
12

FORMAL TEST AUTOMATION:
A SIMPLE EXPERIMENT*

Axel Belinfantet, Jan Feenstra, Rene G. de Vries, Jan Tretmans
University Q{Twente

Nicolae Goga, Loe Feijs, Sjouke Mauw
Eindhoven University of Technology

Lex Heerink
Philips Research Laboratories

Abstract In this paper we study the automation of test derivation and execution in the area of
conformance testing. The test scenarios are derived from multiple specification
languages: LOTOS, PROMELA and SDL. A central theme of this study is
the usability of batch-oriented and on-the-fly testing approaches. To facilitate
the derivation from multiple formal description techniques and the different test
execution approaches, an open, generic environment called ToRX is introduced.
ToRX enables plugging in existing or dedicated tools. We have carried out
several experiments in testing a conference protocol, resulting in requirements
on automated testing and benchmarking criteria.

1 INTRODUCTION
Conformance testing is an important activity in the development of reactive systems.

Its aim is to gain confidence in the correctness of the system, by means of experimenting
with the system implementation. To judge whether an implementation is a valid

• This research is supported by the Dutch Technology Foundation STW under project STW TIF.41 I I: Ciite
de Resyste- COnformance TEsting of REactive SYSTEms. URL: http:llfmt.cs.utwente.nVCdR
tcorresponding author: Axel Belinfante, University of Twente, Formal Methods and Tools research
group, Faculty of Computer Science, P.O. Box 217, NL-7500 AE Enschede, The Netherlands, email:
Axei.Belinfante@cs. utwente.nl

179

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing

10.1007/978-0-387-35567-2_25

1999
G. Csopaki et al. (eds.), Testing of Communicating Systems

http://dx.doi.org/10.1007/978-0-387-35567-2_25

180 TESTING OF COMMUNICATING SYSTEMS

realization of the specification, and to compare tests and test results, we need a precise
notion of correctness. Using formal methods we can achive this. Another benefit
from the use of formal techniques is that it allows to automate the conformance testing
process. This is important since test derivation is an error-prone and time-intensive
process. In [8] a framework for conformance testing based on formal methods (FMCT)
is described. Previously, we showed in [II] the testing of a relatively simple example,
the conference protocol, in order to assess the feasibility of the FMCT model. One of
the major conclusions was that FMCT provides a sound basis for conformance testing
based on formal methods, but automation is necessary.

In this paper, we study this automation of conformance testing, by comparing dif­
ferent approaches of test execution, different formalisms as the basis for test derivation,
and different supporting tool sets. The aim is to get insight in the strengths and weak­
nesses of the different approaches, to identify shortcomings, and to identify comparison
criteria, required computational effort and means to accommodate automation. These
results are an inspiration for an elaborated study of benchmarking existing automated
testing methods and tools. The research reported in this paper is part of the Cote-de­
Resyste project (a Dutch joint venture of the Universities of Eindhoven and Twente and
the industrial partners Philips Research and KPN Research). The project aims, among
other goals, at comparing existing automated test methods and developing open testing
tools together with the underlying formal theory.

The results of this paper are obtained from the same case study as in [II], i.e. testing
the conference protocol. The difference is that now we do it automatically. Tests are
derived from multiple formal description techniques (FDTs): LOTOS, PROMELA
and SDL. The "simplicity" of our "experiment" merely refers to this case study, not
to the testing theory or tools that we use. The conference protocol is a rather simple,
almost toy-like protocol.

In this paper, the conference protocol is automatically tested in two ways: on-the­
fly and batch-wise. Our on-the-fly testing experiments are based on LOTOS and
PROMELA. The batch testing experiment is based on the TAU tool [I] AUTOLINK
which is based on the work in [IO], i.e. the derivation of TTCN test cases from SDL
in a semi-automated way. Test derivation and test execution are facilitated by Cote de
Resyste tools available in the ToRX environment. This is a tool architecture giving
means to link different kinds of test tools within a test derivation/execution site, without
reengineering of the whole test site, thus facilitating an open generic environment. For
instance, for this study we can plug in several modules for the support of the FDTs.
Also TTCN is supported, which can be plugged into the execution part of ToRX.

This paper is structured as follows. Section 2 gives an overview of test derivation
and test execution methods. The ToRX environment will be introduced. Section 3
will explain the conference protocol case study: informally, the formal specifications
in LOTOS, PROMELA and SDL, and the implementations. Section 4 deals with
the test architecture for testing conference protocol entity implementations. Section 5
reports about the test activities we have carried out. We give an evaluation of the
results and directions for future work in the final section.

Formal Test Automation: A Simple Experiment 181

2 AUTOMATED TESTING
In system development we build an implementation i based on a specification 8.

Formally, i is said to be a correct implementation of 8 if i imp 8, where imp is an
implementation relation, i.e. the notion of correctness. An implementation which is
assessed on its correctness by testing is called an Implementation under Test (JUT).
During test execution a set of test experiments, called a test suite, is carried out on
this IUT, resulting in a verdict of either pass or fail. A test suite is exhaustive if we
can conclude from the verdict pass that the implementation is correct; it is sound if
the verdictfail never occurs with a correct implementation. Exhaustive testing, i.e.
showing the absence of errors, usually requires an infinite test suite and is therefore
not feasible in practice. A minimal requirement on a test suite is that it is sound [8].
The test derivation process aims at deriving a test suite from the specification, given
imp.

It follows from the above discussion that there are two main phases in the testing
process: test derivation, i.e. obtaining a test suite, and test execution, i.e. applying the
test suite to the IUT. Both phases can be automated. This can be done in two ways: as
two separate phases, or in an integrated manner.

In the first approach, in the first phase a test suite is derived and stored in some rep­
resentation, usually TTCN. In the second phase this test suite is executed along with
the IUT. This principle is called batch testing. Batch test derivation is computationally
expensive and suffers from the state space explosion problem. This complexity can be
reduced by user guidance and on-the-fly derivation techniques [4].

The second approach is called on-the-fly testing. As opposed to batch testing, test
derivation and test execution occur simultaneously. Instead of deriving a complete test
case (one test scenario in a test suite), the test derivation process derives test primitives
from the specification. Test primitives are actions that are immediately executed in
the test run. While executing a test case, only the necessary part of a test case is
considered: the test case is derived lazily (cf. lazy evaluation of functional languages).
Using observations during the test execution we can reduce the effort in deriving test
information from the specification compared with batch derivation; see also [13].

Now that we have introduced the two test methodologies, batch testing and on­
the-fly testing, we make a few remarks about their respective qualities. Firstly, the
batch-wise approach is better suited for manual test case preparation and for semi­
automatic test case preparation. Humans are good at test selection, but they are not
fast enough to do it at run time, except perhaps for very slow protocols. This was also
one of the traditional ideas behind TTCN. But now we are moving towards a further
automation of the process, and therefore this advantage of batch-wise approach counts
as less significant.

The second remark concerns the system dependent PIXIT software, sometimes
called mapping software, glue software, encoding/decoding, or interfacing. For batch­
wise test derivation it is possible to compile the abstract test cases into concrete test
cases which have all the mapping details encoded. For the on-the-fly approaches the
encodings and decodings have to be done by run-time facilities. In this paper we will
show that this is feasible.

182 TESTING OF COMMUNICATING SYSTEMS

The third remark is that in case of on-the-fly testing all computations have to be
done at run-time, whereas batch-wise testing allows some of the work to be moved to
compile-time. So, the batch-wise approach has an advantage which makes it easier
to satisfy the IUT's real-time requirements. But the price to pay for this is that many
test-steps which do not happen at run-time are pre-computed, just because the system
happens to choose another branch. This leads to test-suites of an enormous size, and
the amount of pre-computation work and the storage demands involved may well undo
the advantage.

Test Tool Architecture A test tool architecture was devised which allows on-the­
fly testing, batch test derivation and batch test execution for different specification
formalisms. This architecture was baptized ToRX. The main characteristics of
ToRX are its flexibility and openness. Flexibility is obtained by requiring a modular
architecture with well-defined interfaces between the components - this allows easy
replacement of a component by an improved version, or by a component implementing
another specification language or implementation relation. Openness is acquired by
choosing, when possible, existing (industry standard) interfaces to link the components
-this enables integration of 'third party' components that implement these interfaces, in
our tool environment. Later we will show how this general architecture was instantiated
for on-the-fly testing with LOTOS and PROMELA and for batch testing with SDL.
We now discuss the ToRX architecture (Figure I) in terms of its components, the
interfaces between them, and the currently available component implementations.

,-- -- ---------- -- -------- ------ ----------­
O'N-THE-FLY DERlV-\TlON . . .

BATCH DERIVATION : K ' BATCH EXECUTION

Figure I ToRX tool architecture

ToRX consists of the following components (modules): ExPLORER, PRIMER,
DRIVER, ADAPTER, and TTCN storage. Figure I depicts how these components are
linked for batch derivation (with EXPLORER, PRIMER DRIVER and ITCN storage)
batch execution (with TTCN storage, DRIVER, ADAPTER), and on-the-fly derivation
and execution (involving all components without storage of TTCN). The SUT is the
System under Test. It is the IUT together with its test context, i.e. its surrounding
environment (see Section 4).

ExPLORER. The EXPLORER is a specification language-specific component that of­
fers functions to explore the transition-graph of a specification and to provide, for a

Formal Test Automation: A Simple Experiment 183

given state, the set of transitions that are enabled in this state. For the interface between
EXPLORER and PRIMER we use the Open/Caesar interface [6] which is a C API that
provides exactly such state and transition functions for labeled transition systems. This
implies that we can use existing tools to implement the EXPLORER. Currently, we
use CAESAR as our LOTOS EXPLORER. An SDL explorer also exist (but, to our
knowledge, is not publically available).

PRIMER. The PRIMER uses the functions provided by the EXPLORER to implement
the test derivation algorithm, for which it keeps track of the set of states that the
specification might be in. It offers functions to generate inputs (stimuli) for the
implementation and to check outputs (observations) from the implementation. Our
current implementation of the PRIMER implements the test derivation algorithm for
the implementation relation ioco [12]. Since this algorithm does not contain test data
selection criteria, test selection is currently implemented by making random choices
using a random number generator. The seed of this generator is a parameter of the
PRIMER.

DRIVER. The DRIVER is the central component of the tool architecture; it controls
the progress of the testing process. It decides whether to do an input action or to
observe and check an output action from the implementation. The DRIVER uses the
PRIMER to obtain an input and to check whether the output of the implementation is
correct. It uses the ADAPTER to execute the selected inputs by sending these inputs
to the IUT, and to observe outputs that are generated by the IUT. For batch testing the
derived tests are first stored in a filesystem (indicated as "TTCN" in Figure 1). To
execute tests in batch mode the test events are obtained from storage rather than from
the PRIMER.

The PRIMER-DRIVER interface is only used by the on-the-fly tester, where PRIMER
and DRIVER are connected by pipes that the DRIVER uses to write (textual) commands
to and receive (textual) responses from the PRIMER.

ADAPTER. The ADAPTER provides the connection with the SUT. It is responsible
for sending inputs to and receiving outputs from the SUT on request of the DRIVER.
The ADAPTER is also responsible for encoding and decoding of abstract actions to
concrete bits and bytes, and vice versa. This also involves mapping of the quiescent
action o onto time-outs, see [12].

We currently use two interfaces between DRIVER and ADAPTER. In our current
on-the-fly tester we use a simple (ad hoc) interface based on calling conventions for the
(TCL) functions that implement the en/decoding functions. We are in the process of
replacing this interface by the Generic Compiler/Interpreter Interface (GCI) [2] which
we already use for batch execution of TTCN test-suites derived by TAU. The GCI
has been developed in the INTOOL project for TTCN -based testers as an interface
between the TTCN-dependent part (code generated by a TTCN compiler, or a
TTCN interpreter) and the other parts (manager, responsible for configuration and
logging, and adapter, responsible for encoding and decoding and access to the SUT).
The GCI is defined in a language-independent way; a C language binding has been
defined, which we use.

184 TESTING OF COMMUNICATING SYSTEMS

Test Approaches in ToRX As Figure 1 shows, the components can be put
together for the three different ways of testing: on-the-fly testing, batch test derivation
and batch test execution. We now describe how these configurations were used for
testing based on LOTOS, PROMELA and SDL specifications. We will pay special
attention to the differences and similarities in the use of the basic building blocks.

On-the-fly testing. Testing for LOTOS and PROMELA is performed on-the-fly
based on the implementation relation ioco [12]. They use the same DRIVER and
major parts of the ADAPTER modules; they differ in the EXPLORER and PRIMER
modules.

The DRIVER sends commands to the PRIMER to request a menu of possible input or
output events, or the 'execution' of a specific transition from such a menu. Even though
it can be configured to fully automatically select a trace to test, the random choices that
it makes are 'parameterized' by the seed of its random number, which can be chosen
by the user. The test trace that is derived and executed can be logged and replayed
during a subsequent test run to guide the DRIVER. The DRIVER is implemented using
the scripting language EXPECT because the high-level constructs offered by EXPECT
allow rapid prototype development and easy interaction with external programs.

The ADAPTER contains the en/decoding routines and the SUT connection pro­
grams, and the function that maps abstract actions onto PCOs (Points of Control and
Observation, see Section 4). The en/decoding routines and the mapping function are
specification language dependent, because they depend on the representation of the
abstract values that they have to en/decode, respectively map, which will vary between
languages. The SUT connection programs are specification language independent;
separate programs are used that handle specific protocols (like TCP, UDP) and can be
controlled via standard input and output.

For both LOTOS and PROMELA on-the-fly testing, the mapping ofToRX compo­
nents on tool-implementation programs is the same: the DRIVER forms the main pro­
gram together with the en/decoding part of the ADAPTER; EXPLORER and PRIMER
are integrated in a second program (a.k.a. the specification module), and for the SUT
connection part of the ADAPTER we use separate protocol-specific connection pro­
grams.

LOTOS. The specification-dependent EXPLORER module can be automatically
generated from a LOTOS specification using the CADP tool set. This EXPLORER
module is linked with the ioco-PRIMER using the Open/Caesar interface, which
gives us a program that has to be configured with lists of input and output gates, and
(optionally) with the seed of its random number generator. The PRIMER module
is independent of the specification, and, is in principle even specification language
independent (for all specification languages for which there is a compiler that compiles
to the Open/Caesar interface). In practice this will only be true if the labels generated
by the compiler sufficiently resemble LOTOS events (our current PRIMER requires
that). The labels generated by the CADP generated EXPLORER do not contain free
variables, because CADP expands free variables by enumerating the values in the
domains of the variables after which it generates a label for each possible combination
of these values.

Formal Test Automation: A Simple Experiment 185

PROMELA. For PROMELA on-the-fly testing, we can automatically generate a single
module that implements both the EXPLORER and PRIMER. This is done by the
the TROJKA tool which is described in detail in [13]. The resulting specification
module can be configured in the same way as the LOTOS one, but the configuration
parameters are different, for example because input and output channel operations are
already identified in a PROMELA specification and need not be given by the user. If
the tool SPIN were able to supply an Open/Caesar interface for PROMELA, we would
have been able to use the same PRIMER as for LOTOS. Such an extension is left for
future work.

Batch SDL testing. For SD L we use batch testing to derive and execute test suites
in TTCN. For this purpose we use the TAU tool set [1]. The functionality of the
EXPLORER, PRIMER and DRIVER is covered by TAU's AUTOLINK test derivation
tool [I 0]. It generates the constraints and dynamic parts of TTCN test suites, guided
by message sequence charts (MSCs) that have to be provided by the user. These
MSCs can be derived by hand from the SDL specification using the SDL simulator
that is integrated in TAU. The TTCN test suite derived by AUTOLINK has then to
be completed with declarations (e.g. for types and PCOs) using a program that is
automatically generated from the SDL specification by TAU's LINK TOOL; the result
is a complete TTCN test suite.

The batch test execution DRIVER module is automatically generated from the
complete TTCN suites by the TTCN compiler of TAU. This DRIVER is linked with
an ADAPTER module using the GCI interface; the result is a single program that can
execute the test suites. The ADAPTER differs from the one for the on-the-fly testers in
the following aspects. Firstly, the ADAPTER uses the GCI interface, and it does not
have to provide a function to map labels to PCOs because the TTCN test suite already
explicitly refers to PCOs. Secondly, the ADAPTER does not have to use external
programs to provide the connection to the SUT, because support for several connection
types (protocols) has been built in. Finally, the en/decoding routines are implemented
in C instead of TCL, and they translate using an intermediate representation.

An important difference between the on-the-fly testers used for LOTOS and
PROMELA on the one hand, and the batch testing provided using TAU on the other
hand, lies in the level of automation offered for test derivation: the on-the-fly testers are
able to automatically derive and execute tests without human intervention or guidance,
whereas the TAU batch test deriver cannot do its work without a (manually derived)
MSC that represents the test purpose.

3 THECONFERENCEPROTOCOL
The example protocol that is used as the case study for the test experiments is the

Conference Protocol [5, 11]. Some aspects of it are highlighted here; an elaborate
description together with the complete formal specifications and the set of implemen­
tations can be found in [9].

Informal description. The conference service provides a multicast service, re­
sembling a 'chatbox', to users participating in a conference. A conference is a group
of users tnat can exchange messages with all conference partners in that conference.

186 TESTING OF COMMUNICATING SYSTEMS

Messages are exchanged using the service primitives datareq and dataind. The part­
ners in a conference can change dynamically because the conference service allows its
users to join and leave a conference. Different conferences can exist at the same time,
but each user can only participate in at most one conference at a time.

The underlying service, used by the conference protocol, is a point-to-point con­
nectionless and unreliable service provided by the User Datagram Protocol (UDP),
i.e. data packets may get lost or duplicated or be delivered out of sequence but are
never corrupted or misdelivered.

The object of our experiments is testing a Conference Protocol Entity (CPE). The
CPEs send and receive Protocol Data Units (PDUs) via the underlying service provide
the conference service. The CPE has four PDUs: join-PDU, answer-PDU, data-PDU
and leave-PDU, which can be sent and received according to a number of rules, of which
the details are omitted here. Moreover, every CPE is responsible for the administration
of two sets, the potential conference partners and the conference partners. The first
is static and contains all users who are allowed to participate in a conference, and
the second is dynamic and contains all conference partners (in the form of names and
UDP-addresses) that currently participate in the same conference.

USER a
join

USERb

(a)

USERC

UDP

Figure 2 The conference protocol

(b)

USERC
datareq

Figure 2 gives two example instances of behaviour: in (a) a join service primitive
results in sending ajoin-PDU, which is acknowledged by an answer-PDU; in (b) a
datareq service primitive leads to a data-PDU being sent to all conference partners,
which, in turn, invoke a dataind primitive.

Formal specifications. Three formal specifications were developed for the Con­
ference Protocol using LOTOS, PROMELA and SDL.

LOTOS The LOTOS specification was mainly taken from [11]. The core of
the specification is a (state-oriented) description of the conference protocol entity
behaviour. The CPE behaviour is parameterized with the set of potential conference
partners and its CSAP and USAP addresses, and is constrained by the local behaviour
at CSAP and USAP. The instantiation of the CPE with concrete values for these
parameters is part of the specification.

PROMEIA Communication between conference partners has been modelled by a
set of processes, one for each potential receiver, to 'allow' all possible interleavings

Formal Test Automation: A Simple Experiment 187

between the several sendings of multicast PDUs. Instantiating the specification with
three potential conference users, a PROMELA model for testing is generated which
consists of 122 states and 5 processes. For model checking and simulation purposes,
the user needs not only the behaviour of the system itself but also the behaviour of the
system environment. For testing this is not required, see [13]. Only some channels
have to be marked as observable, viz. the ones where observable actions may occur.

SDL For SDL, several specifications of the conference protocol were produced.
In the TAU tool set it is possible to use different kinds of test formalisms, e.g.,
interoperability and conformance testing. For each of these formalisms different
specifications are required. The conference protocol model is specified in a natural
way by decomposing the problem into three subprocesses: one for reception and
translation of incoming messages, one for managing the conference data structures,
and one for composing and broadcasting outgoing PDUs.

Conference Protocol Implementations. The conference protocol has been im­
plemented on SuN SPARC workstations using a UNIX-like (SOLARIS) operating sys­
tem, and it was programmed using the ANSI-C programming language. Furthermore,
we used only standard UNIX inter-process and inter-machinecommunication facilities,
such as uni-directional pipes and sockets.

A conference protocol implementation consists of the actual CPE which implements
the protocol behaviour and a user-interface on top of it. We require that the user­
interface is separated (loosely coupled) from the CPE to isolate the protocol entity;
only the CPE is the object of testing. This is realistic because user interfaces are often
implemented using dedicated software.

The conference protocol implementation has two interfaces: the CSAP and the
USAP. The CSAP interface allows communication between the two UNIX processes,
the user-interface and the CPE, and is implemented by two uni-directional pipes. The
USAP interface allows communication between the CPE and the underlaying layer
UDP, and is implemented by sockets.

In order to guarantee that a conference protocol entity has knowledge about the
potential conference partners the conference protocol entity reads a configuration file
during the initialization phase.

Error seeding. For our experiment with automatic testing we developed 28 differ­
ent conference protocol implementations. One of these implementations is correct (at
least, to our knowledge), whereas in 27 of them a single error was injected deliber­
ately. The erroneous implementations can be categorized in three different groups: No
outputs, No internal checks and No internal updates. The group No outputs contains
implementations that forget to send output when they are required to do so. The
group No internal checks contains implementations that do not check whether the
implementations are allowed to participate in the same conference according to the
set of potential conference partners and the set of conference partners. The group No
internal updates contains implementations that do not correctly administrate the set of
conference partners.

188 TESTING OF COMMUNICATING SYSTEMS

4 TEST ARCHITECTURE
For testing a conference protocol entity (CPE) implementation, knowledge about

the environment in which it is tested, i.e. the test architecture, is essential. A test archi­
tecture can (abstractly) be described in terms of a tester, an Implementation Under Test
(lUT) (in our case the CPE), a test context, Points of Control and Observation (PCOs),
and Implementation Access Points (lAPs) [8]. The test context is the environment
in which the lUT is embedded and that is present during testing, but that is not the
aim of conformance testing. The communication interfaces between the lUT and the
test context are defined by lAPs, and the communication interfaces between the test
context and the tester are defined by PCOs. The SUT (System Under Test) consists of
the lUT embedded in its test context. Figure 3(a) depicts an abstract test architecture.

SUT I ----- -- ------------·
(a) Abstract test architecture (b) Test architecture for conference protocol entities

Figure 3 Test architecture

Ideally, the tester accesses the CPE directly at its lAPs, both at the CSAP and the
USAP level. In our test architecture, which is the same as in [11], this is not the case.
The tester communicates with the CPE at the USAP via the underlying UDP layer; this
UDP layer acts as the test context. Since UDP behaves as an unreliable channel, this
complicates the testing process. To avoid this complication we make the assumption
that communication via UDP is reliable and that messages are delivered in sequence.
This assumption is realistic if we require that the tester and the CPE reside on the same
host machine, so that messages exchanged via UDP do not have to travel through the
protocol layers below lP but 'bounce back' at IP.

With respect to the lAP at the CSAP interface we already assumed in the previous
section that the user interface can be separated from the core CPE. Since the CSAP
interface is implemented by means of pipes the tester therefore has to access the CSAP
interface via the pipe mechanism.

Figure 3(b) depicts the concrete test architecture. The SUT consists of the CPE
together with the reliable UDP service provider. The tester accesses the lAPs at the
CSAP level directly, and the lAPs at USAP level via the UDP layer.

Formal model of the test architecture For formal test derivation, a realistic
model of the behavioural properties of the complete SUT is required, i.e. the CPE and

Formal Test Automation: A Simple Experiment 189

the test context, as well as the communication interfaces (lAPs and PCOs). The formal
model of the CPE is based on the formal protocol specifications in Section 3. Using
our assumption that the tester and the CPE reside on the same host, the test context
(i .e. the UDP layer) acts as a reliable channel that provides in-sequence delivery. This
can be modelled by two unbounded first-in/first-out (FIFO) queues, one for message
transfer from tester to CPE, and one vice versa. The CSAP interface is implemented by
means of pipes, which essentially behave like bounded first-in/first-out (FIFO) buffers.
Under the assumption that a pipe is never 'overloaded', this can also be modelled as
an unbounded FIFO queue. The USAP interface is implemented by means of sockets.
Sockets can also be modelled, just as pipes, by unbounded FIFO queues. Finally, the
number of communicating peer entities of the CPE, i.e. the set of potential conference
partners, has been fixed in the test architecture to two. Figure 4 visualizes the complete
formal model of the SUT.

; • • jjjjjjjj j j jjj iilil! • • •• •. • •

SUT ··"' ''''''' '' !!!!'''''

Figure 4 Formal model of the SUT

To compare test derivation and test execution based on LOTOS, SDL and
PROMELA, we have built models of the SUT in these three languages. In the LOTOS
description of the SUT the behaviour description of the CPE is extended with queues
that model the underlying UDP service, the pipes and the sockets. As two consecutive
unbounded queues behave exactly equivalent as a single unbounded queue, an opti­
mization was made with respect to such consecutive queues. A consequence of the
introduction of queues is that the hidden synchronizations between the queues and the
CPE at CSAP and USAP lead to internal steps. In Section 5 we will see the impact
that these internal steps have on run-time and memory consumption of the on-the-fly
tester.

Similar to LOTOS, a complete specification of the SUT, including the underlying
UDP layer and the interfaces, has been constructed in SDL. For automatic derivation
of TTCN the use of certain SD L constructs had to be restricted, e.g. the built-in type
Pld for address construction had to be converted.

In PROMELA, also a model of the SUT has been constructed. In contrast to
the LOTOS and SDL specifications, an optimization has been made in P ROMEL A
that allows removal of the queues without changing the observable behaviour of the
protocol.

190 TESTING OF COMMUNICATING SYSTEMS

5 TESTING ACTIVITIES
This section describes our testing activities. After summarizing the overall results

we will elaborate on the test activities for each of the specification languages. We used
the LOTOS and PROMELA specifications for on-the-fly test derivation and execution,
using the correctness criterion ioco [12]. We used the SDL specification to derive
and execute TTCN in batch mode.

For each of the specification languages we started with initial experiments to identify
errors in the specifications and to test the (specification language specific) en/decoding
functions of the tester. Once we had sufficient confidence in the specification and
test tools, we tested the (assumed to be) correct implementation, after which the 27
erroneous mutants were tested by people who did not know which errors had been
introduced in these mutants.

In the following table we summarize the results of these experiments. Each im­
plementation was tested several times: on-the-fly with different seeds, and batch-wise
with 13 different test cases. For each implementation and each FDT we indicate
the verdict, and the minimal and maximal number of execution steps, i.e. LOTOS,
PROMELA or TTCN test events that were taken to reach the verdict. If all tests led
to a pass verdict, we indicate pass. For tests that have a pass verdict we do not
indicate the number of steps. If at least one test led to a fail verdict we indicate fail.
If no test led to a fail verdict, but at least one test led to an inconclusive verdict
because of a timeout, we indicate timeout (this only applies to the SDL-based tests).
A timeout implies a deadlock, and therefore it must be viewed as a serious warning.

LOTOS To instantiate our test architecture with LOTOS specific components, we
only needed to produce a specification-dependent EXPLORER component and specific
en/decoding routines for the ADAPTER component; the remaining components of
our test tool architecture could be reused. The EXPLORER module was automatically
generated using the CADP tool set, see section 2. The ADAPTER en/decoding routines
were hand-written. The resulting tester is parameterized with the seed of its random
number generator and the target depth.

We started by repeatedly running the tester in automatic mode, each time with
a different seed for the random number generator, until either a depth of 500 steps
was reached or an inconsistency between tester and implementation was detected (i.e.
fail, usually after some 30 to 70 steps). This uncovered some errors in both the
implementation and the specification, which were repaired. In addition we have run
the tester in user-guided, manual mode to explore specific scenarios and to study
failures that were found in fully automatic mode.

Once we had sufficient confidence in the quality of the specification and implemen­
tation we repeated the previous 'automatic mode' experiment, but now with a (target)
depth of 1, 000,000 steps. This depth has not been reached, because the LOTOS
EXPLORER-PRIMER module runs out of memory (without discovering an inconsis­
tency) after a few thousand steps -the longest trace consisted of 27,803 steps and
took 1.4 Gb of memory. For this trace the computation of a single step took from
3 seconds (99.9% of the steps) up to 43 minutes of CPU time on a 296 MHz Sun
UltraSPARC-11 processor. The main reason for the huge memory consumption is that

Formal Test Automation: A Simple Experiment 191

mu- LOTOS Promela SDL
tant verdict steps verdict steps verdict steps

nr. min max min max min
'correct' implementation

0 I pass - - I pass - - I pass -
Incorrect Implementations- No outputs

1 fail 37 66 fail 9 51 pass -
2 fail 21 37 fail 6 116 timeout 7
3 fail 63 78 fail 24 498 timeout 7
4 fail 65 68 fail 20 83 timeout 7
5 fail 11 17 fail 2 10 timeout 7
6 fail 31 192 fail 14 81 timeout 7

Incorrect Implementations- No internal checks
7 fail 57 126 fail 31 392 timeout 12
8 fail 31 37 fail 38 200 pass -
9 pass - - pass - - timeout 12

10 pass - - pass - - pass -
Incorrect Implementations- No internal updates

11 fail 26 126 fail 29 143 timeout 12
12 fail 21 44 fail 6 127 timeout 7
13 fail 21 45 fail 6 19 timeout 7
14 fail 57 76 fail 28 146 fail 7
15 fail 207 304 fail 19 142 fail 17
16 fail 40 208 fail 25 83 fail 25
17 fail 35 198 fail 9 46 timeout 8
18 fail 31 238 fail 12 121 timeout 7
19 fail 29 467 fail 9 165 pass -
20 fail 57 166 fail 33 142 timeout 7
21 fail 63 178 fail 15 219 fail 7
22 fail 57 166 fail 31 144 timeout 7
23 fail 21 35 fail 5 33 fail 7
24 fail 69 126 fail 31 127 pass -
25 fail 37 55 fail 7 51 timeout 7
26 fail 66 91 fail 24 235 pass -
27 fail 46 210 fail 23 139 fail 17

there are (known) memory leaks in the EXPLORER, while we could not use the garbage
collector supplied in CADP because it does not cooperate with our PRIMER (this is
being fixed). The main reason for the long computation time lies in the internal steps in
the model ofthe CPE extended with test context (see Section 4), because our PRIMER

has to explore large numbers of states for traces that contain long sequences of internal
steps.

To test the error-detection capabilities of our tester we repeatedly ran the tester
in automatic mode for a depth of 500 steps, each time with a different seed for the
random number generator, on the 27 mutants. The tester was able to detect 25 of them.

192 TESTING OF COMMUNICATING SYSTEMS

The two mutants that could not be detected accept PDUs from any source - they do
not check_,;)W-be!h«r an incoming PDU comes from a potential conference parter. This
is not explicitly modeled in our LOTOS specification, and therefore these mutants
are ioco-correct with respect to the LOTOS specification, which is why we can not
detect them.

Promela To instantiate our tester with PROMELA-specific components, wegener­
ated a single module, which implements both the EXPLORER and PRIMER modules,
automatically from the PROMELA specification using the TROJKA tool [13]. TROJKA
is based on the SPIN tool for PROMELA [7]. We could reuse most of the ADAPTER
developed for LOTOS; changes were only necessary in the parts that depend on the
specification labels.

With the PROMELA based tester we repeated the experiments that we did with the
LOTOS based one. We received the same results, but in a much shorter time (on
average about 1.1 steps per second), and we were able to reach greater depths (450,000
steps), using less memory (400Mb). The differences with the LOTOS based tester
can be explained by the use of memory-efficient internal data representations and the
use of hashing techniques to remember the results of unfoldings. These techniques
were inherited by TROJKA from SPIN. The PROMELA based tester was able to detect
the same 25 of the 27 mutants as the LOTOS based tester (which is no surprise
because both testers check for the same correctness criterion ioco).

SDL We used the TAU tool kit for batch derivation and execution of test suites in
TTCN from SDL [1]. The functionality of the EXPLORER, PRIMER and (batch
derivation) DRIVER were covered by TAU's AUTOLINK test derivation tool, which
generates TTCN test suites from the SDL specification, guided by MSCs that were
derived manually from the SDL specification using TAU's SDL simulator.

Before running the derived TTCN test suite against our implementations, we ran
it against the original SDL specification to validate the TTCN test suite, by running
the SDL simulator and TAU's TTCN simulator in connection. This uncovered some
problems in AUTOLINK. Another problem encountered was that for some MSCs no
TTCN suites could be derived, although the MSC could be successfully verified (this
depends on the memory of our computers). An interesting aspect is that the partial
temporal ordering of the events in the MSC is sometimes not respected in the TTCN
code derived by AUTOLINK. Finally, we have experienced some minor problems and
bugs. Some of the abovementioned problems may have been solved already in recent
releases of the software involved.

The batch execution DRIVER module was automatically generated from the com­
plete TTCN suites using the TTCN compiler of TAU. This DRIVER is linked with
an ADAPTER module using the GCI interface; the result is a single program that can
execute the test suites (see Section 2). Some parts of the en/decoding functions of the
ADAPTER could be generated using KIMWITU [3]; the rest consists of hand-written
C code.

We have derived 15 test cases (MSCs) from the SDL specification. The time to
build an MSC by means of simulation is 3 minutes for an MSC with 7 events which

Formal Test Automation: A Simple Experiment 193

includes the time to split it into parts (two parts in this case). This was the shortest
time. The longest time was 45 minutes for 44 events (15 parts). The average time was
12 minutes for an average of 20 events and 5 parts. The test derivation time consists
of the abovementioned times plus the AUTOLINK generation step's time which was
less than 8 seconds. The preceding splitting turned out to be essential for most cases
(e.g. 14 minutes without splitting becomes 7 seconds with splitting). For two of these
MSCs no TTCN could not be derived, not even after splitting, because AUTO LINK ran
out of memory.

We will try to sketch our informal strategy for defining test purposes in the next
few lines. Most of the test purposes are concerned with a single conference. Various
arbitrary interleavings of join actions, data transfer and leave actions give rise to one
test purpose each. The other test purposes check the absence of interference between
two simultaneous conferences (for 3 users it makes no sense to have more than 2
conferences).

The test execution time, running the TTCN which was derived in a batch-wise
way against the implementation, took from 2 to 5 seconds.

The detection of errors was done by repeating all the 13 test cases for which
TTCN could be derived for the 27 mutants. Six fail verdicts were obtained, next
to 15 inconclusive verdicts that were the effect of a timeout. We felt that such
inconclusive verdicts ought to be viewed a serious warning, because they indicate a
deadlock. Six errors went undetected, although some of them could have been found
by a larger test suite.

6 EVALUATION AND CONCLUSIONS
Conclusions. In this paper we have studied the feasibility of automatic test deriva­
tion and execution from a number of formal specifications. To conduct this study,
a protocol has been modelled in three formal specification languages: LOTOS,
PROMELA and SDL. Also, a set of concrete implementations has been constructed,
some of which were injected with faults that were unknown to the person that per­
formed the testing. To test these implementations based on the formal specifications an
open test architecture has been defined that was successfully instantiated for on-the-fly
testing with LOTOS and PROMELA and batch-wise testing with SDL. The results
have been compared with respect to the number of erroneous implementations that
could be detected for each of the specifications, and the time and effort that it took to
test the implementations.

The tool architecture that was used to conduct the experiment supports both on-the­
fly testing and batch testing. Several existing tool sets, such as CADP and TAU, were
used as plug-ins for the tool architecture, thereby illustrating its openness.

In the on-the-fly approach, tests were fully automatically derived (in a random way)
and executed. In the batch approach the construction of tests needed manual assistance.
Execution in the batch approach was done automatically. Both the on-the-fly approach
and the batch approach were able to detect many erroneous implementations. Using
the on-the-fly techniques all erroneous implementations could be detected, except for
those that contained errors that simply could not be detected due to modelling choices
in the specification and the choice of implementation relation (hence, were formally

194 TESTING OF COMMUNICATING SYSTEMS

no errors). Using batch testing based on SDL fewer erroneous implementations were
detected. On the one hand this is caused by the occurrence of timeouts (which should be
considered as indications of potential errors such as deadlocks), and on the other hand
by the fact that less tests were executed due to the fact that manual assistance during
test derivation was needed. By deriving more test cases in the batch approach it will be
possible to increase the error detecting capability. Although with batch SDL testing
certainly Jess erroneous implementations were detected, the current experiments are
too restricted to deduce general conclusions from them. More experiments are needed
where also more care is taken that the starting points are comparible.

In the on-the-fly approach, tests were derived using random selection of inputs.
How many steps it takes to trigger errors depends very much on the random choices
that the tester makes, and the seed of the random choice generator. However, the
results in this paper support the assumption that if the tester runs 'sufficiently long'
then eventually all errors will be found. In the batch approach more human assistance
is needed. Consequently, an error can often be found in Jess steps using the batch
approach than in the on-the-fly approach. We found that for long traces that lead to
errors, it is difficult to analyse the exact conditions under which such an error was
triggered. Especially in the on-the-fly approach, error analysis was more difficult
because no support was available to diagnose the trace that led to the error. Analysis
could be made easier if the traces that lead to an error could be transformed into a form
in which they can be studied in the existing development environments for the FDTs.

Further work. The experimental results that are presented in this paper are based
on a case study of a single protocol and a limited number of implementations. To obtain
more valuable results the number of cases studies and the number of experiments per
case study should be increased. To enable a rigorous comparison of test derivation
and test execution tools by different vendors, one (or more) case studies containing
specifications and sets of implementations should be made publically available so that
they can be used by several tool vendors to compare their test derivation/execution tools.
The case study in this paper can be seen as one of the first initiatives towards such a
test tool benchmarking activity. To promote this kind of benchmarking, the description
of our case study together with the formal specifications and all implementations are
available on the Web [9]. Everybody is thus invited to conduct and publish analogous
experiments with his or her favourite test tools.

The on-the-fly approach for test derivation is currently implemented using a random
strategy. Therefore, it is difficult to steer the test that is being derived and executed.
In practice, more advanced and user controlled strategies that allow for the derivation
of tests that are targeted towards specific test purposes, or that avoid deriving the same
tests more than once, are needed. This requires research in the field of test purpose
oriented test derivation, and adaptive test derivation techniques. The batch approach
is currently limited by the fact that human intervention is needed to derive tests, and
due to the fact that sometimes inconclusive verdicts are reached as a result of timeouts.
More advanced batch test derivation techniques might overcome these deficiencies.

Most of the work to instantiate the on-the-fly tester goes into the making and
validation of the formal specification. After this the specification module can be
generated fully automatically. For the batch approach the most laborious task is to

Formal Test Automation: A Simple Experiment 195

derive tests. Also, a laborious task is to produce the ADAPTER. Creation of the
ADAPTER can be eased by developing a general framework in which the method to
connect to the IUT is orthogonal to the data en/decoding, and to allow easy reuse of
connection modules for common protocols. In addition, it is worth studying whether
it is possible to develop languages and tools to specify the data en/decoding functions
in a compact syntax and generate automatically code from that.

References

[I] Telelogic AB. Telelogic TAU Documentation, 1998.

[2] F. Brady and R.M. Barker. Infrastructural Tools for Information Technology
and Telecommunications Conformance Testing, INTOOL/GCI, Generic Com­
piler/Interpreter (GCI) Interface Specification, Version 2.2, 1996. INTOOL doc.
nr. GCI/NPL038v2.

[3] P. van Eijk, A. Belinfante, H. Eertink, and H. Alblas. The Term Processor
KIMWITU. In E. Brinksma, editor, TACAS'97, pages 96-111. LNCS 1217,
Springer-Verlag, 1997.

[4] J.-C. Fernandez, C. Jard, T. Jeron, and C. Viho. Using On-the-Fly Verification
Techniques for the generation of test suites. In R. Alur et al., editor, CAV'96.
LNCS II 02, Springer-Verlag, 1996.

[5] L. Ferreira Pires. Protocol Implementation: Manual for Practical Exercises
199511996. Lecture notes, University ofTwente, The Netherlands, 1995.

[6] H. Garavel. OPEN/CJESAR: An Open Software Architecture for Verification,
Simulation, and Testing. In B. Steffen, editor, TACAS'98, pages 68-84. LNCS
1384, Springer-Verlag, 1998.

[7] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall
Inc., 1991.

[8] ISO/IEC JTC1/SC21 WG7, ITU-T SG 10/Q.8. Framework: Formal Methods in
Conformance Te.ting. CD 13245-1, ITU-T Z.500. ISO- ITU-T, Geneve, 1996.

[9] Project Consortium Cote de Resyste. Conference Protocol Case Study. URL:
http://fmt.cs.utwente.nl/ConfCase.

[10] M. Schmitt, A. Ek, B. Koch, J. Grabowski, and D. Hogrefe. - AUTOLINK -

Putting SDL-based Test Generation into Practice. In A. Petrenko et al., editor,
IWTCS'98, pages 227-243. Kluwer Academic Publishers, 1998.

[11] R. Terpstra, L. Ferreira Pires, L. Heerink, and J. Tretmans. Testing theory in
practice: A simple experiment. In T. Kapus et al., editor, COST 247 Workshop
on Applied Formal Methods in System Design, pages 168-183. University of
Maribor, Slovenia, 1996.

[12] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software-Concepts and Tools, 17(3): 103-120, 1996.

[13] R.G. de Vries and J. Tretmans. On-the-Fly Conformance Testing using SPIN.

In G. Holzmann et al., editor, Fourth SPIN Workshop, ENST 98 S 002, pages

196 TESTING OF COMMUNICATING SYSTEMS

115-128. Ecole Nationale Superieure des Telecommunications, Paris, France,
November2 1998.

	12 FORMAL TEST AUTOMATION: A SIMPLE EXPERIMENT*
	1 INTRODUCTION
	2 AUTOMATED TESTING
	3 THECONFERENCEPROTOCOL
	4 TEST ARCHITECTURE
	5 TESTING ACTIVITIES
	6 EVALUATION AND CONCLUSIONS
	References

