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Abstract Testing non-functional properties based on functional specifications at early de­
sign phases is still a challenge in teleservice and protocol engineering. Modelling 
and evaluating performance aspects along with the traditional functional verifica­
tion oriented formal description techniques has to be integrated into one unified 
design process to avoid extra effort in maintaining consistency between multiple 
design models. The paper introduces PerfSDL, a semantic extension to SDL for 
modelling non-functional properties, and a performance evaluation framework 
based on PerfSDL and simulation. To verify the feasibility of the approach, three 
design alternatives in a small TCP-Iike packet transfer protocol above transport 
services of different quality were tested and evaluated by means of simulation 
and statistical analysis. 

Keywords: Testing, performance evaluation, protocol engineering, formal description tech­
niques, SDL, prototyping 

1. INTRODUCTION 
Standardised formal techniques for specifying and functionally verifying 

telecommunications protocols fail to capture non-functional aspects like per­
formance and Quality of Service (QoS). Thus, protocol engineering is abound 
to use separate models for the design of functional and non-functional be-
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Figure 1 Integration of non-functional aspects into early design 

haviour. The extra time and cost of keeping the models consistent can be saved 
by treating all aspects in one unified model. A feasible approach is to integrate 
performance issues into a well settled protocol engineering process. The ITU­
T standardised formal language SDL has a growing acceptance for functional 
modelling and verification in practical protocol engineering [4], and ongoing 
research explores its applicability to performance engineering with extensions 
to modelling non-functional properties [10]. These efforts are summarised in 
Section 2. 

In the background of this project lies the recognition that while originally 
the language was constructed for describing required and actual behaviour of 
reactive systems, its use spans into automated implementation of protocols 
based on functional specification [1]. Thus, the actual implementation of the 
protocol will closely reflect the functional decomposition from early design 
phases written in SDL. In order to be able to ask performance-related questions 
about the future implementation of a protocol in an earlier design phase, infor­
mation about that implementation must be provided for the design model. Such 
information covers the scheduling algorithm of concurrent processes, limited 
resources of the target environment (like buffer sizes, channel capacities, etc), 
and resource usage of functional building blocks of the protocol. To gain sta­
tistical performance data by means of simulation, stimuli must also be taken 
into account in the early design models. We model stimuli as an aggregated 
background load on the transport infrastructure our protocol is acting upon, and 
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the actual workload our protocol has to process. The conceptual model of our 
performance testing in the early design phases is illustrated in Figure 1. 

According to this model, performance testing and evaluation of three design 
alternatives in a simple TCP-like protocol above channels of different quality 
were carried out by means of simulation. The new constructs of PerfSDL [9] 
and their use in modelling non-functional behaviour are introduced in Section 
3. The simulation environment and the testing results are described in Section 
4 and 5 respectively. The paper concludes and further directions are set in 
Section 6. 

2. STATE OF THE ART 
Recently, there was a large discussion on performance integration within the 

SDL community. The study that was initiated by the ITU-T SGIO on support 
of performance engineering activities in the early stages was one of them. 
Tools are being developed nowadays to handle such activities. SPEET is one 
of those tools and was introduced in [12]. It uses the C code generated from 
the compilation of an SDL specification, which might include some probes 
added by the system developer in order to address interesting performance 
areas. Another tool is QUEST that was introduced in [3], which defines a new 
extension to SDL called QSDL. This is mainly achieved through introducing 
two new constructs in the SDL called load and machine. A similar tool is 
SPECS [2]. The tool that was introduced in [9] accomplishes the integration of 
functional and performance aspects by introducing an interface to a simulation 
environment used extensively for network performance evaluation and analysis. 
This is a major advantage in terms of less work to be done and in terms of speed 
capabilities. In the literature there are a number of papers giving surveys on 
the additional information needed for a performance evaluation of an SDL 
specification, e.g. [11]. 

3. NEW SDL SEMANTICS IN PERFSDL 

3.1 SIMULATION REQUIREMENTS 
Real-time characteristics have to be added to SDL prior to any performance 

testing, e.g. the introduction of timed transitions, reinterpretation of concur­
rency, and finite input queues. In simulation-based approaches to performance 
testing this issue is of substantial importance. Moreover, aspects like schedul­
ing and simulation time are closely related to those characteristics. Below we 
list those areas that need special treatment when simulating PerfSDL systems 
with performance aspects in mind. 

Modeling Processing Time. Currently, in SDL, time advances when all 
queues of the system are empty [ 4]. This is generally interpreted this way 
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Figure 2 PerfSDL process interactions with the environment 

to avoid a dramatic increase in the number of possible traces. In simulation, 
however, it is not adequate to advance time only when there is nothing to do, 
but also when there is any action to be taken. 

Addition of Performance Sensors. In order to gain quantitative measures 
on a system's performance, different counting events of time and recurrence 
of execution of transitions have to be applied. Time is crucial for measuring 
throughput, while recurrence of transitions reflects system bottleneck. 

The Concept of Scheduling. This concept is the most essential one during 
simulation. It specifies the time when the simulator is asked to act on certain 
change in the state of the model. This is not necessarily performed at the time 
when transitions start. When a process consumes an input signal, it should 
indicate to the simulator its reaction and when to handle it. Also the simulator 
has to consider the possible interactions that may happen after or during that 
reaction. In this context we consider the scheduling to be events that should 
occur after each progress in time, namely when consuming input or performing 
a transition. 

Degree of parallelism. Processes that run in a completely interleaving and 
independent manner can schedule their actions independently on the simulation 
time axis. Nevertheless, when processes share the same processor, as usually, 
a certain priority and scheduling strategy should be worked out between them. 
State transitions may consist of a number of actions, like decision and assign­
ment, and therefore can not be handled as an atomic unit of scheduling. Instead 
of that, actions should be that unit. 
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3.2 NEW EXTENSIONS TO SDL 
The formal interpretation of PerfSDL, as presented in [9], is based on 

PerfSDL-process, which can be characterised by the following: 

• set of states, e.g. s 1 , s2, s3; 

• set of internal variables; 

• set of initial states, e.g. so; 

• transition function, e.g. tr12· 

This is called the underlying state machine, which requires the availability of a 
global clock in the system. The interaction with the environment, as in Figure 
2, takes place by two types of controlling events: 

• schedule and; 

• time-to-run. 

The environment acts on process scheduling requests, through schedule events, 
by assigning a time event for performing the task requested. Additionally, it 
activates relevant processes when there is some task to be handled by them 
through time-to-run events. This synchronisation is performed between each 
running process and the environment. PerfSDL processes can communicate 
with each other at block level. All levels higher than leaf block level are 
described in the simulation environment. 

"Probes" in PerfSDL. These have the ability to monitor, count and analyse 
the applied system. They are new elements that can be included during the 
design process but may be defined during testing. There are two kinds of probes 
- with or without time stamps. A counter counts the number of times a certain 
transition is visited, while stamps are used to record the time of specific events. 
The current status of some internal variables may be included in these stamps. 
In the following we will refer to probe events having time stamp requests by 
stamp(tr), where tr is the transition where we want to apply our analysis, e.g.: 
stamp(tr): current state is qi and input is ii 

"Timed transitions" in PerfSDL. This means taking time elapsing in ac­
count in each event that uses a processor's time. A trace, in PerfSDL, is a 
sequence of states and timed transitions: 

trace:()= so(to)sl(t1)s2(t2)s3(t3) .. .. 

transitions: tro1 (to)tr12(tl)tr23(t2) .... . 
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Figure 4 Behaviour interpretation of extended semantics in PerfSDL specifications 

These times, e.g. t1, include the consumption of inputs and execution of 
transitions. Figure 3 introduces the graphical representation of probes and 
timed transitions. 

4. SIMULATION ENVIRONMENT 
For behaviour interpretation of system specifications using new constructs 

and new semantics of PerfSDL in our simulations, we built a prototyping 
framework. The main functions and data structures of the framework are 
illustrated on Figure 4. Because developing PerfSDL is also a subject of our 
research, our framework has to support prototyping PetfSDL specifications. 
Meanwhile its syntax and semantic interpretation is constantly evolving. 

The framework includes automatic parser generation and abstract grammar 
definition from extended Backus-Naur Form (EBNF) descriptions, and an eas­
ily extensible object-oriented formal definition of the semantic interpretation 
model. Java has been used to implement an open framework of distributed 
visualisation, control and evaluation components. 

The ITU-T Recommendation Z.l 00 defines the Specification and Descrip­
tion Language (SOL) with (I) its concrete grammars SDL/PR and SDLIGR, 
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Figure 5 Alternative to Annex F derivation of PerfSDL behaviour 

(2) an abstract syntax AB1 equivalent to the concrete grammars, (3) rules to 
transform a system specification into abstract syntax, and (4) the SOL-machine 
semantics to interpret a specification given in terms of the abstract syntax [5]. 
Z.l 00 gives formal definition of SDL in Annex F2 and F3 describing the static 
and dynamic semantics respectively [6]. Their relation is illustrated by the 
top segment of Figure 5 along with the ABo and AB1 syntaxes introduced by 
Z.l 00. ABo is not formally defined in the recommendation, but can be de­
rived from the BNF syntax. AB1 is given in Z.lOO as the Abstract Grammar. 
However, with the F.2 transformation from the abstract syntax (representing 
concrete textual syntax) to AB1 (input to the dynamic behaviour definition of 
SDL), specification domain information is lost. Such information would re­
gard type inheritance hierarchies or virtuality. The bottom segment of Figure 5 
illustrates our alternative way to derive dynamic behaviour of a PerfSDL spec­
ification with the representation forming the basis of behaviour interpretation 
that preserves such information, thus being closer to the specification domain. 

Time and ordering of internal events play a key role in SDL's non-deter­
minism. Due to the vague time semantics of SDL (time may or may not be 
advanced by signal transactions and transitions), tool builders and users ofSDL 
choose legal, but different, interpretations of time semantics when simulating 
or interpreting SDL systems. A legal interpretation for example (most proba­
bly inspired by the way some leading tools handle advancing of time) is that 
time passes only if there are no enabled transitions (no valid input signals in 
queues) of processes. This interpretation is legal, reducing the set of possible 
traces and simplifying validation for example, but not appropriate for perfor­
mance modelling [11]. A prototyping framework should support generation of 
possible traces of system behaviour based on different interpretation models. 
This is achieved by separation of different interpretation functions in a modular 
object-oriented model of formal semantics. 
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Figure 6 Time semantics interpreted with global timer process approach 

Figure 6 illustrates an approach where the chosen interpretation of time 
semantics is orthogonal to the scheduler algorithm mentioned among the nec­
essary implementation related aspects in Section 1. This solution is compatible 
with different interpretations of time semantics with respect to the generated set 
of possible traces. Whenever a process instance encounters setting of a timer, 
it is interpreted as sending a signal to a global timer process with parameters of 
signal name, sender id and expiration time. The timer process's queue is sorted 
by these expiration time values, and is handled by the scheduler the same way 
other processes are handled. Upon interpreting the reception of a signal by 
the timer process, it sets the global simulation time to the specified expiration 
time parameter, and sends a signal with the specified signal name parameter to 
the specified sender parameter. If the timer process is always scheduled last 
among all processes, the interpretation will generate a trace-set equivalent to 
the "time may not be advanced ... " interpretation. If the scheduler randomly 
selects armed processes including this timer process, the resulting set of possi­
ble traces will be equivalent to the "may be advanced ... " interpretation. Note 
that with this separation and orthogonal modelling of semantic interpretation 
functions, different concepts can be experimented with by prototyping in the 
modular object-oriented framework of semantic interpretation models. 

5. SIMULATION RESULTS 
This section illustrates the applicability of the method introduced in this 

paper by inspecting some design aspects of the TCP transport protocol of the 
Internet. We limit our investigation to the achievement of high utilisation of 
network resources. We attempt to address the influence of design alternative 
choices on the overall performance of an implementation. Figure 7 shows 
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Figure 7 SDL specification with repetition set to 3 (third design alternative) 

part of the SOL specification of a TCP transmitter entity. It contains the 
basic sliding-window aspects contained in TCP, with a lot of hidden details. 
Definitely, these details may have a substantial impact on performance issues 
in general, but they have no impact on the aspects we deal with. The model, 
containing transmitter, channel and receiver, gives a brief demonstration of the 
data transfer part of TCP with enough descriptiveness and soundness. In the 
diagram of Figure 7, the value of internal variable repetition is crucial, since 
it states when to re-inject some already sent packets. This specific part of the 
protocol shows how the overhead traffic will look when applied in a certain 
environment. There is an infinite number of design alternatives according to this 
aspect. They are design alternatives because they influence other parameters in 
the model, namely the decision of when to consider the occurance of a Timeout 
event. There are also some timers that depend on these settings. We choose 
three of them, in particular when repetition is equal to 1, 2 and 3. Our analysis 
of the performance, as mentioned earlier, will concentrate on the overhead 
traffic that is the major player in channel utilisation. By adding time stamps 
into the base specification we can obtain measurements of the repeatedly sent 
packets, and accordingly can compare design alternatives. 

Figure 8 shows the log of four simulation measurements applied on the 
design alternative having repetition set to 3. These measurements are sketched 
to show how the choice of stamp events would help in obtaining different 
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Figure 8 Measurements 

statistics about system runs. They have been obtained by a simulation run 
of the PerfSDL specification of the TCP model. This model contains some 
timed-transitions and stamps applied in different places. Stamps are associated 
with certain transitions where inputs or outputs are in question. This way, 
recurrence of packets is counted and measurements related to throughput can 
be easily performed. 

Measurement 1 for example uses two stamps for sending and receiving pack­
ets. It registers all sent packets even if they are repeated, like packet 9 at time 
0.0675. Measurement 2 filters out the received packets or acknowledgement 
packets. That is why the ack parameter is replaced by 0. Meanwhile Measure­
ment 3 does the opposite by showing the received packets only. Measurement 
4 takes a further step and measures the packets sent with no repetition. These 
measurements were performed for each design alternative separately. The com­
parison of them is sketched in Figure 9. The comparison is done according to 
the amount of overhead traffic due to each design alternative. The diagrams 
describe the change in amount of traffic corresponding to repeated packets. 
On the horizontal axis there is the sequence number of packets, while on the 
vertical axis there is the number of repeated packets. The measurements were 
carried out using different models of the communication channel, and the de­
sign alternatives have different characteristics in these environments. In these 
comparisons we refer to the design alternatives having repetition values of 3, 2 
and 1 as the 1st, 2nd and 3rd alternative respectively. The best choice is clearly 
the one with least overhead traffic. It is the 2nd, 3rd and 1st in the (a), (b) and 
(c) environments respectively. 
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Figure 9 Amount of overhead traffic of design alternatives in different environments 

6. CONCLUSIONS 
A model to integrate performance engineering into the early design phases 

of protocol engineering was presented. New constructs in PerfSDL and their 
use for expressing non-functional behaviour were introduced. Performance 
testing and evaluation of packet transport protocol alternatives were carried 
out by means of statistical data gathering in a proprietary simulation environ­
ment. Simulation results show the feasibility and value of the approach in 
improving the integration of non-functional design into the protocol engineer­
ing process. Further efforts are being put into the specification of a PerfSDL 
based performance evaluation and protocol design tool environment. 
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