation, stimuli must also be taken
into account in the early design models. We model stimuli as an aggregated
background load on the transport infrastructure our protocol is acting upon, and

Peiformance Testing at Early Design Phases 319

the actual workload our protocol has to process. The conceptual model of our
performance testing in the early design phases is illustrated in Figure 1.

According to this model, performance testing and evaluation of three design
alternatives in a simple TCP-like protocol above channels of different quality
were carried out by means of simulation. The new constructs of PerfSDL [9]
and their use in modelling non-functional behaviour are introduced in Section
3. The simulation environment and the testing results are described in Section
4 and 5 respectively. The paper concludes and further directions are set in
Section 6.

2. STATE OF THE ART
Recently, there was a large discussion on performance integration within the

SDL community. The study that was initiated by the ITU-T SGIO on support
of performance engineering activities in the early stages was one of them.
Tools are being developed nowadays to handle such activities. SPEET is one
of those tools and was introduced in [12]. It uses the C code generated from
the compilation of an SDL specification, which might include some probes
added by the system developer in order to address interesting performance
areas. Another tool is QUEST that was introduced in [3], which defines a new
extension to SDL called QSDL. This is mainly achieved through introducing
two new constructs in the SDL called load and machine. A similar tool is
SPECS [2]. The tool that was introduced in [9] accomplishes the integration of
functional and performance aspects by introducing an interface to a simulation
environment used extensively for network performance evaluation and analysis.
This is a major advantage in terms of less work to be done and in terms of speed
capabilities. In the literature there are a number of papers giving surveys on
the additional information needed for a performance evaluation of an SDL
specification, e.g. [11].

3. NEW SDL SEMANTICS IN PERFSDL

3.1 SIMULATION REQUIREMENTS
Real-time characteristics have to be added to SDL prior to any performance

testing, e.g. the introduction of timed transitions, reinterpretation of concur­
rency, and finite input queues. In simulation-based approaches to performance
testing this issue is of substantial importance. Moreover, aspects like schedul­
ing and simulation time are closely related to those characteristics. Below we
list those areas that need special treatment when simulating PerfSDL systems
with performance aspects in mind.

Modeling Processing Time. Currently, in SDL, time advances when all
queues of the system are empty [4]. This is generally interpreted this way

320 TESTING OF COMMUNICATING SYSTEMS

I
I

Simulation
Environment

I •global clock

I
I
I

•timers
•scheduling process
•probes

Figure 2 PerfSDL process interactions with the environment

to avoid a dramatic increase in the number of possible traces. In simulation,
however, it is not adequate to advance time only when there is nothing to do,
but also when there is any action to be taken.

Addition of Performance Sensors. In order to gain quantitative measures
on a system's performance, different counting events of time and recurrence
of execution of transitions have to be applied. Time is crucial for measuring
throughput, while recurrence of transitions reflects system bottleneck.

The Concept of Scheduling. This concept is the most essential one during
simulation. It specifies the time when the simulator is asked to act on certain
change in the state of the model. This is not necessarily performed at the time
when transitions start. When a process consumes an input signal, it should
indicate to the simulator its reaction and when to handle it. Also the simulator
has to consider the possible interactions that may happen after or during that
reaction. In this context we consider the scheduling to be events that should
occur after each progress in time, namely when consuming input or performing
a transition.

Degree of parallelism. Processes that run in a completely interleaving and
independent manner can schedule their actions independently on the simulation
time axis. Nevertheless, when processes share the same processor, as usually,
a certain priority and scheduling strategy should be worked out between them.
State transitions may consist of a number of actions, like decision and assign­
ment, and therefore can not be handled as an atomic unit of scheduling. Instead
of that, actions should be that unit.

Peiformance Testing at Early Design Phases 321

3.2 NEW EXTENSIONS TO SDL
The formal interpretation of PerfSDL, as presented in [9], is based on

PerfSDL-process, which can be characterised by the following:

• set of states, e.g. s 1 , s2, s3;

• set of internal variables;

• set of initial states, e.g. so;

• transition function, e.g. tr12·

This is called the underlying state machine, which requires the availability of a
global clock in the system. The interaction with the environment, as in Figure
2, takes place by two types of controlling events:

• schedule and;

• time-to-run.

The environment acts on process scheduling requests, through schedule events,
by assigning a time event for performing the task requested. Additionally, it
activates relevant processes when there is some task to be handled by them
through time-to-run events. This synchronisation is performed between each
running process and the environment. PerfSDL processes can communicate
with each other at block level. All levels higher than leaf block level are
described in the simulation environment.

"Probes" in PerfSDL. These have the ability to monitor, count and analyse
the applied system. They are new elements that can be included during the
design process but may be defined during testing. There are two kinds of probes
- with or without time stamps. A counter counts the number of times a certain
transition is visited, while stamps are used to record the time of specific events.
The current status of some internal variables may be included in these stamps.
In the following we will refer to probe events having time stamp requests by
stamp(tr), where tr is the transition where we want to apply our analysis, e.g.:
stamp(tr): current state is qi and input is ii

"Timed transitions" in PerfSDL. This means taking time elapsing in ac­
count in each event that uses a processor's time. A trace, in PerfSDL, is a
sequence of states and timed transitions:

trace:()= so(to)sl(t1)s2(t2)s3(t3)

transitions: tro1 (to)tr12(tl)tr23(t2)

322 TESTING OF COMMUNICATING SYSTEMS

t imed-t ran sit ion probe

Figure 3 Introduction of new constructs for performance testing in PerfSDL

Figure 4 Behaviour interpretation of extended semantics in PerfSDL specifications

These times, e.g. t1, include the consumption of inputs and execution of
transitions. Figure 3 introduces the graphical representation of probes and
timed transitions.

4. SIMULATION ENVIRONMENT
For behaviour interpretation of system specifications using new constructs

and new semantics of PerfSDL in our simulations, we built a prototyping
framework. The main functions and data structures of the framework are
illustrated on Figure 4. Because developing PerfSDL is also a subject of our
research, our framework has to support prototyping PetfSDL specifications.
Meanwhile its syntax and semantic interpretation is constantly evolving.

The framework includes automatic parser generation and abstract grammar
definition from extended Backus-Naur Form (EBNF) descriptions, and an eas­
ily extensible object-oriented formal definition of the semantic interpretation
model. Java has been used to implement an open framework of distributed
visualisation, control and evaluation components.

The ITU-T Recommendation Z.l 00 defines the Specification and Descrip­
tion Language (SOL) with (I) its concrete grammars SDL/PR and SDLIGR,

Performance Testing at Early Design Phases 323

AbstnK.t \ Static
representing : semWltics

Concretesynt11X 1-!-1

L----,-.:....<A_S-1...:..1) _ _, !
I
I
I
I ,.--1-----...:
I t----
1
I

','---=====-----:'

Annex F.2

Object-tlriented
instance d"u !lrlk..t.

pre:ervinge.g.
type inheritance

Well-f<»med
Abstm<.t .,ntax as
defined Z 100

lAS-I\

Dynmnicf

I

Behuvinur

Annex '----..----'
I
I
I

Figure 5 Alternative to Annex F derivation of PerfSDL behaviour

(2) an abstract syntax AB1 equivalent to the concrete grammars, (3) rules to
transform a system specification into abstract syntax, and (4) the SOL-machine
semantics to interpret a specification given in terms of the abstract syntax [5].
Z.l 00 gives formal definition of SDL in Annex F2 and F3 describing the static
and dynamic semantics respectively [6]. Their relation is illustrated by the
top segment of Figure 5 along with the ABo and AB1 syntaxes introduced by
Z.l 00. ABo is not formally defined in the recommendation, but can be de­
rived from the BNF syntax. AB1 is given in Z.lOO as the Abstract Grammar.
However, with the F.2 transformation from the abstract syntax (representing
concrete textual syntax) to AB1 (input to the dynamic behaviour definition of
SDL), specification domain information is lost. Such information would re­
gard type inheritance hierarchies or virtuality. The bottom segment of Figure 5
illustrates our alternative way to derive dynamic behaviour of a PerfSDL spec­
ification with the representation forming the basis of behaviour interpretation
that preserves such information, thus being closer to the specification domain.

Time and ordering of internal events play a key role in SDL's non-deter­
minism. Due to the vague time semantics of SDL (time may or may not be
advanced by signal transactions and transitions), tool builders and users ofSDL
choose legal, but different, interpretations of time semantics when simulating
or interpreting SDL systems. A legal interpretation for example (most proba­
bly inspired by the way some leading tools handle advancing of time) is that
time passes only if there are no enabled transitions (no valid input signals in
queues) of processes. This interpretation is legal, reducing the set of possible
traces and simplifying validation for example, but not appropriate for perfor­
mance modelling [11]. A prototyping framework should support generation of
possible traces of system behaviour based on different interpretation models.
This is achieved by separation of different interpretation functions in a modular
object-oriented model of formal semantics.

324 TESTING OF COMMUNICATING SYSTEMS

Figure 6 Time semantics interpreted with global timer process approach

Figure 6 illustrates an approach where the chosen interpretation of time
semantics is orthogonal to the scheduler algorithm mentioned among the nec­
essary implementation related aspects in Section 1. This solution is compatible
with different interpretations of time semantics with respect to the generated set
of possible traces. Whenever a process instance encounters setting of a timer,
it is interpreted as sending a signal to a global timer process with parameters of
signal name, sender id and expiration time. The timer process's queue is sorted
by these expiration time values, and is handled by the scheduler the same way
other processes are handled. Upon interpreting the reception of a signal by
the timer process, it sets the global simulation time to the specified expiration
time parameter, and sends a signal with the specified signal name parameter to
the specified sender parameter. If the timer process is always scheduled last
among all processes, the interpretation will generate a trace-set equivalent to
the "time may not be advanced ... " interpretation. If the scheduler randomly
selects armed processes including this timer process, the resulting set of possi­
ble traces will be equivalent to the "may be advanced ... " interpretation. Note
that with this separation and orthogonal modelling of semantic interpretation
functions, different concepts can be experimented with by prototyping in the
modular object-oriented framework of semantic interpretation models.

5. SIMULATION RESULTS
This section illustrates the applicability of the method introduced in this

paper by inspecting some design aspects of the TCP transport protocol of the
Internet. We limit our investigation to the achievement of high utilisation of
network resources. We attempt to address the influence of design alternative
choices on the overall performance of an implementation. Figure 7 shows

Performance Testing at Early Design Phases 325

Process Type GenTr

Figure 7 SDL specification with repetition set to 3 (third design alternative)

part of the SOL specification of a TCP transmitter entity. It contains the
basic sliding-window aspects contained in TCP, with a lot of hidden details.
Definitely, these details may have a substantial impact on performance issues
in general, but they have no impact on the aspects we deal with. The model,
containing transmitter, channel and receiver, gives a brief demonstration of the
data transfer part of TCP with enough descriptiveness and soundness. In the
diagram of Figure 7, the value of internal variable repetition is crucial, since
it states when to re-inject some already sent packets. This specific part of the
protocol shows how the overhead traffic will look when applied in a certain
environment. There is an infinite number of design alternatives according to this
aspect. They are design alternatives because they influence other parameters in
the model, namely the decision of when to consider the occurance of a Timeout
event. There are also some timers that depend on these settings. We choose
three of them, in particular when repetition is equal to 1, 2 and 3. Our analysis
of the performance, as mentioned earlier, will concentrate on the overhead
traffic that is the major player in channel utilisation. By adding time stamps
into the base specification we can obtain measurements of the repeatedly sent
packets, and accordingly can compare design alternatives.

Figure 8 shows the log of four simulation measurements applied on the
design alternative having repetition set to 3. These measurements are sketched
to show how the choice of stamp events would help in obtaining different

326 TESTING OF COMMUNICATING SYSTEMS

Measurement I Measurement2 Measurement3 Measurement4
Stamp Stamp Stamp Stwnp

ltime.sea.ackl (time sea.Ol !time 0 ackl (time
IO.!Xl50 I()) I (().(X)50 I ()) (().()105 0 2) I ro 0155 2l
(().()105.0 2) I m.OI55 2m (0.()26004) I m.o2o5 3l
(().0155 2()) I ro.o2o5 3m (0.0425 06) I ro.o3104l
(0.()205.3()) I ro.03104.m (().0525 0 8) I ro.o360 5l
(0.026004) I ro.m6o5m (().0675 0 9) I ro.o4106l
(0.()310 40) I l<l.041 o.6.!ll (().0775 0.9) I ro.<l460 7l

(!).0360 50) iw <l46o 1m (() 0.8.7.'\ 0 9) I m.o510 Ill

0.0410 60 i f0.0510 R()) 0.6015 0 9 I (().!l5609l
0.04250 06 i (().0560.9.0 0.61200 19 0.061010
0.0460 7 0 i (().061) 100 (().62R'i l 20 ! .!l660 II

(().0510 8 0 0.0660 II 0 0.6385 0 20 0.071012
(().0525 08) I m.071o 12.0 0.6485 0 20 0.0760 13)
(0.()560 9 ()) (0.0760 13 0 0.6635 0 20 0.0810 14)
(0!l610 J()()) (0.0810 14()) (().6735 0 2()) (().0860 15)
(0.(l660 II()) . (0.0860 15 ()) (0.6835 0 21) (().0910 16)
(0.0675 0 9) . (0.0910 16()) (0.6985.0 21) (0.0960 17)

_(() 0110 12 0) i (0.0960 17 ()) (0.7075 0 21) (()_6()65 18)
_{().()760 13 0) i (0.6<l15 9 ()) (().7140022) • (0.6170 19)

Figure 8 Measurements

statistics about system runs. They have been obtained by a simulation run
of the PerfSDL specification of the TCP model. This model contains some
timed-transitions and stamps applied in different places. Stamps are associated
with certain transitions where inputs or outputs are in question. This way,
recurrence of packets is counted and measurements related to throughput can
be easily performed.

Measurement 1 for example uses two stamps for sending and receiving pack­
ets. It registers all sent packets even if they are repeated, like packet 9 at time
0.0675. Measurement 2 filters out the received packets or acknowledgement
packets. That is why the ack parameter is replaced by 0. Meanwhile Measure­
ment 3 does the opposite by showing the received packets only. Measurement
4 takes a further step and measures the packets sent with no repetition. These
measurements were performed for each design alternative separately. The com­
parison of them is sketched in Figure 9. The comparison is done according to
the amount of overhead traffic due to each design alternative. The diagrams
describe the change in amount of traffic corresponding to repeated packets.
On the horizontal axis there is the sequence number of packets, while on the
vertical axis there is the number of repeated packets. The measurements were
carried out using different models of the communication channel, and the de­
sign alternatives have different characteristics in these environments. In these
comparisons we refer to the design alternatives having repetition values of 3, 2
and 1 as the 1st, 2nd and 3rd alternative respectively. The best choice is clearly
the one with least overhead traffic. It is the 2nd, 3rd and 1st in the (a), (b) and
(c) environments respectively.

Performance Testing at Early Design Phases 327

··-····

(
I
I

(a)

(a) relatively low loss and delay
environment;

(b) high loss environment;
(c) high delay environment.

(b)

7,_/-::-
... . .

/I
/:,/

,/;:-·
,//

y
/I

... f:-r·

(c)

Figure 9 Amount of overhead traffic of design alternatives in different environments

6. CONCLUSIONS
A model to integrate performance engineering into the early design phases

of protocol engineering was presented. New constructs in PerfSDL and their
use for expressing non-functional behaviour were introduced. Performance
testing and evaluation of packet transport protocol alternatives were carried
out by means of statistical data gathering in a proprietary simulation environ­
ment. Simulation results show the feasibility and value of the approach in
improving the integration of non-functional design into the protocol engineer­
ing process. Further efforts are being put into the specification of a PerfSDL
based performance evaluation and protocol design tool environment.

References

[1] Rolv Brak, Oystein Haugen, Engineering Real Time Systems, Prentice Hall
International, 1993

[2] M. Butow, M. Mestern, C. Schapiro, P. Kritzinger. Performance Modelling
with the Formal Specification Language SDL. FORTE/PSTV'96. Chapman
& Hall1996.

[3] M. Diefenbruch, E. Heck, Jorg Hintelmenn, B. Clostermann. Performance

328 TESTING OF COMMUNICATING SYSTEMS

Evaluation of SDL-Systems Adjunct by Queuing Models. Proc. 7th SDL
forum. Elsevier 1995.

[4] Jan Ellsberger, Dieter Hogrefe, Amardeo Sarma, SDL - Formal Object­
oriented Language for Communicating Systems, Prentice Hall Europe,
1997

[5] ITU-T Recommendation Z.1 00, CCITT Specification and Description Lan­
guage (SDL) 03/1993

[6] ITU-T Recommendation Z.100, Annex F. Static and Dynamic Semantics
of SDL, 03/1993

[7] ITU-T Recommendation Z.100, Appendices I and II: SDL Methodology
Guidelines, 03/1993.

[8] ITU-T Recommendation Z.100, Supplement 1: SDL+ methodology: Use
of MSC and SDL (with ASN. 1), 05/1997.

[9] Mazen Malek, PerjSDL: an Interface to Protocol Performance Analysis
by means of Simulation, Accepted paper, 9th SDL Forum, Montreal, June
1999

[1 0] Andreas Mitschele-Thiel, Results of the discussion, Workshop on Perfor­
mance and Time in SDL and MSC, Erlangen, February 1998

[11] Andreas Mitschele-Thiel, Performance Evaluation of SDL Systems,
SAM98, 1st SDL and MSC workshop of the SDL Forum Society, Berlin,
July 1998

[12] Martin Steppler and Matthias Lott. SPEET- SDLPerformance Evaluation
Tool. SDL'97: TIME FOR TESTING- SDL, MSC and Trends. Elsevier
Science 1997.

	20 PERFORMANCE TESTING AT EARLY DESIGN PHASES
	1. INTRODUCTION
	2. STATE OF THE ART
	3. NEW SDL SEMANTICS IN PERFSDL
	3.1 SIMULATION REQUIREMENTS
	3.2 NEW EXTENSIONS TO SDL

	4. SIMULATION ENVIRONMENT
	5. SIMULATION RESULTS
	6. CONCLUSIONS
	References

