
EXTENDING TINA TO SUPPORT
SERVICE CUSTOMIZATION

Linas Maknavicius1 , Gautier Koscielny2 and Simon Znatyl

lENST Bretagne, RSM opt.,

rue de la Chataigneraie, 35512 Cesson Sevigne, FRANCE

2Valoria Lab., Universite de Bretagne Sud

rue Yves Mainguy, 56000 Vannes, FRANCE

{ Linas.Maknavicius I Simon.znaty } @enst-bretagne.fr, Gautier.Koscielny@univ-ubs.fr

Abstract: In the telecommunication and multimedia service market which is foreseen
to greatly flourish in the coming years, an important issue will be the accommodation
of 'standard' services to the user's requirements and preferences, i.e., the capabilities of
customizing services. Research on this matter is still in its infancy. TINA provides basic
but insufficient perception of service customization. In this paper, we analyze the TINA
architecture in this sense and we strive to extend it by introducing several flexible models
with ascending degrees of customization. These range from a simple service options
offer and a tailored service instance creation to a total user participation in the service
behavior. An intermediate level consists of a dynamic user-driven customization based
on component groups and generic service types. We discuss the mechanisms for the
proposed customization levels as well as related issues.

Keywords: Telecommunication services, TINA, customization, group of distributed
components

1 INTRODUCTION

Today's telecommunications environment is changing dynamically: the market is
being liberalized, the industry is repositioning itself into alliances and towards new
partnership forms, and the actors segregate into distinct service providers, network
operators, retailers, service traders, service designers and other stakeholders.

The advanced services are emerging. In this context, service providers' major
concerns are the following: to contrive and introduce new services with the utmost
rapidity, to guarantee an appropriate service level through service management and to

103
L. Kutvonen et al. (eds.), Distributed Applications and Interoperable Systems II
© Springer Science+Business Media New York 1999

104 OPEN ARCHITECTURES

meet particular user requirements. One sort of user requirement is a desire to tailor
a service he/she is consuming. E.g., the user may wish to get a video in HDTV 16/9
format from a Video-on-Demand (VoD) server, instead of a default VHS-quality video.
Usage preferences, service parameters and features, functional aspects of a service,
specific attributes of the service, operating procedures, technological and institutional
constraints etc. - all these items present the basis for telecommunication service
customization. The customization is defined as a facility users are provided with to
modify a service in order to accommodate it to user's individual needs or to the needs
of a user group, or to their operating procedures.

The advanced and multimedia services present further potentialities to adjust them
according to their multiple options and functional features; on the other hand, the
advent of 'smart users', who actively participate in service provisioning, also fosters
service customization [9].

Various network and service architectures - Internet, IN, TINA, DANSE, UMTS -
offer several concepts for service customization [9]. For example, IN (Intelligent
Network) technology' implements a specific bloc which manipulates user service pa­
rameters. It is believed that IN will be gradually evolving to TINA, an architecture
for telecommunication services. Thus they both deserve to be surveyed. Whereas IN
customization, although confined to its service field, is rather widespread and proven,
TINA needs a closer consideration.

The main TINA customization principles are presented and evaluated in Section 2.
Then, Section 3 describes the proposed service customization levels and gives some
details on them. The levels differ in their degree of dynamics and reflect a grow­
ing user's involvement in a service. Section 4 discusses related research and open
questions, and closes the paper with conclusions.

2 TINA SERVICE CUSTOMIZATION

2.1 Architecture

TINA (Telecommunication Information Networking Architecture) [13, 14] is an open
software architecture for the creation, deployment, provisioning and management of
advanced telecommunication services in a global (up to world-wide) scale. It dis­
sociates service functions from the complexities of an underlying transport network
infrastructure. This dissociation allows the designers and developers to focus on ser­
vice specification alone. A TINA service is seen as a set of distributed object-oriented
software components interacting through their operational or stream interfaces. The
components distribution over different computing nodes is supported by the Distributed
Processing Environment, or DPE (basically, an extension of a CORBA platform to suit
telecommunication applications) which provides the execution medium for applica­
tions and actually ensures transparent interactions among service components.

The TINA Service Architecture (TSA) provides a framework for service devel­
opment by specifying operations among service related software components. The
main components are illustrated in Figure 1. A provider is represented by a service
component within the user's domain - the Provider Agent (PA). It is designed to set up

EXTENDING TINA TO SUPPORT SERVICE CUSTOMIZATION 105

a trusted relationship between the user and the provider, to convey all kind of user 's
requests and to receive invitations. Likewise, a user is represented within the provider's
domain - the User Agent (UA) which responsibilities are session creation, suspension,
resumption and deletion. When a request to create a new service session is issued,
the UA invokes an operation at the Service Factory (SF) component which instanti-

~---------....... '---""
\ / Other SerrJice provider domain
I I domains \

(end user, I
I I peerpr(7)ider./

I I I
I I

I

Figure 1. TINA service architecture, TSA (simplified).

ates specific service components: Service Session Manager and User Service Session
Manager (SSMlUSM). In fact, the SSM and USM decompose a service session into a
provider part and a user part: the former represents the core service behavior common
to all users, while the latter contains the information and service capabilities which are
local to a particular user. The User Application (UAP) component models a service
application in the user domain and enables him/her to make use of service capabilities.
Thus, the described service components hold well-defined roles and capabilities that
are felt to be applicable to the most telecommunication/multimedia services.

2.2 General requirements to support service customization

The necessity to customize services is underlined in the very objectives and require­
ments of the TSA [14]. A TINA service must be based on a flexible and granular
model and thus be customizable in order to satisfy specific requirements of various
customers. This is achieved by offering the subscribers and the end-users some direct
control in managing their services:
~ customization of pre-choices/pre-conditions on access to other stakeholders (we

call this type customization a priori);
~ customization of service usage enabling the users to tailor a layout and the functions

of service components in the provider domain (this is a genuine service customization);
~ customization of configuration of user-system related resources (this type may be

regarded as physical customization).

2.3 Types of customization and associated objects

To enable different participants to tailor services to their requirements, TINA advocates
three types of customization: by a service provider, by a subscriber, and by an end­
user. These actors accommodate service characteristics by modifying corresponding

106 OPEN ARCHITECTURES

service profiles (cf Figure 2). The profiles are the informational objects describing
customizing attributes for the given participant, i.e. identifying particular preferences
and requirements set by the participant. They model a desired service behavior. The
service profiles are in essence of three types - Provider Service Profile, Subscriber Ser­
vice Profile, End-User Service Profile -, and embody three distinct "vertical" aspects
(Figure 2): service settings, usage constraints, configuration requirements. These

Service Usage ConJiguraJion
settings constraints requirements

1. Se1l'ice service service Provider
Provider features interactions Service Pro6Je

group/individual
2. Subscriber customi:md ate!

constraints,
CPN Subscriber

use restrictions
aITangement Service Pro6Je

specific
3. End-user usage

terminal I~-~I preferences
NAPs

Figure 2. TINA constituents for customization and their meanings.

service profiles are taken into account when service is instantiated (a service session
is established) and by that mean affect service characteristics. The service profiles'
relationships with other informational objects are laid out in Figure 3. (for this, the
OMT notation is used). The three service profiles make up the Customization 1nfor-

1»)::1 object classes pertaining to customktztion

Figure 3. TINA service informational model with customizing objects.

mation object included in TINA Service. This latter object class also encompasses
the Service Description, an object giving a textual statement about the service, and
the Service Template, representing informational and behavioral characteristics of a
specific service type (instance name, id, required services, alternative service param­
eters) [14, IS]. The Subscriber Service Profile and the End-User Service Profile are
parts of more generic objects called Subscriber Profile and User Profile. They contain
all relevant information regarding a subscriber and user respectively, such as usage
contexts, active session descriptions and invitation handling policies.

EXTENDING TINA TO SUPPORT SERVICE CUSTOMIZATION 107

2.4 Assessment and current limits

TINA provides sound and generic basis for service customization. The lining up of the
customization by participants - service provider, subscriber, and user - is of particular
value. This approach enables each group of participants to bias service characteristics
accordingly to their preferences and implied constraints, by modifying corresponding
service profiles. Besides, considering the "Service settings" aspect throughout the
service profiles (cf. Figure 2), it appears that the provider-enforced service features
constituent is a superset of the subscriber-customized features constituent. This latter in
its turn is a superset of end-user individual features. Consequently, if only the "Service
settings" customization aspect is taken into account (i.e., there are no configuration
nor usage restrictions), a tailoring made by a provider restricts the customization
alternatives for the subscribers and subsequently for the end-users. Indeed a subscriber,
when modifying its Subscriber Service Profile, imposes or limits certain options for
its subordinate users.

On the other hand, the TINA customization approach is not flexible enough. The
main drawback is the rule stating that the modification in a service profile does not
affect to the service already instantiated: the new information in the profile is assumed
solely at the time of the next instantiation of the service. Therefore, if a participant aims
to substantially tailor a service he is perceiving, he ought to leave a current session
and to initiate an opening of a new one. E.g., consider a road traffic information
service: a truck-driver using this service in an audio-only form is informed of a highly
congestioned zone nearby; to avoid a tailback, he decides to deviate from his initial
itinerary. As he is aware of the possible difficulties in a new area because of a heavy
traffic there, he wishes to receive the information covering this new area in a graphical
form on a GPS terminal. He has no other solution as to stop the current service
session, to convey his wishes in order to update his service profile and to initiate a new,
modified service session. This is a hard inconvenience. Ergo, we categorize TINA
customization as ''piecemeal''.

Admittedly TINA introduces an interesting concept of dynamic customization, but
it is rudimentary. It is considered as being effective after the service instantiation
and achieved by modifying the so-called customizable data which is supposed to be
bundled directly into the service instance. Nonetheless, no details about the nature of
these data nor any guidelines for implementing the dynamic customization are given.

TINA misses computational model for customization, i.e. does not provide a service
instantiation procedure according to service profiles. It is only said that the profiles
are checked for modifications when instantiating service components. It is still not
clear how these profiles can influence a new service session in concrete terms. In
consequence, the customization aspects are not fully integrated into the whole service
architecture.

Moreover, the scope of the profiles is sometimes interpreted inconsistently, that is,
the profiles are also seen within the user lifecycle and subscription management model.

To summarize, TINA offers a promising and conceptual framework, but its object
structure is strict and too static to rapidly assume frequent changes in the service

108 OPEN ARCHITECTURES

environment and to satisfy the requirements for adaptability. the customization aspects,
even static, are not sufficiently detailed.

In the remainder of this paper, we attempt to surpass these limitations and disadvan­
tages by proposing a syncretic and ascending view for service customization including
several distinct levels. We adopt the concept of service profiles, but apply it for even
more powerful customization.

3 CUSTOMIZATION SUPPORT AND LEVELS

3.1 Enterprise viewpoint

The purpose of service customization is to ease, improve, and promote the access to and
the usage of a service by providing the means to adjust the service traits dynamically
and at low cost. To meet this objective, two communities are formed : a customizing
and a customizable system. To model interactions between these two communities,
five main roles are involved: service consumer, retailer, third-party service provider,
peer service provider, and content provider (an anonymous user, an identified user
and a subscriber are the possible stakeholders for the consumer role). A customizing
system must be awarded with the tools to change/update the used (subcontracted)
service features. A service portion supplied by another (peer or third party) service
provider has also to be tailorable. The customization process is governed and limited
by the service contract established between two roles.

3.2 Generic computational model

We clearly need an extensive structure and mechanisms to enable any type of service ac­
commodation. A proposed generic computational view is depicted in Figure 41• It ex­
tends the TSA component UA (User Agent) by appending supplementary components.

o InvitationHandler

AS Firewall

Figure 4. Customization computational model (simplified).

One of them, Invitation Handler, is intended to perform the appropriate actions when

1 "Standard" TSA components are outlined in grey.

EXTENDING TINA TO SUPPORT SERVICE CUSTOMIZATION 109

an invitation to join a session or a call for a scheduled session is received (1). These
actions will depend on the activated invitation handling policy which is included in the
User Profile informational object (recall Section 2.3). The possible policy values are
"acceptlrejectlforward/follow-up" invitation. Once a session call accepted, the compo­
nent ASFirewall plays a role of a "firewall" in an access session (2): it identifies, filters
and authenticates the users willing to access a service, as well as grants the access
rights to them. Then, a subscription process is managed by another specific compo­
nent called SubscrController (3) which additionnally calls the information manager
(IntMgr) in order to extract user subscription information and available service lists.
Finally, a service is customized (4) according to a specific user service profile; the
Customizer calls the appropriate service or service module factories (SFIMF) which
create tailor-made service components. The concept of module factory is explained in
the subsequent sections.

3.3 Distinct customization levels

In order to set a clear view of service customization, we choose the extent of user in­
volvement in service provisionning as a criterion to "measure" the customization level.
Therefore, we define several customization degrees with a growing user participation
when he/she configures or modifies the service:

level 1) at the time of service session instantiation, a user conveys his requirements
and preferences to a provider; this level is separated in two ways:

la) provider-oriented service offer when a provider presents a set of service
options or alternatives to a user;

lb) user-oriented service instantiation on demand when a service is made-to­
order according to the user profile;

level 2) during the service provisioning, and using the open management interfaces set
on the service components, so that user could activate specific service features;

level 3) active services that allows a user to inject his/her own added value into running
services, through scripts or mobile agents.

3.4 First level: personalized service instantiation

3.4.1 Option-based switchboard. A step surpassing the provision of standard
mass services is the offering of static service options to the user. So the user would
be able to "switch on" certain options, either the core features or the details of the
provided service. The suggested alternatives take the form of a pull-down menu or
"on-off' choices at the user interface.

For example, a user subscribes to a "Call Forwarding" telephone service, which
allows to program a number to which he/she wants the calls to be forwarded from
his/her personal phone. The user may choose between the following options: "forward
on no answer", when calls are forwarded after, say, 5 rings, and/or "forward on busy"

110 OPEN ARCHITECTURES

option for calls that come in when the line is busy. Additionally, the user can possibly
make a choice between forwarding to a nationaVinternational number.

Applied to the TINA context, the options positioning on the "switchboard" pertains
to multiple predefined types of SSMIUSM components, being instantiated according
to the selected option(s). Each component matches one option or a set of related
options. When instantiating, no subscriber/user service profiles would be examined.
The service characteristics would be merely extracted from the Service Template
informational object which is distinctive to the selected service type. In other words,
the explicit customization by the user/subscriber shall not take place in this case,
because the Service Template object alone (cf Figure 3) will be assumed. Therefore,
this customization scheme is provider-centric. At this level, the service construction is
rather simple as it depends only on the option choices (that is, predefined component
types).

3.4.2 Tailored service composition. The service options scheme may prove to be
restrictive for the service provider considering that there should be as many service
component implementations as possible options (or groups of congruous options).
Moreover, in order to create these components, the provider should keep a large
number of distinct Service Factories active. Their number is directly proportional to
the quantity of options. On the other hand, the apprehension, choice and positionning
of a large number of options may be troublesome or weary for the user.

That's why we introduce a new, transparent, "on the fly" service construction
technique. It is based on the User Profile usage: the profile determines not only global
service parameters and specific features, but also (indirectly) an appropriate service
logic.

A possibility to create a service by combining existing components is raised in [16].
For example, a user will be able to watch a VoD film in black and white with stereo
hi-fi sound simply by combining a B&W video object with a stereo hi-fi sound object
together into a new user-specific object.

We identify several stages for this type of construction. In the first place, an abstract
request, based on the user profile, is step by step transformed into an internal service
structure. Secondly, we identify the components, or modules, to form up a service.
They are supposed to be distributed, heterogeneous and communicating. Finally, these
modules will be assembled by "connecting" their interfaces. Following this method­
ology, the proposed steps to made-to-order a service are illustrated in Figure 5. The
user profile is mapped (1) to an internal arrangement consisting of a set of configurable
modules. Their dependencies are modeled by a graph or a tree, where the modules
of one layer can only interact with the modules from adjacent layers. These modules
are the elementary customization units. They are combined together afterwards, in
order to build a "conventional" service component. The modules have to be carefully
selected (2), in accordance with the information given in the user profile. The next step
is dedicated to the creation of the selected types of modules. We introduce a concept
of Module Factory (MF) whose role is to instantiate (3), initialize and activate the

EXTENDING TINA TO SUPPORT SERVICE CUSTOMIZATION III

(j)(mapping)

Internal
representation

Customization processing

Figure 5. Model to compose a tailored service "on the fly".

modules. Finally, they are bound together (4) to make up a whole service component
which is custom-designed and suites the given profile.

In order to specify the possible module dependencies, a directed dependency graph
is built. This configuration graph is subsequently used to generate all possible module
combinations. Here we adopt a hierarchically layered graph, although there are several
other approaches: slotted, class hierarchy based, object message oriented graphs [5].

Our service composition method is transparent to the user since it makes a translation
of the User Profile to the internal service structure. Other important advantage is that
it allows to reduce processing in the provider domain as measured by a number of
"factories" to be executed permanently. Indeed, a large number of customized services
is potentially obtained with a fixed number of modules by combining them. In normal
operation, a separate Service Factory (SF) would be needed for each such customized
service. In our case, a Module Factory (MF) is needed for each module type, and the
number of MFs is clearly lower than that of SFs. As a result, we gain in terms of
processing.

3.5 Second level: customization interfaces

Instead of customizing a service once and for all, a user may want to activate or
deactivate service properties during the session.

For instance, a groupware service like multimedia conferencing permits not only
a textual information but also audio, images, graphics and video media use along
communication channels. Each media corresponds to a particular feature of this service
and a user may choose between different media mixes (e.g., audio+video, chat+audio,
whiteboard+audio etc.) throughout the session. Each mix matches a specific facet of
the same service. It would be useful to group those components together and let the
users to manipulate these services through customization interfaces.

The concept of service group as proposed in [11] allows the encapsulation of a set of
distributed objects sharing common features, a common behavior and whose interfaces
may be disjoint. An immediate consequence of this model is to ensure the availability
of the common services provided. Nevertheless it differs from traditional object groups
whose main purpose is to provide fault-tolerance and load-sharing properties by passive
or active replication of services [4]. Contrarily to a group of replicas where each object

112 OPEN ARCHITECTURES

offers the same interface, a service group may offer mUltiple external interfaces because
of its heterogeneous contents. These interfaces reflect partially those offered by the
group members who joined the group. Note that the set of external interfaces may be
augmented by appending new components into the group.

The customizable service component group is based on the model described above.
A component belonging to such a service group will match one or several service
properties the user wants to enjoy during the session. Every property designates
a facet of the service. A facet is represented by an external interface and will be
activated dynamically. A set of properties (facets) composes a customizable service
(cl Figure 6). For example, several conferencing components with different properties
like chat facet, <4:2:2 format MPEG video+stereo audio> or <4:2:2 video+mono>
facet, and whiteboard facet will form the customizable conferencing service (e.g.,
facets 1 through 4 respectively in Figure 6, 2nd and 3rd being mutually exclusive).

activate / deactivate /
add / remove ••••••

customizatioD ilf

service ilf

Figure 6. Customized service group as a set of service facets.

A service group interface is configured through an additionnal customization inter­
face. This latter, made available to authorized users, enables them to adjust the service
dynamically. The customization interface provides operations to activate/deactivate
properties (i .e., to include/withdraw individual facets' interfaces to/from external ser­
vice interface), as well as to add, remove, replace components within a group.

Multiple components may provide the same service while having different types
definition. Generic service allow the substitution of a component by one of its variant
while keeping the same external service interface. This is achieved thanks to the
definition of a type conformance relation between similar services called the coercive
compatibility relation [6]. Type conformance is generally defined by subtyping, an in­
stance of inclusion polymorphism which specifies a substitution rule between types [2].
A type T must replace a type a in each context where a is expected. For instance,
interface subtyping relation as found in software architecture like CORBA2 and RM­
ODP is defined by interface extension, i.e., the addition of new operation signatures in
SUbtypes. Note that contrary to CORBA, RM-ODP operation interface subtyping rules
support parameter sUbtyping applying respectively the contravariance and covariance
principle on argument and result types of an operation in the subtype [1].

2In CORBA, subtyping is achieved through multiple interface inheritance whereas generally inheritance
doesn't imply subtyping.

EXTENDING TINA TO SUPPORT SERVICE CUSTOMIZATION 113

The coercive compatibility relation is more general than the subtyping relation.
It defines a mapping between a group interface and a set of different component
interfaces representing the same service. For each operation of an external interface,
there exists a coercion from this operation to the equivalent operation in component
interfaces. Note that the correspondence may be incomplete (e.g., the service operation
may have less or possibly more parameters than the facet operation). However,
contravariance and covariance rules are respected and the parameter types of a facet
operation corresponding to the parameter types of the external operation are generalized
whereas the result types are specialized. Hence, to the service consumer point of view,
the external interface remains the same even though a new component version is
included. As an example, a whiteboard service may itself contain several components
to draw curves. A user may replace a basic component previously active with a new
version enabling B-splines drawing.

The proposed model of service facets group extends TINA Service Group (SGP)
concept [14, 10] in that it allows a dynamic selection and activation of components at
any moment during the service session. Other two main features of SGP are preserved
in a facet group: it may span multiple DPEs, and is dependent on the prior installation
and initialization of the group constituents.

3.6 Third level: active services

The previous level may be perceived as having a drawback: a user must be aware of the
facets composing the service group, where facets are a pre-defined set of components.
To avoid this restriction, a much more powerful model may be applied. That is, the
active service model. It allows to dynamically extend or adapt a service functionality
by injecting a supplementary, custom-made piece of code (object, script, or agent) into
a service component at run-time. This approach ensures an optimum consideration of
user customization requirements and continuous, smooth and straightforward adapta­
tion of a service during the service session. The adaptation/extension capabilities are
almost unlimited.

The active service concept naturally draws on the recent programmable/active net­
work paradigm. The main advantage of these networks is the following: their nodes are
not only capable of passive data transfer, but are also enabled to perform computations
on the data, or to manage these data. The transferred data are used to make special
decisions. Applications and users customize the processes in the network (such pro­
cesses as routing, signaling, multicast, congestion control, firewalls etc.) by providing
their own methods. The usual network functionality is therefore augmented.

To extend active/programmable networks paradigm to a service level, a common
support is to be chosen, e.g. a Java virtual machine or any other, preferably platform­
independent, support shared both by the customizable environment (servers in the
provider domain) and the customizing system. This would allow the execution of the
portable code submitted by the user. This portable code can be implemented as:

• a script to be uploaded to the service component (USM in TINA) and interpreted
at the appropriate moment, or

114 OPEN ARCHITECTURES

• a nomadic module (e.g. mobile agent) which will be executed by the receiv­
ing component (in TINA, operational interfaces of TSA components are to be
extended as to take into account the submitted modules).

A somewhat similar concept, which surely fits the active service paradigm, is proposed
in [8]: a service is customized by intelligent agents sent to the server machines where
they are perceived as front-ends of plain services. Residing in the protected agent
domain, they provide a customized service interface to users, by using one or more
existing "base" services.

4 DISCUSSIONS

4.1 Related work

Our proposed mechanisms for service customization differ somehow from the software
adaptation method described in [7] which is a universal approach. This method makes
inter-object relationships more flexible through a high level programming. This kind
of metaprogramming allows instantiation of the abstract software to a particular graph
of associations among object classes. The suitability of the adaptive software method
to service components is to be reviewed.

Aster, a system for customization of a run-time environment [12], allows to build
adapted software buses automatically. This system thus may be applied as a way to
adapt the underlying infrastructure, i.e. the DPE (Distributed Processing Environment)
and the NCCE (Native Computing and Communication Environment) of TINA.

4.2 Open issues

As we have seen, the customization is mainly based on the user profile or another
representation of user requirements. Therefore, a customization made by/for one
user may affect other participants in the case of cooperative service. The possible
requirements interactions (conflicts) have to be managed.

Furthermore, a security problem arises, especially for the active services. Indeed,
mobile agents or script fragments may present a threat towards the provider's computing
environment. Likewise, customization interface of a service group is subject to security
checks. These security procedures are scheduled to be performed by ASFirewall
computational object (recall Section 3.2).

4.3 Conclusion

In this paper, we analyzed the means to customize telecommunication services and
developed an ascending customization approach. This approach is conveyed in dif­
ferent levels, each of them corresponding to a rising degree of user involvement in a
service. At the first level, a set of service options is offered at the provider-client in­
terface. The next, more elaborated stage is supported by a conjunction of configurable
elementary modules designed to form a custom-made service instance (these modules
are categorized hierarchically in order to satisfy their inner constraints and to obtain

EXTENDING TINA TO SUPPORT SERVICE CUSTOMIZATION 115

a correct service combination). The second customization level brings a possibility
of active user intervention: he/she is enabled to choose a needed version of a service,
using customization interfaces over a service facet group. Finally, the active service
paradigm is introduced and lets a user to deploy his own pieces of software as to
implement customized services.

In sum, our approach is based on several integrity levels allowing to choose a
desired involvement of the user in the service customization process. Our proposal
is fine-grained and flexible, as opposed to the static and piecemeal TINA approach.
Moreover, we specify enterprise and computational viewpoints for our customization
proposal.

Work is currently under way at ENST Bretagne to implement and demonstrate the
discussed customization concepts. The two identified customization levels - these of
service composition and customization interfaces - will be based on a TINA service
architecture prototype currently being developed over the VisiBroker CORBA platform
at our site. In addition, we consider the use of new scripting language [3] intended to
control CORBA objects (the service modules and the facets, in our case).

Acknowledgements

The authors would like to thank anonymous reviewers for points of clarification.
A part of the work described in this paper is partially supported by the Britanny General
Council and the European Union.

References

[1] CARDELLI, L. A Semantics of Multiple Inheritance. Springer Verlag, 1984, pp. 51-68.
[2] CARDELLI, L., AND WEGNER, P. On Understanding Types, Data Abstraction, and

Polymorphism. ACM Computing Surveys, Vol. 17, No.4, Dec. 1985,471-522.
[3] CorbaScript language. http://corbaweb.lifi.fr/CorbaScriptJ.

[4] GUERRAOUI, R., FELBER, P., GARBINATO, B., AND MAZOUNI, K. SystemSupport
for Object Groups. OOPSLA'98, Vancouver, Canada, Oct. 18-22, 1998.

[5] HILTUNEN, M. A. Configuration Management for Highly-Customizable Services. 4th
Int. Conference on Configurable Distributed Systems (ICCDS'98), Annapolis, USA, May
4-6, 1998.

[6] KOSCIELNY, G., AND SADOU, S. Type de service generique pour la reutilisation de
composants. Langages et Modetes a Objets (LMO'99), Villefranche-sur-Mer, France, Jan.
27-29, 1999.

[7] LIEBERHERR, K. J. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company, 1996.

[8] MAGEDANZ, T., ROTHERMEL, K., AND KRAUSE, S. Intelligent Agents: An Emerging
Technology for Next Generation Telecommunications? INFOCOM'96, San Francisco,
USA, Mar. 24-28, 1996.

[9] MAKNAVICIUS, L., KOSCIELNY, G., ZNATY, S. Customizing Telecommunication
Services: Patterns, Issues and Models. 6th International Conference on Intelligence in
Services and Networks (IS&N'99), Barcelona, Spain, Apr. 27-29, 1999.

116 OPEN ARCHITECTURES

[10] PARHAR, A., AND HANDEGARD, T. TINA Object Groups: Patterns in Chaos. TINA'96,
HeIdelberg, Germany, Sep. 3-5,1996.

[11] SADOU, S., AND KOSCIELNY, G. Competence Pool Abstraction and Dynamic Re-use.
ECOOP'97 Workshop Reader, Jyviiskylli, Finland, Jun. 1997, Lecture Notes in Computer
Science, No. 1357, pp. 221-255. Workshop #6: Models, Formalisms and Methods for
Distributed Object Oriented Computing.

[12] SARIDAKIS, T., BIDAN, C., AND ISSARNY, V. A programming System for the
Development of TINA Services. Joint International Conference on Open Distributed
Processing and Distributed Platforms (ICODP'97), Toronto, Canada, May 26-30,1997.

[13] TINA CONSORTIUM. Overall Concepts and Principles of TINA vI.D. Feb.1995.
[14] TINA CONSORTIUM. Service Architecture vS.D. Jun. 1997.
[15] TINA CONSORTIUM. Service Component Specification vI.D, Part B. Jan. 1998.
[16] ZAHARIADIS, T., ROSA, C., PELLEGRINATO, M., LUND, A. B., AND

STASSINOPOULOS, G. Interactive Multimedia Services to Residential Users. IEEE
Communications Magazine, Vol. 35, No.6, Jun. 1997.

Biographies

Linas Maknavicius holds a BSc degree from Vytautas Magnus University, Lithuania, a French
MSc degree from University of Rennes 1, and is preparing his PhD at ENST Bretagne (Grad­
uate School of Telecommunications Engineering), Rennes, France, in the telecommunication
services management field.

Gautier Koscielny is working toward the PhD degree at University of Bretagne-Sud, Vannes,
France. His research interests include object-oriented programming, software architectures and
distributed systems. His thesis topic is coordination patterns for distributed application.

Simon Znaty is a Professor, Hab. Dr. in the Networks and Multimedia Services departe­
ment of ENST Bretagne, Rennes, France. He obtained a PhD degree from ENST Paris, France,
in 1993. During 1993-94, he worked with the Network Architecture Laboratory at NTT, Japan,
and during 1994-96, he was a senior researcher with the Telecommunications Laboratory at
EPFL, Lausanne, Switzerland. His current research interests span telecommunication services
engineering, intelligent networks, mobile networking, services management, active networks
and services, and distributed computing.

