
SOVEREIGN SYSTEMS AND 
DYNAMIC FEDERATIONS 

Lea Kutvonen 

Department of Computer Science 

PBox 26 (Teollisuuskatu 23) 

FIN-00014 University of Helsinki, FINLAND 

Lea.Kutvonen@cs.HelsinkLFI 

Abstract: Modem information services require world-wide cooperation, and involve 
groups of autonomously administered computing systems, i.e., sovereign systems. Tra­
ditionally, system integration has been facilitated by forcing a common interface layer on 
each of the systems involved. However, autonomous administration causes asynchrony of 
service evolution and variation in common service behaviour in each system. In such an 
environment, a single middleware solution cannot be practically required to be the basis 
for globally integrated software systems. Instead, capabilities are required for dynamical 
establishment of federations across different middlewares, i.e., capabilities of negotiating 
on new cooperation relationships amongst independent systems. There is no call for 
new middleware solutions, but further exploitation of current middleware services could 
lead to added interoperability with less administrative effort. The essential feature for 
federation is systems' mutual reflection. This requirement is not too hard to achieve at 
practical level in systems that are based on the current emerging frameworks, such as 
OMG/CORBA and TINA. This paper discusses binding processes within federated sys­
tems in order to show how various middleware services together build a mutual reflection 
mechanism. 

Keywords: Open federated systems, RM-ODP, computational bindings 

1 INTRODUCTION 

Modem information services require world-wide cooperation. Areas of cooperation 
cover not only electronic commerce and EDI applications, but also, for example, 
computer supported cooperative work across companies, and even independent de-

77 
L. Kutvonen et al. (eds.), Distributed Applications and Interoperable Systems II
© Springer Science+Business Media New York 1999



78 OPEN ARCHITECTURES 

velopment of software components that are application-area specific and capable of 
federated cooperation. 

Traditionally, system integration has forced a common interface layer on each of 
the systems involved. However, autonomous administration causes asynchrony of 
service evolution and variation in common service behaviour in each system. In such 
an environment, a single middleware solution cannot be practically required to be the 
basis for globally integrated software systems. Instead, capabilities are required for 
dynamical establishment of federations across different middlewares, i.e., capabilities 
of negotiating on new cooperation relationships amongst independent systems. There 
is no call for new middleware solutions, but further exploitation of current middleware 
services could lead to added interoperability with less administrative effort. 

Federated systems are able to reflect on their own capabilities, and furthermore, 
to reflect on the capabilities of their potential cooperation partners. The reflection 
facilities include infrastructure functions for exchanging meta-information about their 
services, i.e., the same tools as single middleware architectures suggest. The emerging 
frameworks, such as OMG/CORBA [15] and TINA [19], answer these requirements 
to the extent of self-reflection, but not sufficiently at the level of mutual reflection. The 
open distributed processing reference model (ODP-RM) [3], supports the federation 
model further. 

Cooperation requires that the sovereign nature of the involved organisations and 
computing systems is acknowledged appropriately. Aspects of autonomy include 

• independence of service evolution. The evolution independence covers not 
only the service implementations, but also service interfaces. Services can be 
personalised for example for varying user groups. (Personalisation pattern is 
familiar from the context of micro-kernels [20].) 

• autonomy on decisions on cooperation partners. Service based federations (in 
contrast to node based) require standardised contract schemata. Work on such 
schemata has already been initiated, for example, within the business object 
modelling special interest group (BOMSIG) ofOMG [17]. 

• independence of administration. Mostly, the internal operational policies are 
not relevant for cooperation. Only some behavioural and quantitative aspects 
of the exploited services need to be agreed on. Such aspects should not be 
administrative decisions, but subject to negotiation between the service user and 
the service provider [9]. 

• sovereignty of choice in languages and specification techniques. Similarly as 
the organisations are free to choose the methods for their service provision, they 
freely choose methods for self-reflection. The freedom is limited by the need 
of mutual reflection, but the common methods should support evolution without 
forcing the involved systems to synchronise their evolution steps. 

Theoretically, a general algorithm that would always resolve all potential for coop­
eration, is not possible. The aspects of negotiation vary too widely: 

• the languages for expressing service interfaces or behaviours are not known, 



SOVEREIGN SYSTEMS AND DYNAMIC FEDERATIONS 79 

• the level of detail for service interface or behaviour expressions is not fixed, 

• the naming systems of the negotiators are not necessarily comparable, 

• there is no single set of underlying services that could be trusted as the platform 
on which the partners will be executing, and finally, 

• the decisions on cooperation have to be done while the system users are waiting, 
which may mean very hard real-time problems. 

In practice, a general algorithm is not needed. In order to achieve additional system 
support for interoperability, it is sufficient to restrict to some heuristic solutions, and 
to some areas of negotiation with common interest. The negotiation areas are chosen 
by market forces and subsequent de-jure and de-facto standardisation. Such areas 
are, for example, categories of services available at electronic markets. Defining a 
category would naturally lead to an agreed level of abstraction for describing the 
related behaviour patterns, and would also restrict the set of applicable languages. 

Dynamic federations and mutual reflection is supported by middleware services: 

• federated trading services (dynamic repository of service providers), 

• federated type repository services (dynamic repository of service types, federa­
tion contract schemata, and mappings to local technology solutions), and 

• federated binding framework. 

Currently, middleware services promise federation. Trading services [2, 16] already 
have the necessary support for federation. Whether a trader installation actually 
supports federation or interworking model across homogenisising middleware, depends 
on how the trader is supported by other middleware services [10]. However, the current 
type repository service [4] supports the federation model adequately only if used 
together with the open binding framework [10]. Thus, the corresponding meta-object 
facility (MOF) [14] is not adequate for federation purposes, although it is rigorous 
with all other interworking models. The current open binding framework [5] allows 
federation model to be applied, although it does not directly specify the details [10]. 

In the following, the system requirements induced by federation establishment are 
discussed. The exploitation of federation model requires that each computing system 
includes a binding factory capable of federated operation; that each organisation has 
a private trading service; and that organisations are capable of mapping together their 
contract semantics. Also, the status of CORBA and TINA architectures is discussed. 

2 OVERVIEW OF THE FEDERATED BINDING PROCESS 

This chapter studies the special characteristics of federated systems, and reviews the 
concepts, processes and supporting repositories necessary for federated bindings. 

2.1 Federated object model and concept of binding 

Only application level service packages, like teleconferencing services or bank inter­
faces, can reasonably be expected to interoperate in a federated environment. Entities 



80 OPEN ARCHITECTURES 

like UNIX processes or Java objects are excluded from the federation discussion, be­
cause the mechanism is far too heavy for such detailed integration. Objects within 
the scope of discussion have the same granularity as those called megarnodules else­
where [21]. 

Federations between sovereign systems do not form a single static network of nodes. 
Instead, the application objects are able to join in various communities at run-time. 
Instead of a server interface, the architecture focuses on the client view to the service: 
the client object is interested in having a functionality performed and the service can be 
eventually performed by some group of objects. The scope of the federation network 
of application services is restricted by the interworking capabilities of the platform 
services. The relationship between the service liaisons and infrastructure liaisons is 
separately determined at each sovereign system (Figure 1). A computational object 
corresponds to an application level object; an engineering object corresponds to an 
application object together with the supporting platform object. 

global 

infrastructure 

Figure 1. Global system view of federated system. 

The appropriate concepts in object-oriented programming environments are the 
application level service types and the binding types. Service type is defined to capture 
the expected interface type, and other information about the functionality, including 
quality of service aspects. The service type defines a structure for those contracts that 
are established between cooperating objects. A binding type [5, 1, 8] is a computational 
abstraction that defines the communication partners and the communication rules 
for a group of cooperating objects. The supporting services of the communication 
relationship must use the binding type as a specification of the necessary channels 
between the involved objects. Also, the end-points of the channels must conform to 
the interfaces of the involved application objects. The concepts of service type and 
binding type must be supported by infrastructure functions that 

• map service types into client-role interface structures and associated QoS con­
tract structures, 

• map binding types into appropriate channel configurations, and 

• offer facilities for dynamic management of the channel. 

A binding facilitates signalling between computational object interfaces. In fed­
erated environments, result of the binding process needs to be a binding liaison, that 



SOVEREIGN SYSTEMS AND DYNAMIC FEDERATIONS 81 

ensures that a communication channel can be created between the communicating ob­
jects [5]. The time at which the involved software components are configured and the 
resources reserved can be optimised based on the actual communication frequencies. 

2.2 Binding process 

For an application programmer, only the application interface aspects should be visible. 
The infrastructure layer services enhance these aspects into a full engineering view. 

For the application programmer the objects and the binding process can be seen 
as follows (see Figure 2). First, objects are composed of a set of interface objects 
and private state information. An object can be requested to modify the encapsulated 
information by sending it a signal that matches an interface signature. Second, for each 
server object, the signature and behaviour associated with an interface are described 
by object property values. The property values can be stored into a trader, as service 
offers (potential contracts). In the trader, each service offer is structured according 
to an abstract service type definition, that specifies a contract schema. At run-time, 
when a client object presents a service request (potential contract), the infrastructure 
requests the trading service for matching service offers. When a suitable set of offers 
is found, a binding liaison is formed. As a result of a successful binding process, each 
application object can be expected to have a communication channel to its peers. 

binds 

E Channel: transports messages or flows 

Infrastructure 

Figure 2. Object structure and application level view to binding. 

Viewed from the infrastructure, the federated binding process is more complicated, 
as shown in Figure 3. The negotiation task is split into two parts, service liaisons 
and infrastructure liaisons (Figure 1). A service liaison captures the application inter­
face involved, while an infrastructure liaison captures the facilities of the platforms. 
Consequently, a binding liaison between application objects consists of the applica-



82 OPEN ARCHITECTURES 

tion specific part and the infrastructure specific part. The first guarantees application 
interoperability, the latter interworking properties of the platform. 

The infrastructure liaison naturally restricts the possibilities of application level 
liaisons. Therefore, the phases of the federated binding process are as follows (the 
concepts used in this summary are discussed later in more detail): 

Step 1. For the application level potential contacts, find the platform level potential 
contracts. The application level potential contracts are created by application program­
mers and eventually stored into traders. For each application, also requirements for 
platform services are stored (e.g., as references to platform offers), and therefore the 
platform level potential contracts can also be retrieved from a trader. For each possible 
platform offer, a joint potential contract is formed. 

Step 2. Use the trading function to match together the joint potential contracts of 
each involved system. The client system directs a trading request to the other involved 
systems, in order to find the required application service, with the limitation that also 
the supporting platform service is similar to that of the client's. Quality of service 
values, for example, are not necessarily considered at this stage. 

Step 3. Choose one of the matching pairs. The selection heuristics is dependent on 
the administrative choices of the initiating system: it may be random, cost dependent, 
analyse quality of service guarantees, etc. As the decision may be time-critical and the 
process essentially automatic, there is no need for an elaborated negotiation protocol 
here, but the decision can be localised. Although the selection of QoS attribute values 
is an interesting aspect, there is not much that can be said in general: each potential 
contract captures some QoS offers and QoS requirements, from which a commonly 
accepted subset of values can be collected into a QoS agreement [6]. The details of 
the matching process are specific for the service type in question. 

Step 4. Create a binding contract and fill it in with attribute values acceptable to all 
binding liaison members (both application and platform layer aspects). 

Step 5. Deliver the binding contract to all involved systems and create a channel 
controller to manage it. Transform the contract information into the locally understood 
formats using the type repository services for the mappings (see Section 2.4.2). 

Step 6. Instantiate the channel using the binding contract information. 

,-------------, (------'--------------r\ 
I application : : : 
: programmer I potential contract I I 

I view : of application object 
,------- ------------

: potential contract 
of platform obJed 

potential contract 
ola service 

Infrastructure view 

"senoia liaison" 
part of the contract 

"infrastructure liaison" 
part 01 the contract 

binding contract 

Figure 3. Infrastructure view to the federated binding process. 



SOVEREIGN SYSTEMS AND DYNAMIC FEDERATIONS 83 

2.3 Concepts for binding representation and management 

The essential concept, the result of the federated binding process, is a binding liaison. 
It can technically have two states: (i) a binding state, that is a state where no com­
munication resources are reserved but a binding contract has been established, and (ii) 
a channel state, that is a state where resources are in use and managed by a channel 
controller, which in turn is governed by the binding contract. The concept of interface 
reference is used for addressing interface instances; the concept partially overlaps with 
binding contract of an established channel. 

2.3.1 Channel. A channel is a configuration of intermediate objects (traditional 
components, like stubs for marshaling, binder objects for controlling the channel 
connectivity, and protocol objects for data transfer) that are able to route signals 
(operation invocations, terminations, flow signals) from one application object to 
another. The channel components can be selected at run-time, instead of compilation 
time as in many RPC implementations. Also, several stubs can be active concurrently, 
using the same protocol link underneath. Separate concurrent protocols for channel 
components are, for instance, group management [18], and QoS management [22]. In 
a general case, the stubs are not self-sufficient, but require services from management 
functions like authentication services [7]. 

A channel does not necessarily form a static circuit through the network; a channel 
can be based on connectionless protocols. 

A channel reaches from one sovereign system to another, becoming thus logically 
partitioned into independent channel sections. Each channel section is administered 
by a single sovereign system. 

2.3.2 Binding liaison. The binding liaison is realised by a set of independent 
channel sections and a channel controller. The channel controller carries the binding 
liaison information even when the channel sections are not present. The number of 
channel sections involved and the interface types supported at each channel end-point 
is dependent on the binding type. 

The binding liaison information is captured to a binding contract object that is 
replicated for each of the sovereign systems involved. The binding contract object 
is encapsulated into the channel controller and can therefore be managed through the 
channel controller interfaces. 

The interfaces to be interconnected can be either identified by the binding initiator 
or searched during the binding process based on their properties. Thus, only the 
computational interfaces are bound together, instead of creating a channel between the 
initial locations of the interfaces. 

2.3.3 Channel controller. The role of the channel controller [10] is dependent on 
the binding type selected by the object requesting to be bound to other objects. For 
instance, the channel controller may monitor the membership of the binding liaison 
and act as a leader in failure detection protocols. 



84 OPEN ARCHITECTURES 

Similarly, the actual channel structure varies depending on which distribution trans­
parencies are selected by the user, and which communication protocols are in use. 
The actual channel structure varies also depending on the platform architecture and 
administrative rules within the systems that administer channel sections. 

A channel controller is a direct client to all of the channel component's management 
interfaces, and therefore it offers a combined control interface to all of them. The 
channel controller has a specific object at each domain, and those objects may cooperate 
in order to offer a joint binding liaison management service. 

The use of a channel controller even allows the channel configuration and parameters 
to be modified during the service liaison duration [10]. Changes can involve, for 
example, multi-cast group members or timeout values when a fixed network line is 
switched to a mobile network connection. Changes can also involve QoS aspects: any 
of the bound objects may instruct the channel controller to change a QoS attribute 
value to something valid within the QoS agreement between them. 

In traditional systems, the functionality of channel controllers is often embedded to 
applications, which again makes the model unsuitable for federation, as all management 
actions would violate the immunity of sovereign systems. 

2.3.4 Binding contract. The binding contract information is replicated to each 
of the object interfaces involved in the liaison. Because the interfaces can reside at 
separate systems, the data representing the contract information may have different 
local formats and coding. Each object can use the local copy of the binding contract 
as policy information or parameters to its internal activities. This mechanism can be 
used to provisioning of the binding contract as part of the object behaviour (see [13] 
for an example). 

The binding contract collects together information required by all binding related 
functionalities (the sufficiency of the description techniques discussed in [9, 10]): 

• a service type identifier (for each type system involved), 

• a binding type identifier (for each type system involved), 

• service type specific QoS agreements as name-value pairs, 

• names for binding type specific failure detection and recovery protocols, failure 
defined as not being able to meet the QoS agreement, 

• name for a remuneration protocol, 

• technical descriptions (IDL or other language, also names or identifiers can be 
used) for interface signature expected by the client (can be differently selected 
at each sovereign system), 

• name of a communication protocol, 

• channel type identifier (for each type system involved), and 

• interface reference for the channel controller at each sovereign system. 

Figure 4 illustrates how a binding contract can be realized. The binding con­
tract structure includes both the service and infrastructure liaison related aspects, and 
agreements related to the maintenance of the binding contract itself. 



SOVEREIGN SYSTEMS AND DYNAMIC FEDERATIONS 85 

protocol for wntract value changes protocol for contract value changes I I 

I 

______________________ ~i~~n_g~o_n~I'!.c~ _____________________ : 

implementing 
binding contract 
as a distributed 
object 

Figure 4. Example of federating a binding contract. 

2.3.5 Interface references. According to the ODP reference model an interface 
reference is a structured identifier for an interface. An interface reference is created 
together with the interface and used during channel section instantiation for accessing 
the interfaces [5]. 

This definition resembles the ones for potential contracts and binding contracts. 
Indeed, the concepts overlap. However, in systems like CORBA, the interface refer­
ences capture only the platform level aspects of the binding contract, leaving out the 
aspects related only to the application layer. In addition, the contract negotiation is not 
a run-time activity, but the contract is implicit and static. Therefore, problems arise, 
for example, when quality of service aspects between application interfaces need to be 
captured. In TINA model, the binding contract information appears partially separated 
from interface references, but only as QoS contracts. 

2.4 Concepts for binding factories 

This section studies the concepts required for binding establishment by federated 
binding factories. The federated process of independent factories create a set of 
cooperating channel sections, based on the type and template descriptions stored into 
type repositories. 

2.4.1 Channel instantiation. Each sovereign system needs an independent bind­
ing factory for instantiating sections of communication channels defined to be located 
at their domain [9, 5]. The channel sections are instantiated based on channel tem­
plates that specify the required configuration of stubs, binders, protocol objects, and 
interceptors. The required configuration may be different at each platform or at each 
channel administration domain. For local bindings within a (single administration) 
system, optimised channel templates can be used. 

Although the channel sections are instantiated independently from each other, they 
must work together. Therefore, binding contracts must use shared concepts for ex­
pressing the required interfaces and functionality of the channel end-points. 

In the binding contract, the concept of channel type is used. Channel type de­
notes what is the expected channel functionality (distribution transparency and QoS 
requirements, security support) and required behaviour in case of channel failures. 



86 OPEN ARCHITECTURES 

In some cases, the application federation can be retained while the channel is totally 
reconstructed. During channel creation, each factory receives a copy of the binding 
contract and tailors it according to the local platform requirements. 

2.4.2 Type repository contents. The concepts required by binding factories are 
mainly supported by the type repository function. The concepts of binding type, 
channel type, channel template and channel controller template need to be represented 
as target concepts in the type repository system [4]. These concepts are illustrated in 
Figure 5 which also denotes the relationships between the concepts. The illustration 
shows two type domains, e. g. sovereign systems. 

In each system, a set of binding types is known and offered for programmers. The 
binding types that are expected to support federations must be known at other systems 
as well (not necessarily with the same name). 

For each binding type, a set of channel types can be used. The channel types 
can differ by the support they offer, for example, in terms of selective distribution 
transparencies (migration transparency, transaction transparency, etc). Also the chan­
nel types used in federated environments must be recognisable at multiple systems. 
However, differences for example in data representation techniques are allowed and 
transformation information is captured by references to suitable interceptors. 

Finally, for each channel type a set of channel templates and channel controller 
templates are supported. The channel templates selected for a federated binding 
should fulfil two requirements: 

• The supported application object should be offered the service view that was 
denoted in the binding type. The service view covers logically the service be­
haviour and QoS aspects, and technically the binding object interface signature. 

• The protocol objects that support the data transfer between the federating systems 
should be similar. Also the channel controllers have a predefined channel with 
the same requirement. 

2.5 Summary 

In federated environments, interoperation capabilities are often explored and enabled 
as part of the interface binding process. A client may request a named service from its 
environment, i.e. a behaviour pattern, instead of addressing a server object to perform 
an operation. For binding purposes, the origin of the service providing object is not 
interesting, only the object type. Therefore, the object can either be selected based on 
a specification of required behaviour and QoS aspects, or instantiated from a system 
specific template even as late as at service request time. The concepts available from 
the type repository support both the matching of offered and requested service types, 
and the subsequent mapping into templates for instantiation. 

In a federated environment, it is essential that the result of the binding process has 
two abstraction levels; a specification of the required communication aspects and an 
implementation of that specification. The control of the binding can thus be managed 
through the specification level, which can be understood by all federating parties. The 



SOVEREIGN SYSTEMS AND DYNAMIC FEDERATIONS 87 

TYPE 

BINDING TYPE SYSTEM BINDING TYPE 

set of roles and 

I 
BOUNDARY set of roles and 

I cobebavlour type cobehavlour type 

I service type for "dlent" I ~ transfonnation I service type for "tllen." I 

~ ~ 
CIIANNEL TYPE CIIANNEL TYPE 

I distribution transparem:y I I distribution transparency I 
I QoSattributes J '--../ I QoS attributes I 
I security attributes I interuptor I security attributes I 

infonnation 

~ 6 J 6 
CIIANNEL TEMPLATE CIIANNEL TEMPLATE 

CIIANNEL I binder object templates I CIIANNEL 
CONTROLLER ! I binder object templates I 

CONTROLLER 
TEMPLATE I stub object templates I i t stub object templates I TEMPLATE I protocol object templates protoml obJed templates I 

Lelfnd: D ~~:::atiOD -- identity -<> Is supported by, 
has one or more repnsentatives 

Figure 5. View of the federated type system. 

indirect control of the implementation level is then delegated to each system involved. 
The concepts of a distributed channel controller and a distributed binding contract 
support this pattern. 

Separation of types and templates - and correspondingly, binding specification and 
implementation - originate from the sovereign nature of the federating systems. As 
each system is free to choose technological solutions, the object templates and channel 
implementations differ. However, these implementations have a common conceptual 
background, which is captured by the types and binding specifications. 

The fundamentals of the federated system model can be found by studying how the 
two abstraction levels interlock: The type repository carries information on abstract 
types and concrete templates, and furthermore, on the relationships between types 
and templates. The binding contracts capture information both in terms of types 
and templates. This information is then used and manipulated by distributed channel 
controllers. 

In current systems, the binding state information is often held by the application 
objects themselves. This effectively excludes federative control of bindings, because 
no direct management operations are allowed across the sovereign system boundary. 
However, the solution optimises performance, in a single protocol environment. 

3 DISCUSSION 

The federation model presents new requirement for the middleware architectures. 
Moreover, it presents requirements for the world-wide organisation of the cooperation 
between traders, type repositories and names servers. 



88 OPEN ARCHITECTURES 

The basic concepts for the federated binding process discussed in Section 2 follows 
the lines of DIS 147531 X.930 Interface references and binding. However, even this ISO 
standard does not specify federated binding factories, channels and binding liaisons 
in detail, it only outlines that such special circumstances exists and points out the 
locations, at which related information can be stored. The standard makes a mapping 
to eORBA nop and shows how the general binding framework is implementable. 
Naturally, the interworking facilities are restricted to those understandable for nop 
protocol that does not support group communication, streams, QoS monitoring or 
negotiation, etc. Moreover, the nop protocol does not allow any inter-ORB reflection 
to take place, but instead, forces a single unit capable for limited self-reflection. 

In comparison of the eORBA and TINA models with federated binding mechanism, 
major differences can be found [10, 11]. First, in the eORBA or TINA architectures 
client-role interfaces are not explicitly presented. Both in the eORBA and TINA 
models, binding contract information is present in some extent, but only associated with 
the server side, thus implicating that only a shared controller for the communicating 
partners exists. Therefore, there are no facilities for noting discrepancy between client 
and server views of the shared interface. The client and server role interfaces should 
be separated from each other and the client requirements emphasised. 

Second, by definition, the eORBA platforms can interoperate only with other 
eORBA systems, i.e., only the ORB interfaces and nop protocols are accepted, 
although these may be achieved by adding a bridge over, for example, a DeE system. 
As the distributed computing platform of TINA is directly an ORB, this applies to 
TINA model as well. The federative model relaxes this requirement. 

Third, eORBA specification acknowledge interface substitutability (suitability for 
being bound together) to be based only on type inheritance, not on comparison of 
types. This is basically due to not having separation between the concepts of type (ex­
ternally visible properties) and templates (necessary for private instantiation process). 
Separation of those concepts would allow sovereignty of template systems that are 
dependent on the selected platform architecture. Meanwhile, the types could be used 
as a mapping tool between the various template systems. The concepts of template 
and type should be separated and domain based type repositories adopted. In addition, 
sub-typing concepts should be based also on other mechanisms besides inheritance. 

In the federation of, for example, type repositories and binding contracts, the major 
problem is how to compare expressions of behaviour, quality of service attribute 
values, protocol specifications, etc. Section 2 suggested the use of identifiers, names 
and expressions in freely selected languages. This is based on the joint offerings of 
type system federation techniques and federated naming systems, as described below. 

For the federated system model, the relationships between various type expressions 
or type names should be stored into the type repositories. That provides connectivity 
with reasonable time scale. Heuristics and systematic analysis on type corresponden­
cies can be run as separate processes, thus not delaying the federated binding process 
at application run-time. It also allows entering human decisions without algorithmic 
reasoning. The current eORBA model does not support interceptor information nor 



SOVEREIGN SYSTEMS AND DYNAMIC FEDERATIONS 89 

name transformations between type repositories; the MOF follows an interworking 
model instead of a federation model [10]. 

The importance of integrating name systems of sovereign computing systems varies 
depending on the kind of name system used. In addressing systems, a set of world­
wide systems is necessary (e.g., IP addresses). The systems must be joined together 
through a gateway system that also routes the communication traffic to the network 
via different protocols. In identification systems (e.g., interface identifiers), the need 
is similar. However, the scoping rule is not just technical but also organisational, 
administrative. Still, integration requires that the name spaces are joint. There is no 
theoretical reason for this, instead a practical reason: current distributed platforms 
already include such naming services. In systems, where plainly ideal concepts are 
named (e.g., type systems including behaviour names), other mechanisms can be used. 
The naming domains are rather large and extra overhead is created only when a domain 
boundary is crossed. There has not yet been a practical integration step for these names, 
so the naming systems are very different. Integrating existing systems to a single name 
space would be impractical and would lead to non-evolving system design. 

4 CONCLUSION 

This paper presents a current view to interoperability and federation based on work 
in ISO and other consortia. The approach differs from earlier attempts to global 
consensus. Instead of forcing a shared control structure, the model trusts on mappings 
between similar concepts in separate systems. Each mapping can be created either 
because of a theoretical equality or because of a practically sufficient resemblance. 
The benefit of the approach is that interoperability can be achieved while the systems 
take their time to evolve and congregate. 

References 

[1] BERRY, A., AND RAYMOND, K. TheA1¥' Architecture Model. The Thirdlntemational 
Conference on Open Distributed Processing - Experiences with Distributed Environments. 
Brisbane, Australia, 1995. Chapman & Hall, pp. 55 - 66. 

[2] ISO/IEC IS13235. Information Technology - Open Systems Interconnection, Data 
Management and Open Distributed Processing. Reference Model of Open Distributed 
Processing. ODP Trading function, 1997. 

[3] ISO/IEC IS10746. Information Technology - Open Systems Interconnection, Data 
Management and Open Distributed Processing. Reference Model of Open Distributed 
Processing, 1996. 

[4] ISO/IEC CD14746. Information Technology - Open Systems Interconnection, Data 
Management and Open Distributed Processing. Reference Model of Open Distributed 
Processing. ODP Type repository function, Jan. 1998. 

[5] ISO/IEC DIS14753. Information Technology - Open Systems Interconnection, Data 
Management and Open Distributed Processing - ODP Interface References and Binding, 
Sept. 1998. 

[6] ISO /IEC FCD 14769. Information Technology - Open Systems Interconnection, Data 
Management and Open Distributed Processing - Quality of service in ODP, Jan. 1998. 



90 OPEN ARCHITECTURES 

[7] KITSON, B. Intercessory Objects within Channels. The Third International Conference 
on Open Distributed Processing - Experiences with Distributed Environments. Brisbane, 
Australia, 1995. Chapman & Hall, pp. 233 - 244. 

[8] KONG, Q., AND BERRY, A. A General Resource Discovery System for Open Dis­
tributed Processing. The Third International Conference on Open Distributed Process­
ing - Experiences with Distributed Environments. Brisbane, Australia, 1995. Chapman & 
Hall, pp. 79 - 90. 

[9] KUTVONEN, L. Management of Application Federations. InternationalIFIP Working 
Conference on Distributed Applications and Interoperable Systems (DAIS'97). Cottbus, 
Germany, 1997. Chapman & Hall, pp. 33 -46. 

[10] KUTVONEN, L. Trading services in Open Distributed Environments. Department of 
Computer Science, University of Helsinki, 1998. PhD thesis. A-1998-2. 

[11] KUTVONEN, L. Why CORBA systems cannot federate? To appear in Distributed Systems 
Engineering Journal special issue on OMAlODP Workshop (Cambridge, UK, Nov. 1997). 

[12] KUTVONEN, L. Supporting Global Electronic Commerce with ODP Tools. International 
IFlP Working Conference on Trends in Electronic Commerce (TREC'98). Hamburg, Ger­
many, 1998. Dpunkt Verlag, pp. 43 - 56. 

[13] MEYER, B., AND POPIEN, C. Flexible management of ANSAware applications. The 
Third International Conference on Open Distributed Processing - Experiences with Dis­
tributed Environments. Brisbane, Australia, 1995. Chapman & Hall, pp. 271- 282. 

[14] OBJECT MANAGEMENT GROUP. Common Facilities RFP-5: Meta-Object Facility, 
1997. OMG TC Document cf/96-05-02. 

[15] OBJECT MANAGEMENT GROUP AND X/OPEN. The Common Object Request Broker: 
Architecture and Specification, May 1996. OMG Document No. 91.12.1. (Revision 2.1.). 

[16] OBJECT MANAGEMENT GROUP AND X/OPEN. The OMG Trader Object Service, 
May 1996. OMG Document orbos/96-05-06. 

[17] OMG OMG Business Application Architecture, March 1995. 
[18] OSKIEWICZ, E., AND EDWARDS, N. A Model for Interface Groups. Tech. Rep. 

APM.1002.01, APM, May 1994. 
[19] TELECOMMUNICATIONS INFORMATION NETWORKING ARCHITECTURE CONSOR­

TIUM (TINA-C). Requirements upon TlNA-C architecture, Feb. 1995. 
[20] LEPREAU, J., HIBLER, M., FORD, B., AND LAW, J. In-kernel servers on Mach 

3.0: Implementation and performance. Third USENIX Mach Symposium, USA, 1993, 
pp.39-55. 

[21] WIEDERHOLD, G., WEGNER, P., AND CERI, S. Towards Megaprogramming. Com­
munications of the ACM 33,11 (Nov. 1992), pp. 89 - 99. 

[22] VOGEL, A., KERHERVE, B., VON BOCHMANN, G., AND GECSEI, J. Distributed 
Multimedia Application and Quality of Service - A Survey. IEEE Multimedia 2, 2 
(Summer 1995), pp. 10 -19. 

Biography 

Lea Kutvonen received her Ph.D. degree in Computer Science from University of Helsinki. 
She joined the permanent personnel of the Department of Computer Science in 1990; currently 
carries resposibilities in administration, teaching and research. Her interests include middleware 
architectures, ODP-RM, CORBA, and object systems. She is the current editor of DIS 14753 1 

X.930. Member of Finnish Society of Computer Science, IEEE, and ACM. 


