
PROGRAMMING LANGUAGE
INTEROPERABILITY IN DISTRIBUTED

COMPUTING ENVIRONMENTS
H.-Arno Jacobsen

Institute of Information Systems

Humboldt University, Berlin

Spandauerstr. 1

0-10178 Berlin

jacobsen@wiwi.hu-berlin.de

Abstract: Distributed computing environments, such as ANSAware, CORBA, DCOM,
and DCE achieve software component interoperability through specifying all public
component interfaces in a common interface definition language. Programming language
interoperability is achieved by mapping these interface specifications to the programming
language of choice. The language mapping defines the representation of an a priori
agreed upon set of data types in the target programming language. The developer is
restricted to this convention. This is, however, just the first step in achieving programming
language interoperability. By focusing on the CORBA standard we illustrate this mapping
procedure. We develop and thoroughly analyze several design schemas for implementing
cross-language method invocation with CORBA. From this discussion it will become
clear that the current standard lacks support for user extensible programming language
interoperability. The CORBA standard does not allow to efficiently and effectively
interface arbitrary programming languages to CORBA rniddleware. Point-solutions are
possible, however, portable implementations of language mappings are not. We propose
an addition to the current standard which would alleviate this problem and provide
sufficient interfaces for other ORB extensions, such as request monitoring, debugging
hooks, and costum marshalling, among others.

Keywords: Programming language interoperability, language mappings, IDL-to­
Sather language mapping, rniddleware, distributed computing infrastructure, CORBA

287
L. Kutvonen et al. (eds.), Distributed Applications and Interoperable Systems II
© Springer Science+Business Media New York 1999

288 LANGUAGE INTEROPERABILITY

1 INTRODUCTION

Several distributed computing infrastructures have come to age over the past few
years. Examples include ANSA [1],DCE [13], OLEIC OM and DCOM [3], TINA [16],
CORBA [11],lavaRMI, andlavaBeans [4], as well as research prototypes, e.g., ILU [9]
and Hector [2]. The key objective of these infrastructures is to leverage the heterogene­
ity inherent to large distributed systems and to provide a middleware insulating the
distributed application from various details of the underlying computational resources.

With implementation techniques, programming languages, and programming pa­
radigms steadily evolving, on the one hand, and the need to implement different
components of the distributed application with the language and paradigm best suited
for the task, on the other hand, a problem of programming language and paradigm
interoperability emerges.

The integration of legacy code into new applications often entails similar interop­
erability issues, especially if the legacy code is written in a language differing from
the current development language, or if the legacy code is not even fully available
as source. Language interoperability becomes also important when trying to inter­
face specialized proprietary languages, such as, for example, languages for particular
business and telecommunications applications, scripting languages, domain specific
development language, and research languages to the middleware platform.

Most of the enumerated distributed computing infrastructures intend to solve this
interoperability problem. Language interoperability is achieved through providing
a common interface definition language (lDL) and a language mapping to a set of
platform-supported implementation languages. The mapping defines the represen­
tation and manipulation of a common set of data types with the means of the target
programming language. This is the approach taken by ANSA, CORBA, DCE, DCOM,
and TINA. We have, however, found that beyond this set of platform-supported lan­
guage mappings, an extension to another programming language gives rise to major
technical problems.

In this work we focus our attention on CORBA's support for programming language
interoperability to better illustrate the technical issues. Similar problems arise for other
platforms. The solutions we propose do conceptually carry to these platforms as well.
In particular we demonstrate that CORBA dose not offer appropriate support for
third parties to implement language mappings in an efficient and effective manner.
Moreover, it is not possible to interface arbitrary programming languages to CORBA
middleware in an inter-ORB portable manner (Le., port from one ORB implementation
to another). This is mainly due to the lack of a portability interfaces at the ORB-level,
not mandated by the platform standard.

The often adopted solution to this dilemma is the implementation of a proper ORB
(Object Request Broker) for the particular target language and pass cross-language
invocations via the standardized Inter-ORB protocol to foreign language objects.
OLIVETTI AND ORACLE RESEARCH LABS [10], forinstance, have taken this route,
with OMNIORB, to obtain a language interface to PLlSQL. A similar undertaking is

PROGRAMMING LANGUAGE INTEROPERABILITY 289

pursued by FRANZ INC. to obtain an ORB language interface for Lisp!. This solution
is a time consuming process and is not always an option for other interoperability
seeking institutions. Alternatively, point-solutions are available from middleware
vendors and from the research community for interfacing, scripting languages, for
instance, to particular platforms (see MICO [14], and OMNIBROKER [12]). This
solution is a valid option, but does not provide an inter-ORB portable approach and
may only be pursued if the appropriate interfaces are available.

In this paper we exemplify the steps necessary to interface a programming language
to the CORBA platform (Section 3). We develop and thoroughly analyze design
schemas for implementing language mappings (Section 4). This analysis demonstrates
that with the CORBA standard user extensible programming language inter operability
is not universally possible. To fully overcome this problem we propos additions to the
standard which manifest themselves in a set of portability interfaces that allow direct
access to the ORB (Section 5). We sketch these interfaces and motivate their use for
alternative ORB extensions. The following section reviews the key concepts of the
CORBA architecture that are necessary for the further understanding of our work.

2 CORBA AND INTEROPERABILITV

The Common Object Request Broker Architecture (CORBA) is a standard for dis­
tributed computing which has been developed by the Object Management Group
(OMG) [11], a consortium of independent companies. CORBA aims at providing a
uniform communication infrastructure for building distributed applications. It supplies
unifying mechanisms for interoperating software components, operating on various
hardware platforms, and running under different operating systems. CORBA has also
been designed to support programming language interoperability [15]. This is to al­
low for full flexibility in application design and development, as well as to facilitate
the integration of legacy systems and legacy code into distributed applications [11].
Figure 1 gives an overview of the platform architecture.

Interoperability is gained by specifying all component interfaces in a universal inter­
face definition language (IDL). IDL is a descriptive, non-algorithmic "lingua-franca"
for specifying interfaces, following a C++-like syntax. Interface specifications are
mapped, by a stub-compiler, to stubs in the component's programming language.
These stubs are compiled and linked with the component code and with the infrastruc­
ture implementing libraries.2 For distributed applications the stubs handle communi­
cation with the remote machine via the Object Request Broker (ORB) and perform
argument packaging, marshalling, and unmarshalling.

The Internet Inter-ORB Protocol (HOP) is a specific incarnation of the General
Inter-ORB Protocol (GlOP), mapping GlOP onto TCPIIP. It is part of CORBA and
also standardized by the OMG [11], in an effort to achieve interoperability among

IPRANZ INC. -Alegro CL ORB.
2In OMG terminology stubs serve as object implementation proxies in the client address space, whereas
skeletons serve to interface to object implementations in the servant address space. Whenever unambiguously
possibly we use stubs as placeholder for both stubs and skeletons.

290 LANGUAGE INTEROPERABILITY

different object request brokers. To be CORBA compliant an ORB must support this
protocol. The ORB interoperability protocols were primarily designed for commu­
nication in distributed heterogeneous environments, (i.e., across machine and request
broker boundaries). A considerable amount of computation is necessary to transform
a client request and server response from a particular machine representation into the
defined format and possibly back into another representation on the request's target
side. In the worst case four of these transforms need to occur (e.g., two for the request
and two for the reply on client and server side respectively.)

3 DEFINING A LANGUAGE MAPPING

3.1 Language mappings

An OMG IDL language mapping defines the representation of IDL statements and
data types in terms of constructs and types of the programming language under con­
sideration. This amounts to defining representations for the following constructs in the
target language: literals and identifiers, basic and constructed data types, modules and
interfaces, setting and retrieving of attribute values, operation signatures and parameter
passing conventions, and raising and handling of exceptions.

Mappings for Ada, C, C++, COBOL, Java, and SmaliTalk have been standardized.
Standardization of mappings for Lisp, Eiffel, and a to be determined scripting language
are in progress. Mappings for Sather [7], Modula-3 [6], JavaScript, TCL, Perl,
Python, and CORBAScript have independently been proposed3. Although many
mappings exist, it is not always clear whether the proposing institutions have supporting
implementations. We attribute this to the user extensibility problem motivated in
Section 1.

3.2 Technical issues of the language mapping design

To add a new programming language to the languages already supported by the CORBA
specification, it suffices to specify an IDL-to-"language" mapping, where "language"
is the language to be added. For the language mapping implementer, however, the fol­
lowing tasks remain to be resolved: (1) Development of a stub-compiler which maps
the IDL interface specifications to stubs in the adopted programming language. (2)
Interface the stubs with the proprietary middleware platform interfaces. (3) The former
step often entails more subtle interoperability questions, namely, how to interoperate
the newly adopted programming language with the libraries of the CORBA imple­
mentation (i.e., generated stubs need to link to CORBA implementation code, which
might both be written in different languages, following different parameter passing
conventions, et cetera. This constitutes the actual implementation of the more abstract
notion of language interoperability at the IDLiCORBA level.)

3 Some of these efforts are taking place in response to the OMG RFP on support for scripting languages in
CORBA.

c~ient-atub

stub-orb

PROGRAMMING LANGUAGE INTEROPERABILITY 291

ORB

interfaces

servaDt-ske~etoD

ske~eton-~!1aptor ,,/
adap!;or-orlY '

c:=:±J :'~---~[- ;::::::::::::::;::::::::::::::~
~ \~ I Object
I Adaptor

ORB Core

- proprietary interfaces (implementation dependent)
- standardized (pubHc) interfaces

Figure 1. CORBA architecture with standardized and proprietary interfaces outlined.

From a software engineering point of view, these problems are all simple and
well understood. This, however, presumes that necessary ORB interfaces are openly
available, or, at least, presumes the source code of the CORBA system is at hand. For
most CORBA implementations this is (unfortunately) not the case.

The "client-stub" interface of the stub is strictly defined through the respective
OMG IDL language mapping. However, the CORBA standard does not address the
interface of the stub-to-ORB interaction. Similarly, on the object implementation
side, the "servant-skeleton" interface is defined in the language mappings, whereas
the "skeleton-adaptor" and "adaptor-ORB" interfaces are realized in a proprietary
manner. (Figure 1 illustrates these interfaces.) It is the availability of these proprietary
interface on client, as well as, object implementation side, which is crucial for solving
the above mentioned problem.

So far it has been the practice to develop CORBA implementations hand-in-hand
with the stub compiler, supporting a small set of languages only. The issue of providing
an open and extensible infrastructure remains neglected. In [8] we showed that most
ORBs exclusively support either C++, or Java. Furthermore, most ORBs offer a single
language interface only [8]. Alternate language interfaces are provided through the
implementation of a proper ORB in the desired programming language, e.g., IONA
supports a C++, ADA, SmallTalk, Cobol, and Java ORB [8]. Cross-language method
invocation is then realized via IIOP among the different ORBs. We don't think
that this is a good solution, due to the additional transformation overhead introduced.
Furthermore, implementing separate ORBs for all kinds of languages will certainly not
happen in the near future, especially for proprietary languages, such that programming
language interoperability with CORBA remains still a goal to be achieved.

CORBA products are commonly shipped as binaries. Third party extensions are
therefore limited to the standardized CORBA interfaces. As will be outlined in Sec­
tion 4 these interfaces are not sufficient to allow for portable and efficient third party
implementation of programming language mappings. We consider this non-user exten­
sibility of the programming language interface of the CORBA architecture a weakness

292 LANGUAGE INTEROPERABILITY

and hindrance for flexible distributed system design. It is a feature a CORBA imple­
mentation could easily posses, since all the necessary functionality is present in the
ORB implementation. It simply needs to be revealed through an open standardized
interface. This non-extensibility is a drawback which certainly prevents many users
from using CORBA for their distributed application designs. For one, proprietary
languages, especially scripting languages, are hard to interface to existing CORBA
middleware for the reasons outlined above. Secondly, other, more specialized pro­
gramming languages, such as, for example, persistent programming languages and
business or telecommunications modeling languages, could greatly add to CORBA's
character, but are subject to the same problems.

3.3 IDL-tcrSather language mapping

Sather is an object oriented programming language that has been developed at the
International Computer Science Institute in Berkeley. Details may be found in the
language specification4 . The mapping of OMG IDL-to-Sather has been defined
according to the requirements for language mappings outlined above. The defined
Sather language interface constitutes a complete mapping of OMG IDL to Sather and
is fully CORBA compliant. The exact definition and examples of the mapping may
be found in [7]. The next section analysis different design schemes for implementing
language mappings.

4 FACETS OF LANGUAGE INTEROPERABILITY WITH CORBA

4.1 Pseudcrstub based language transparency

This approach is currently prototyped for a commercial ORB. Due to the proprietary
nature of the ORB and the non-availability of the stub-to-ORB interfaces in the
standard is it difficult to directly access the ORB's communication layer. To obtain
a portable solution (inter-ORB portability) we interface Sather "pseudo-stubs" to the
C++-stubs generated from the vendor's IDL compiler. "Pseudo-stubs" are adaptors
which pass calls from Sather objects to the corresponding method in the proprietary
stub (cf. Figure 2). This is transparent to the implementer of the Sather-CORBA
object. Note, that the C++-stub interface is standardized by the corresponding language
mapping. In our case the IDL-to-C++ mapping. Except for the server-side code,
this solution is portable. On the server-side the CORBA standard leaves room for
proprietary design decisions by the ORB developer. The newly adopted, but, so
far, not broadly implemented portable object adaptor (POA) alleviates these non­
portability issues on the server side. Its availability will render this solution fully
portable.Note, however, that the POA does not address the portability interfaces crucial
for implementing a language mapping (cf. Figure 1).

The interface of a Sather pseudo-stub to a generated C++ stub is achieved via
Sather's support for foreign language classes. In Sather an "external C class"

4www.icsi.berkeley.edu/~sather.

PROGRAMMING LANGUAGE INTEROPERABILITY 293

c++
stub - interfaces

bject
implementation

ORB Core

Adaptor

Figure 2. Pseudo-stub based approach to programming language transparency with
CORBA.

allows for a bidirectional calling and exchange of data objects between the two lan­
guages. A thin C layer is provided to access the stubs and ORB interfaces, from within
Sather Figure 3 and Figure 2 illustrate this approach in greater detail.

Snt..her client

c::1ca... <:n.~> =1..._

e.2C.'C.o:t:"'r)..a1 C 001.... __ _
Pseudo-s~b c / c -layer

e3Ct.ern. "c"

de.+ l ayer to 'nterf'"a<:e C _ sl.ub
SHther·s ' e2Ct.ez."%l.a1. C c:1 ___ '

t o C s tubs

1 I I I 1
Object. R.equest. BrOok.er

Figure 3. Implementation level interoperability to CORBA component.

The key advantage of this approach is that it is based on the mostly standardized parts
of an already implemented language mapping, namely the C++ mapping, supported by
most ORBs. Clearly, in terms of optimizing calling sequences this leaves much to be
desired, since no influence can be exerted on the way the" actual" C++ stubs are emitted
by the vendor's stub compiler. Performance may therefore be poor. We are currently
quantifying this overhead. We also investigate the portability of this design to other
ORBs. Furthermore, the advantages implicit in the IDL-to-Sather mapping, due to
garbage collection in Sather, can in this design not be fully exploited, since the layer of

294 LANGUAGE INTEROPERABILITY

Sather client

I

Sather
stub

stub-ORB­
interface

C-Layer) ,-
't"

ORB Core conventional ORB-interaction

Figure 4. (1) Completely Integrated approach to programming language transparency
with CORBA. (2) Foreign language adaptor based approach to language transparency.

c++ objects (vendor stubs) around the ORB need to be taken care of "manually", (i.e.,
in a manner similar to that defined by the C++ mapping.) This design may be applied
to interface any programming language, that offers a foreign language interface, to a
middleware platform.

4.2 Completely integrated language interface

This approach is currently prototyped for the public domain CORBA implementation,
MICO [14], available as source code. The language interface is completely integrated
into the broker architecture, just like the languages already supported by the imple­
mentation. MICO, fully supports C++. To also support the Sather language mapping
we are providing a Sather interface to all interfaces of the request broker, as illustrated
in Figure 4. For a Sather CORBA object the broker is therefore undistinguishable from
an ORB written in Sather. The exact low-level implementation of the Sather/C++ lan­
guage interoperability has already been discussed in the previous section (cf. Figure 3
for details.)

The individual tasks identified above are straight forward to realize due to the
openness of MICO (mainly due to the availability of its source code). Note, however,
that we do not need any internal knowledge of the implementation, open interfaces,
specified in IDL, of the key APIs would suffice (cf. Section 5 for further thoughts on
this issue.) Figure 4 illustrates this design.

The additional layers of Sather and C code, that make out the language interface,
are thin. They corresponds to one function call in each layer to establish the language
interoperability. Moreover, ORB internal optimizations for local, co-local, and remote
invocations also apply to Sather CORBA object invocations. The achievable perfor­
mance is therefore directly comparable to native language binding implementations.
Another advantage is the possibility to provide Sather-native stubs and skeletons. Mar­
shalling and unmarshalling may thus be implemented directly in Sather. This provides
also a rich framework for further experimentation. The key drawback of this design is
that it is particular to one ORB and not portable to other brokers. This design is not

PROGRAMMING LANGUAGE INTEROPERABILITY 295

particular to the Sather language and the MICO broker implementation but generalizes
to other languages and brokers.

4.3 Language interoperability through foreign language adaptors

The previous approaches encapsulate the functionality of the CORBA implementation
with the language to interoperate with. This approach operates the other way around
by encapsulating the target language objects with language adaptors written in the
language already supported by the request broker. In this solution the extensibility
problem is projected entirely onto the availability to integrate a foreign language into
the languages supported by the request broker. It is therefore directly applicable to
languages like C, Ada95, Sather, and Theta, for instance. The resulting encapsulated
CORBA objects are portable to other broker environments, since no ORB specifics
need to be exploited to make this approach work. Clearly, this approach is rather work
intensive, since the CORBA object adaptors need to be hand coded for all components
to be used in the distributed application. This approach is particularly well suited for
interfacing legacy code to broker environments, as long as the language interoperability
issue between legacy code and supported language can be resolved. Figure 4 depicts
this design.

4.4 Achieving programming language interoperability via /lOP

Language transparency may also be obtained by inter-connecting different ORBs,
which support the programming languages to interoperate via the Internet Inter ORB
Protocol (nOP), thus passing cross-language invocations from ORB to ORB. Concep­
tually simple, the problem is that most ORBs support the same set of languages, such
that not too many cross-language invocation combinations are feasible [8]. More­
over, the additional format conversions involved in the nop protocol decrease the
performance of the resulting application. Optimizations based on whether or not the
individual components are local, co-local, or remote will hardly be possible, unless
the involved ORBs were designed with this particular interconnection in mind. This
is not to be expected for brokers from different vendors. This solution can therefore
only be recommended for performance uncritical tasks. Nevertheless, have we used it
in internal projects to interoperate C++ and Java components. Another problem with
this solution is the support for proprietary languages which is not possible with this
design, unless a CORBA compliant ORB supports the language under consideration.

Of course, it is always possible to implement a proper request broker and have it
communicate with CORBA compliant systems via nop. An entire ORB implemen­
tation is certainly very resource consuming and is therefore not a good choice for all
possible scenarios, such that other proprietary solutions will have to be taken.

A "thin" CORBA implementation, however, is a first step in this direction. By "thin"
we mean an implementation which, either provides an extensible sub-set of the func­
tionality provided by full CORBA, or supports client-side or object-implementation­
side interoperability only. Such a solution would simply support the CORBA nop­
interface and allow to send or receive requests in the defined format. Subject to the

296 LANGUAGE INTEROPERABILITY

same considerations as the here discussed solutions, its implementation cost is not as
high.

4.5 A solution based on the dynamic invocation and skeleton interface

The dynamic invocation interface (DII) and the dynamic skeleton interface (DSI) are
intended for use by components which do not have compile time knowledge of each
others' interfaces. The DII and the DSI may therefore be used to generate and accept
requests for operations at runtime. These interfaces are also the only direct access to
the request brokers communication layer. Static invocations pass through generated
stubs which interface to vendor specific proprietary broker APls.

All fully CORBA compliant ORBs must support these interfaces. It is therefore
safe to use them for implementing programming language interoperability. Like all
the other ORB interfaces the DII and DSI are specified in IDL and published in the
CORBA specification. Their entire functionality is thus exposed and may be used by the
application designer and the language mapping implementer. We suggest using them
to implement language interoperability, not at runtime, but at application development
time to pass and receive requests between different programming language objects
whose interfaces are available in IDL.

However, the subtle issues of how exactly to implement the programming language
interoperability at the linkage level is not as yet solved, i.e., the foreign language
still needs to call on the provided ORB functions (i.e., DIIIDSI operations) and pass
its arguments in a correct manner. Note, the CORBA standard requires the CORBA
implementation to reveal language, syntax, and signature of the DIIIDSI implementing
functions in the languages supported as mappings. This is captured in the language
mapping by pseudo objects representing the interfaces in the syntax of the supported
languages. The exact calling code may then be generated by a support tool, given the
IDL interface of the involved components.

The great disadvantage of this approach is its performance. It has been shown
experimentally [5], that the DIIIDSI interfaces, in current CORBA implementations,
are much slower than the corresponding static interfaces. We are not using the dynamic
features of these APIs, but rather exploit the fact that the DIIIDSI provide a direct
interface to the broker's lower level communication layer.

The key advantage of this solutions is that it is universally applicable across all
CORBA compliant ORBs. It is therefore, the only truly portable solution. We
are currently testing its robustness, effectiveness, efficiency, and portability5 across
different ORBs.

4.6 C-Ianguage binding based

Many programming languages provide C interface. CORBA specifies a language
binding for C. Interoperability could thus be achieved through integration based on

5Minor design decisions need still be taken by the ORB implementer for realizing the DIIIDSI. These issues
are expected to become standardized in future revisions of the CORBA standard.

PROGRAMMING LANGUAGE INTEROPERABILITY 297

the programming language's C interface and the ORB's language binding for C, if
available. This solution is closely related to some of the above approaches and therefore
not further discussed. However, the IDL-C binding is not widely supported, the major
drawback ofthis approach [8].

4.7 Manually coded interface adaptors

In this solution the language mapping implementer provides a layer of interfaces on
top of the proprietary ORB APIs revealing their syntax and operation signatures to the
outside. A stub compiler can then generate code which calls against these functions.
Clearly, such a solution cannot be recommended, since, unless the source code of the
ORB implementation is available, a manual capture of all its functionality is rather
difficult. This would have to be done by reverse engineering the generated stub code6.

For one, the task is rather work intensive, but more importantly, may interact with
potential copyrights protecting the proprietary code. Secondly, the solution is highly
specialized to one product and requires the same investment of work for porting it to
other ORBs. The single advantage is its performance which is directly proportional to
the available mappings for other languages.

4.8 Comparison and evaluation

This section compares and evaluates the individual approaches according to the follow­
ing criteria: n-to-n-Ianguage interoperability, portability of approach, independence,
full language support, efficiency, and implementation effort.

With n-to-n-Ianguage interoperability we describe the potential of the approach to
interoperate any language with any other language. Portability refers to the possibility
to exchange ORBs, given an implementation of the approach. With independence we
capture the feature of whether or not the approach requires support from a mapping
already implemented for a given ORB (Le., uses its stubs, etc.). Full language support
describes the possibility to use the full set of features a languages offers, or whether
some features must be "turned off' (e.g., garbage collection cannot always be sup­
portively used in client and server code due to the interfacing to C++ (see discussion
above).} Implementation effort describe whether or not the approach requires one time,
per-ORB, per-application, or a combination of the former effort, to be implemented.
Table 1 summarizes the evaluation according to these criteria. From the table it be­
comes clear that none of the approaches is consistently strong in all points. Choices
of which one to adapt for a particular ORB-language combination has to be strongly
usage driven, with the trade-offs identified in the table.

6Generated stub code is commonly in source language format. While reverse engineering it is difficult, it is
not "impossible".

298 LANGUAGE INTEROPERABILITY

approach I pseudo- completely lang. HOP Dill c- manuelly
feature stub integrated adaptors based DSI binding
n-to-n yes no no no yes no yes
portable yes no yes yes yes no no
independent no yes NA no yes no yes
full lang. no yes yes yes yes yes yes
efficient yes yes yes no no yes yes
imp!. effort one one time + per-app. none one one one time +

time per-ORB time time per-ORB

Table 1. Evaluation of language interoperability solutions.

5 TOWARDS AN OPEN INTEROPERABILITY PLATFORM

In this section we propose an addition to the CORBA standard which solves the user
extensibility problem. Furthermore, it provides for an extensible framework that gives
rise to other extensions, as discussed in Section 3.

All of the above discussed solutions for realizing language interoperability with
CORBA have shown considerable drawbacks, either in terms of expected perfor­
mance, or in terms of portability and extensibility of the approach. Unless language
interoperability is supported by the vendor, it is not possible to more effectively imple­
ment it with state-of-practice CORBA implementations, due to lack in the standard to
mandate openness at the ORB-level.

To achieve user extensible the CORBA standard should be augmented with an
open portability interface, presented as pseudo object. The interface must reveal the
ORB's bare communication operations. It should be simple, just revealing enough
functionality for a third party to extend and use the ORB. The intend is to bypassing
the SIIISSI and not use the less efficient DIIIDSI.

It suffices to provide operations for sending and receiving of messages in a prede­
fined data format, i.e., reading and writing to the network. Packaging, marshalling,
and unmarshalling are entirely in the responsibility of the client of this interface. Such
an interface is inherent, in one way or another, in all ORB implementations, such
that no modifications to existing systems are necessary. In Figure 1 we denoted it as
"proprietary stub-to-ORB interface". Figure 3 depicts the CORBA architecture con­
ceptually, and shows which interfaces must be additionally standardized to introduce
extensibility and openness.

Opening interfaces in the CORBA standard that would enable third party extensions
are not popular among ORB vendors, who fear to lose market shares by providing a
too open architecture. A move towards a similar extension of CORBA from within the
telecom domain, asking for means to plug different communication protocols into the
ORB 7 , has failed to pass through the OMG standardization process.

7The RFP on pluggable protocols propagated by the OMG telecom domain task force.

PROGRAMMING LANGUAGE INTEROPERABILITY 299

ORB ~ ~ I~(;;Ob;;~ec;;t~
F c:::::::::) Adaptor interfaces

ORB Core

<==l - standardized (public) interfaces

Figure 5. Corba architecture with additional open interfaces to obtain a more extensi­
ble design.

The proposed addition would not only allow to better interoperate programming
languages with CORBA, it would also allow to decouple the stub-compiler and all
the, inside the stubs hidden, functions (i.e., stub and skeleton themselves, marshalling
and unmarshalling, data-structures, and packaging and unpackaging, et cetera) from
the core broker. This can only be of benefit, since these functions could then be
implemented separately with different foci, e.g., high-performance, marshalling with
respect to different protocols and data formats, et cetera.

Moreover, the extensibility gained through an open ORB architecture would enable
independent implementations of the following features, currently hardly supported,
even by ORB vendors themselves: CORBA application management support (i.e.,
through monitoring hooks), debugging support for distributed applications, perfor­
mance measurement support, customized marshalling and application specific stubs
and skeletons, (e.g., object cache on client side) access control, and universal language
interoperability, as stressed throughout this work.

6 CONCLUSION

We have pointed out that user extensible programming language interoperability could
play a crucial role in the further spread and acceptance of CORBA technology for
parties interested in interfacing proprietary languages to CORBA middleware. At least
conceptually, the integration of a new OMG IDL language mapping in the CORBA
standard does not pose a problem, as manifested by the large number of IDL map­
ping specifications available to date. We concluded by arguing for stronger CORBA
standard support to enhance programming language interoperability in future CORBA
specifications. This support could be in form of an additional ORB pseudo object
interface which gives the user direct access to the ORB's low level communication
facilities and provides for access points for additional ORB extensions.

300 LANGUAGE INTEROPERABILITY

References

[1] ARCHITECTURE PROJECT MANAGEMENT. The Advanced Network System Architec­
ture (ANSA). Castle Hill, Cambridge, England, 1989.

[2] BOND, A., ARNOLD, D., AND CHILVERS, M. Designing and building an ODP
environment. Tech. rep., CRC for Distributed systems Technology, 1996.

[3] Box, D. Introducing Distributed COM and the new OLE features in Windows NT4.0.
Microsoft Systems Journal (1996).

[4] ENGLANDER, R. Developing Java Beans. O'Reilly, 1997.
[5] GOKHALE, A., AND SCHMIDT, D. C. The performance of the CORBA dynamic

invocation interface and dynamic skeleton interface over high-speed ATM networks. In
IEEE GLOBECOM '96 (Nov 1996).

[6] HURWITZ, B., AND NAYERI, F. IDL to Modula-3 language mapping. Tech. rep., GTE
Laboratories, 1994.

[7] JACOBSEN, H.-A. Specification of the OMG-IDL to Sather mapping. Tech. rep., ICSI,
1996.

[8] JACOBSEN, H.-A. User extensible programming language interoperability with corba.
In CORBA Management Workshop (Dublin, Ireland, September 1997), OMG.

[9] JANSSEN, B., AND SPREITZER, M. ILU Reference Manual. Tech. rep., Xerox Parc,
1997.

[10] OLIVETTI, AND ORACLE RESEARCH LABORATORY. omniORB 2.5 user documenta­
tion. www.orl.co.uk/omniORB/omniORB.html.

[11] OMG. The Common Object Request Broker Architecture and Specification. Revision 2.0.
Tech. rep., Object Management Group, 1998.

[12] OOc. Omnibroker. http://www.ooc.comlob.html.
[13] OPEN SOFTWARE FOUNDATION. OSF Distributed Computing Environment Rationale.

Cambridge, MA, 1990.
[14] ROMER, K., AND PUDER, A. MICO. http://www.vsb.cs.uni-frankfurt.de/mico/.
[15] SIEGEL, J. CORBA Fundamental and Programming. John Wiley & Sons, Inc., 1996.
[16] TINA-C. DPE Phase 0.1 Specification. Tech. rep., Telecommunication Information

Networking Architecture Consortium, 1993.

