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Abstract: Inference is a way to subvert access control mechanisms of database 
systems. Most existing work on inference detection relies on analyzing func­
tional dependencies in the database schema. This paper is an extension to our 
earlier effort in developing a data level inference detection system [13]. In this 
paper, we introduce the split query inference rule, make an extension to the 
overlapping inference rule, and provide an in depth discussion on the applica­
tions of the inference rules on union queries. Data level inference detection is 
inevitably expensive. We have developed a prototype of the inference detection 
system to evaluate its performance. The result shows that the system performs 
better with larger number of attributes and records in the database, and smaller 
number of projected attributes and return tuples of the queries. Therefore, the 
inference detection system could be practical when users retrieve a small amount 
of data compare to the size of the database. 

16.1 INTRODUCTION 

An inference occurs when a user infers data that the user is not allowed to 
access. In multilevel secure database systems, early work on inference detection 
employs a graph to represent the functional dependencies among attributes in 
the database schema. An inference occurs if there exists two paths between two 
attributes (or composite attributes), and the two paths are labeled at different 
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classification levels [5, 1, 10]. The detected inference channel is eliminated 
by redesigning the database schema [8] or upgrading the paths that lead to 
the inference [11]. There is also work on incorporating external knowledge in 
detecting inference [12, 6, 3]. Detecting inference at the schema level is efficient 
as the detection is performed at the database design time. However, it has two 
drawbacks. First, the database schema does not capture alI dependencies that 
occur in an instance of the database. Second, the existence of inference paths 
in the database schema does not necessary imply the users are making use of 
them to perform inference. 

More recently, researchers look at the instance of the database to generate 
a richer set of functional dependencies for detecting inference. Hinke et al. 
use cardinality associations to discover potential inference channels [7]. Hale 
et al. incorporate imprecise and fuzzy database relations into their inference 
channel detection system [4]. Marks develops an inference detection system that 
prevents alI possible inference by monitoring user queries with select clauses of 
the form "Ai = ai", where ai is a constant [9]. Chang et al. use Bayesian 
estimation and network techniques to estimate missing data in the database 
[2]. 

In this paper, we describe our effort in developing a data level inference de­
tection system. We have identified six inference rules that users can use to infer 
data: split query, subsume, unique characteristic, overlapping, complementary, 
and functional dependence inference rules. EssentialIy, the six inference rules 
cover the set-subset, intersection, difference and union relationships among re­
turn tuples of queries. These rules are sound and they can be applied in any 
number of times, and in any order. The existence of these inference rules illus­
trates the inadequacy of the schema level inference detection approach. 

However, data level inference detection is inevitably expensive, as it needs 
to keep track of alI user queries and their return tuples. We have developed 
a prototype of the data level inference detection system to evaluate its perfor­
mance. An earlier version of this paper is reported in [13]. In this paper, we 
introduce the split_query inference rule, make an extension to the overlapping 
inference rule, provide a detail description on the applications of the inference 
rules on union queries, and present a more complete experimental results. Be­
cause of lack of space, we omit the description of the unique characteristic and 
functional dependency inference rules. We also omit the use of examples to 
illustrate the inference rules. Interested readers can find them in [13]. 

This paper is organized as folIows. In Section 2, we introduce the notations 
used in this paper. In Section 3, we present the inference rules. In Section 4, 
we discuss the applications of the inference rules on union queries. In Section 
5, we out line the inference detection algorithm. In Section 6, we present our 
experimental results. In Section 7, we give a summary of the paper. 

16.2 NOTATIONS 

We consider a relational database that contains a single table. Multiple tables 
can be modeled as a universal relation as discussed in [9]. t[Ai ] denotes the 
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attribute value of the tuple t over the attribute Ai. A query is represented by a 
2-tuple: (projected-attributes; selection-criterion), where projected-attributes is 
the set of attributes projected by the query, and selection-criterion is the logical 
expression that selects the return tuples of the query. No aggregation function 
(for example, maximum and average) is allowed to apply on the projected­
attributes. Given a query Qi, IQil denotes the number of return tuples of Qi, 
and {Qi} denotes the set of return tuples of Qi. Unless otherwise stated, a 
set of return tuples is indeed a multiset of return tuples, that is, duplicated 
return tuples are retained. For each query Qi = {ASi; SCi}, ASi is expanded 
with Ai when 'Ai = ai' appears in SCi as a conjunct. An inferred query is a 
query that a user can infer its return tuples without directly issuing it to the 
database. A partial query Qi is a query that a user knows about IQil but not 
aH the return tuples of Qi. "n', cu', and '\' stand for the set intersection, union, 
and difference operations respectively. 

A tuple t projected over a set of attributes S satisjies a logical expression 
E if E is evaluated to true when each occurrence of Ai in E is replaced with 
trAi], for alI Ai in S. t contradicts E if E is evaluated to false. A return tuple 
ti of a query Qi is indistinguishable from another return tuple tj of Qj if 1) 
ti [A] = tj [A] for each attribute A E (ASi n ASj ), 2) ti does not contradict 
SCj, and 3) tj does not contradict SCi. A tuple ti relates to another tuple 
tj if the two tuples are projected from the same tuple in the database. If 
ti relates to tj, then ti is indistinguishable from tj j but the reverse does not 
necessary hold. Given two queries, Q1 and Q2, we say that Q1 is subsumed by 
Q2, denoted as Q1 e Q2, if and only if 1) SC1 logically implies SC2 (denoted 
as SC1 * SC2), or 2) for each return tuple tI of Q1, tI satisfies SC2. 'e' is a 
reflexive, anti-symmetric, and transitive relation. 

The goal of our inference detection system is to detect if a user can infer 
data using a series of queries. In particular, the system determines if a user 
can infer a return tuple of a query relates to a return tuple of another query. 
If so, the user can learn more about the return tuples. 

16.3 INFERENCE RUlES 

In this section, we present four inference ruIes. Unless otherwise stated, alI 
queries appear in the inference rules are not partial queries. We assume alI 
the queries are issued by a single user, and there is no change to the database 
content. When two users are suspected of cooperating in performing inference, 
we run the inference detection system against their combined set of queries. 

16.3.1 Split Queries 

A query Qi can be split into two smaller queries when a user can identify the 
return tuples of Qi that relate to the return tuples of another query. 

Inference Rule 1 (Split Queries) Given two queries Q1 and Q2. Express 
SC2 in disjunctive normal form. If there exists a disjunct of SC2 such that the 
set of attributes appear in the disjunct is a subset of AS!, then generate two 
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inferred queries: 1) 011 = (ASI; SCI tSC2 ); and 2) 012 = (ASI; SCl l\-,SC2 ). 

02 may be a partial query. The return tuples of 011 are the return tuples of 
01 that also satisfy SC2 • The return tuples of 012 are the return tuples of 01 
that does not satisfy SC2 • 

When 01 projects alI attributes that appear in a disjunct of SC2 , a user can 
identify the return tuples of 01 that satisfy SC2 • Hence, the user can divide 
the return tuples of 01 into two sets: those that satisfy both SC1 and SC2 , 

and those that satisfy SC1 but not SC2 • 

16.3.2 Subsume 1nference 

In this section, we describe inference making use of the subsume relations among 
queries. 

Inference Rule 2 (Subsume) Given two queries 01 and 02, such that 01 C 
02. 
SI1 If there is an attribute A in (AS2 \ ASt), such that alI return tuples of 

02 take the same attribute value a over A, then for each return tuple tt 
of 01. tdA] = a. 01 may be a partial query. 

SI2 If a return tuple tt of 01 is indistinguishable from exactly one return tuple 
h of 02, then tI relates ta t2. 01 may be a partial query. 

SI3 Let S be the set of return tuples of 02 that are distinguishable from the 
return tuples of 01. If ISI = (1021-1011), generate two inferred queries 
from 02: 1) 021 = (AS2; SC2 1\ -, SC1) with S as the set of return 
tuples; and 2) 022 = (AS2 ; SC2 1\ SCt) with ({ 02} \ S) as the set of 
return tuples. If ISI < (1021 - 1011), generate an inferred partial query: 
023 = (AS2 ; SC2 1\ -, sCd with S as the partial set of return tuples, 
and 10231 = (1021-1011). 

01 C 02 implies that for each return tuple tI of 01, there is a return tuple 
t2 of 02 such that tI relates ta t2. S11 says that when all return tuples of 02 
share a common attribute value, say a, over an attribute A, a user can infer 
that each return tuple of 01 also takes the attribute value a over the attribute 
A. This is because for each return tuple tI of 01, no matter which return tuple 
t2 of 02 that relates ta t1. t2[A] = a. Hence, tdA] must be equal ta a. 

SI2 says that if tI of 01 is indistinguishable from exactly one return tuple 
t2 of 02, then tI relates ta t2. This is because 01 C 02 implies that there is 
at least one return tuple of 02 that is indistinguishable from each return tuple 
of 01. Now, if tt of 01 is indistinguishable from one and onIy one return tuple 
t2 of 02, then we can conclude that tI relates ta t2. 

S13 says that if a user identifies alI the return tuples of 02 that relate ta the 
return tuples of 01, then the user can infer these two queries from 02: (AS2 ; 

SC1 1\ SC2) which includes return tuples of 02 that relate ta the return tuples 
of Q1. and (AS2 ; SC2 1\ -, SC1) which includes return tuples of 02 that do 
not relate ta the return tuples of 01. 
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16.3.3 Overlapping Inference 

In this section, we describe the overlapping inference rule. 

Inference Rule 3 (Overlapping) 

011 Given Q1 C Q2, and Q1 C Q3. Let S2 be the set of return tuples of Q2 
that are indistinguishable from the return tuples of Q3· If IS21 = IQ11, 
and a return tuple t2 of Q2 is indistinguishable from exactly one return 
tuple t3 of Q3, then t2 relates to t3. Similarly, let S3 be the set of return 
tuples of Q3 that are indistinguishable from the return tuples of Q2. If 
IS31 = IQ11, and a return tuple t3 of Q3 is indistinguishable from exactly 
onereturn tuple t2 ofQ2, then t3 relatesto t2. Suppose IQ11 = IS21 = IS31. 
If a return tuple h of Q1 is indistinguishable from exactly one return tuple 
t2 in S2, then tI relates to t2. AIso, if tI is indistinguishable from exactly 
one return tuple t3 in S3, then tI relates to t3. Q1 may be a partial query. 

012 Given a query Q1, and a set of queries, QS = {Q2, ... , Qn}, where n ~ 3. 
Suppose SC1 {:} (SC2 V ... V SCn ), and for each Qi in QS, Qi C Q1. 
If the number of distinguishable tuples in QS = IQ11, then any pair of 
indistinguishable tuples relate to each other. 

013 When 011 is applied and all the related return tuples between Q2 and Q3 
have been identified, generate the following two inferred queries from Q2: 
1) Q21 = (AS2jSC2 /\ ...,SC3 /\ ...,SCd with {Q2}\S2 as the set of return 
tuplesj and 2) Q22 = (AS2 j SC2/\SC3) with S2 as the set of return tuples. 
Similarly generate two inferred queries from Q3. When 012 is applied, 
generate possibly four inferred queries for each pair of queries that have 
overlapping return tuples. 

Given that Q1 C Q2 and Q1 C Q3, the number of return tuples of Q2 
that relate ta return tuples of Q3 must be at least IQ11. 011 identifies the cases 
where a user can infer the related return tuples among the three queries. When 
Q1 implies three or more queries, 011 is applied ta two of them at a time. 

We illustrate 012 using three queries, Q1, Q2, and Q3, where Q1 C Q3, 
Q2 C Q3, and SC3 {:} SC1 V SC2. Let N be the number of indistinguishable 
tuples in Q1 and Q2. As SC3 {:} SC1 V SC2, each return tuple of Q3 relates ta 
a return tuple in Q1 ar Q2. Hence, N ~ IQ31· FUrthermore, as Q1 C Q3 and 
Q2 C Q3, each distinguishable tuple in Q1 and Q2 relates ta a return tuple of 
Q3. Hence, N ::::; IQ31. Therefore, N = IQ31. When a user find out that the 
number of indistinguishable tuples in Q1 and Q2 equals IQ31, the user can infer 
that for each return tuple tI of Q1 that is indistinguishable from a return tuple 
h of Q2, tI relates ta t2. 

16.3.4 Complementary Inference 

The complementary inference rule performs inference by eliminating tuples that 
are not related ta one another. 
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Inference Rule 4 (Complementary Inference) Given four queries, Q1, Q2, 
Q3, and Q4, where Q1 C Q2, and Q3 C Q4. AIso, the return tuples of Q1 that 
relate to the return tuples of Q3 are identified (for example using the overlap­
ping inference rule) , and the return tuples of Q2 that relate to the return tuples 
of Q4 are identified. If one of the foIIowing three conditions holds, 

1. for each return tuple tI of Q1 that does not relate to any return tuple of 
Q3, tI is distinguishable from alI return tuples of Q4, 

then Q~ c Q~, where Q~ = (ASI; SCI 1\ ' SC3), and Q2 = (AS2; SC2 1\ ' 

SC4). {QD is the set of return tuples of Q1 that do not relate to any return 
tuple of Q3, and {QD is the set of return tuples of Q2 that do not relate to 
any return tuple of Q 4. 

As Q1 C Q2 and {QD c {QI}, each return tuple of Q~ relates to a return 
tuple of Q2. Condition (1) says that each return tuple of Q~ does not relate to 
any return tuple of Q4. Hence, each return tuple of Q~ relates to a return tuple 
of Q~. Condition (2) or (3) implies ((Q3 C Q4) 1\ (Q4 C Q3)). By removing 
from Ql and Q2 the "same" set of return tuples, we have Q~ C Q2. 

It should be noted that in some cases, the inference as obtained from the com­
plementary inference rule can also be obtained from the overlapping inference 
rule. For example, consider four queries Q1, Q2, Q3, and Q4, where Ql C Q2, 
and Q3 C Q4. Suppose the overlapping inference rule can be applied to identify 
the related tuples between Ql and Q3, and between Q2 and Q4. These result 
in the generation of two inferred queries: 1) Q~ = (ASI; SCI 1\ ,SC3 ); and 2) 
Q~ = (AS2 ; SC2 1\ ,SC4). If (SCI 1\ ,SC3 ) => (SC2 1\ ,SC4), then we have 
Q~ C Q~ which is the same result as obtained by applying the complementary 
inference rule to the four queries. However, SCI => SC2 and SC3 => SC4 does 
not necessary implies (SCI 1\ ,SC3) => (SC2 1\ ,SC4). When this implica­
tion does not hold, the complementary inference rule is needed to perform the 
inference. 

16.4 INFERENCE WITH UNION QUERIES 

The inference rules can be applied to unions of queries. We caII a union of 
queries a 'union query'. In contrast, a user query or an inferred query is called 
a 'simple query'. If Qu is a union query consists Qi, ... , and Qj, then ASu = 
(ASin ... nASj ), and SCu = (SCiV ... V SCj ). Note that ASu might be equal 
to 0. The applications of the split query, unique characteristic and functional 
dependency inference rules on union queries are similar to their applications 
on simple queries. Hereafter, we only discuss the applications of the subsume, 
overlapping, and complementary inference rules on union queries. 
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16.4.1 Subsume Inference Rule on Union Queries 

Consider the applications of the subsume inference rule on union queries when 
the union queries are subsumed by other queries. Let Qu = {Qi, ... ,Qj} be 
a union query, and Qu C Q1. We show that inference obtained by applying 
the subsume inference rule on (Qi U ... U Qj) C Q1 can also be obtained by 
applying the subsume inference rule on Qi C QI, ... , and Qj C Q1. 

Consider the applications of SI1. If there is an attribute A in (ASI \ASu ), 

such that alI return tuples of QI take the same attribute value a over A, then 
for each return tuple tu of Qu, turA] = a. This implies that for each return 
tuple t of a simple query of Qu, t[A] = a. This is the same as if the SI1 is 
applied to Qi and QI, where Qi C QI, for each simple query Qi of Qu· 

Consider the applications of S12. If there exists a tuple tu in Qu that is 
indistinguishable from exactly one return tuple tI of Q1, there exists at least 
one simple query Qi of Qu such that tu relates to a return tuple ti of Qi' Now, 
ti is indistinguishable from tI of QI. Hence, when S12 is applicable to infer that 
tu of Qu relates to h of QI, it is also applicable to infer that ti of Qi relates to 
tI of QI. 

Consider the applications of S13. When alI the related tuples between Qu 
and QI are identified, two inferred queries are generated from Q1: 1) Qui = 
(ASI; SCI /\ ,SCu); and 2) Qu2 = (ASI; SCI /\ SCu). We show that these 
two queries can also be generated from the simple queries of Qu and QI. Note 
that when aH the related tuples between Qu and Q1 have been identified, aH 
related tuples among the simple queries of Qu are also identified. Without loss 
of generality, suppose Qu = {Q2, Q3}' The application of S130n QI and Q2 
generates two inferred queries: 1) Q21 = (ASI; SC1 /\ ,SC2); and 2) Q22 = 
(ASI; SCI /\ SC2). Similarly, the application of S130n Q1 and Q3 generates 
two inferred queries: 1) Q31 = (ASI; SC1 /\ ,SC3); and 2) Q32 = (ASI; SCI /\ 
SC3). Now, Q21 and Q31 are both generated from QI, and we can generate the 
following inferred query for their related tuples: (ASI; SCI /\ ,SC2 /\ ,SC3) 
which equals QuI. Q22 and Q32 are both generated from QI, and we can 
identify the related tuple between them. The union of these two queries is 
(ASI; SCI /\ (SC2 V SC3)) which equals Qu2. Therefore, we do not need to 
consider the applications of the subsume inference rule when the union query 
is subsumed by other queries. 

Consider the case where union queries subsume other queries, say QI C Qu. 
S11 is applied as foHows. If for each return tuple t of any simple query of Qu, 
t[A] = a, then tI [A] = a for each return tuple h of Ql. S12 is applied as 
foHows. If there is a return tuple tI of QI that is indistinguishable from a set 
of return tuples S from the simple queries of Qu, where alI tuples in S relate to 
one another, then tI relates to each tuple in S. S13 is applied similarly. Note 
that the subsume inference rule can stiH be applied when the simple queries of 
Qu have no common projected attribute. 
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16.4.2 Overlapping and Complementary Inference Rule on Union Queries 

Consider the applications of 011. Given three queries, Q1, Q2, and Qu, where 
Qu is a union query. Suppose Qu C Q1 and Qu C Q2. If 011 is to be applied 
to identify the related return tuples among Q2 and Q3, IQul must be known. 
That is, the number of related tuples, if any, between the simple queries are 
identified. Now, suppose Q1 C Qu and Q1 C Q2. If 011 is to be applied to 
identify the related return tuples between Qu and Q2, then the user must has 
already identified those related tuples among the simple queries in Qu. AIso, 
the user has to identify the return tuples of Qu that are indistinguishable from 
the return tuples of Q2, and the number of these return tuples equals IQ11. 

Consider the applications of 012. Suppose there is a set of queries QS = 
{Q2' ... ' Qn, Qu} such that for each query Qi E QS, Qi C Q1. 012is applicable 
when the related tuples among the queries in QS are identified. That is, the 
related return tuples, if any, between Qu and other queries in QS have to be 
identified. 019 is applied similar to the case with simple queries. 

Note that the overlapping inference rule can still be applied when ASu = 
0. For example, let Qu = {Qu1, Qu2}. If SCul 1\ SCu2 = false, the user 
can conclude that there is no related return tuple between Qu1 and Qu2, and 
IQul = IQu11 + IQu21· 

Consider the applications of the complementary inference rule on the union 
queries. Suppose there are four queries Q1, Q2, Q3, and Qu, where Qu is a 
union query, Q1 C Q2, and Q3 C Qu. To apply the complementary inference 
rule on these four queries, the related return tuples among the simple queries in 
Qu that also relate to return tuples of Q2 must have been identified. Similarly 
for the case when Q1, Q2, or Q3 is a union query. 

16.5 INFERENCE DETECTION ALGORITHMS 

In this section, we outline the inference detection algorithms. Figure 16.1 shows 
the main function INFERENCE(U, Qi), which is called each time a user U is­
sues a query Qi to the database. The function maintains two sets: GEN and 
EXP. GEN is initialized with the user issued query Qi, and is subsequently 
being added with inferred queries generated by the inference rules. Each query 
in GEN is compared with previously issued or inferred queries for user U (de­
noted as PREV_QUERY(U)) to determine if the inference rules are applicable 
to them. EXP is the set of tuples that are expanded during the applications of 
the inference rules. The results of the applications of inference rules are genera­
tions of inferred queries and expansions of some return tuples of queries. Given 
a tuple t1 projected over a set of attributes AS!, and another tuple t2 projected 
over a set of attributes AS2. If t1 and t2 are found to be related to each other, 
t1 is expanded as follows: for each attribute A E AS2\AS!, tlfA] = t2[A]. t2 is 
expanded similarly. 

After a tuple is expanded, the query that returns the expanded tuple might 
be eligible in further applications of inference rules. Hence, the function checks 
if the inference rules are applicable ta the query. INFERENCE is a terminating 
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function, as the number of inferences is bound by the size of the database. In 
each call to the INFERENCE function, alI queries in GEN are processed before 
the expanded tuples in EXP. This avoids repeatedly processing the same tuple 
which is expanded more than once after queries in GEN are processed. 

INFERENCE (U, Qi): 
1. initialize GEN with Qij 

2. EXP +- 0j 
3. GEN_Q +- 0j 
4. EXP_Q +- 0j 
5. while (GEN :ţ 0 or EXP :ţ 0) do 
6. if GEN :ţ 0 then 
7. Qj +- a query in GENj 
8. remove Qj from GEN 
9. GEN_Q +- GEN_Q U {Qj}j 
10. else if EX P :ţ 0 then 
11. Qj +- a query that returns a tuple in EXPj 
12. EXP_Q +- EXP_Q U {Qj}j 
13. ts +- return tuples of Qj in EX Pj 
14. remove return tuples of Qj from EXPj 
15. for each Qk E PREV_QUERY(U) do 
16. EXP +- UNIQUE(Qj, Qk, ts, EXP)j 
17. GEN +- SPLIT_QUERY(Qj, Qk, GEN)j 
18. if Qj c Qk then 
19. (GEN, EXP) +- SUBSUME(Qj, Qk, GEN, EXP)j 
20. (GEN, EXP) +- OVERLAP(U, Qj, Qk, GEN, EXP)j 
21. GEN +- COMPLEMENTARY(Qj, Qk, GEN)j 
22. else if Qk C Qj then 
23. (GEN, EXP) +- SUBSUME(Qk, Qj, GEN, EXP)j 
24. (GEN, EXP) +- OVERLAP(U, Qk, Qj, GEN, EXP)j 
25. GEN +- COMPLEMENTARY(Qk, Qj, GEN)j 
26. FIND_UNION(U, GEN_Q, EXP_Q)j 

Figure 16.1 The inference functien. 

The function UNIQUE has three input parameters: Qj, Qk, and ts. The 
function checks if unique characteristic can be determined between the two 
queries Qj and Qk. For each expanded return tuple in ts, the function checks 
if the expanded return tuple and another return tuple have common unique 
characteristics. If so, the two return tuples are expanded with each other. The 
functions SPLIT_QUERY, SUBSUME, OVERLAP, and COMPLEMENTARY 
operate as described in the corresponding inference rules, and we omit the 
presentations of their algorithms. The FIND_UNION function checks if there 
are unions of query that satisfy the subsume relations with other queries. If so, 
the inference rules are applied to them. 
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16.6 EXPERIMENTAL RESULTS 

We have developed a prototype of the inference detection system in about 4,000 
lines of PerI code. We have implemented the split query, subsume, unique 
characteristic, overlapping (except 012), and complementary inference rules. 
The system also handles applications of the inference rules on union queries. 
We run our experiments with randomly generated tables and user queries. Each 
table has N attr number of attributes, and Nrec_n'Um number of records. The 
primary key of the table is a single attribute. AlI attributes are of integer 
types. Attribute values in the table are uniformly distributed between O and 
(Ndata_dist X Nrec_num), where O < Ndata-tlist ::; 1. We also randomly generate 
Nq'Uery_num number of user queries. Each query projects N proj number of 
attributes from the table. The selection criterion of each query is a conjunction 
of Ncond number of conjuncts. Each conjunct is of the form 'Ai op ai " where 
Ai is an attribute from the table, op is one of the comparison operators (>, :?:, 
::;, <, and =), and ai is an attribute value. Each query has NreLtuple number of 
return tuples. We approximate the evaluation of a logical implication Ci =} Cj 

by checking if the tuples selected by Ci is also selected by Cj , and that the set 
of attributes appear in Cj is a subset of those appear in Ci' We collect the 
folIowing two data to measure the system performance: 1) average number of 
seconds used to process one query. 2) number of times the inference rules are 
applied. 

We ran six experiments to determine how the characteristics of the database 
and the queries affect the system performance. For the database, we consider 
the folIowing characteristics: 1) the number of tuples in the database; 2) the 
number of attributes in the databasej and 3) the amount of duplication of 
the data values. For the queries, we consider the folIowing characteristics: 1) 
the number of attributes projected by the queries; 2) the number of conjuncts 
in the selection criteriaj 3) the number of queries being issuedj and 4) the 
number of tuples returned by the queries. The experimental results of running 
the inference detection system on a Sun SPARC 20 workstation are shown in 
Figure 16.2-Figure 16.7. 

Experiment 1 investigates the effect of the number of attributes and the 
amount of data duplication in the database on the system performance. In 
this experiment, we choose the folIowing parameter values: Nrec_n'Um = 1000, 
Nret_tuple = 50, N proj = 4, N cond = 3, and Nquerv_num = 500. N attr is varied 
with the folIowing values: 40, 60, 80, 100, 120, and 140. Ndata-tlist is varied 
with the folIowing values 25%, 50%, 75%, and 100%. Figure 16.2 shows the 
results in a graph plotted with the average query processing time (in seconds) 
against the number of attributes in the database. Consider each individual line 
in Figure 16.2. It shows that the system runs faster as Nattr increases from 
40 to 140. With a fixed type of queries, the larger the number of attributes 
in the table, the lesser the amount of overlapping among the return tuples of 
queries. This results in lesser subsume relations hold among queries, and hence 
the smaller the number of inferences. 
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Consider the four lines in Figure 16.2. They correspond to the cases where 
Ndata..dist = 25%, 50%, 75%, and 100%. The lower the value of Ndata_dist, the 
more duplication of the data in the database. Intuitively, the higher the dupli­
cation of the data, the lesser the number of distinguishable return tuples, and 
hence the smaller number of inferences. This is ture in some cases. However, 
in general the results do not show a significant effect of data duplication on the 
system performance. 

Experiment 2 investigates the effect of the number of return tuples of queries 
on the system performance. Figure 16.3 shows the results for Nrec_num = 1000, 
Ndata_dist = 50%, N proj = 4, Ncond = 3, and Nquery_num = 500. NreLtuple 
takes the values of 50, 100, 150, 200, and 250, and N attr takes the values of 80 
and 120. The figure shows that the system runs slower as NreLtuple increases. 
The larger the number of return tuples, the longer it takes for the system to 
process them. AIso, the more the number of tuples returned by the queries, the 
more the number of occurrences of inferences, and also the more the number 
of inferred queries being generated. 

Experiment 3 investigates the effect of the number of projected attributes in 
queries on the system performance. Figure 16.4 shows the results for Nrec_num 

= 1000, Nquery_num = 500, Ndata..dist = 50%, N attr = 80, and NreLtuple = 50. 
N proj takes the values of 4, 5, 6, 7, and 8. Ncond takes the values of 4, 5, 6, and 
7. It shows that the system runs slower as N proj increases. This is because the 
more the number of attributes projected by the queries, the more overlapping 
among the return tuples of queries, and hence the more number of inferences. 

Experiment 4 investigates the effect of the number of conjunts in the selection 
criteria on the system performance. Figure 16.5 shows the results for Nrec_num 

= 1000, Nquery_num = 500, Ndata..dist = 50%, N attr = 80, and Nret..tuple = 50. 
Ncond takes the values of 3, 4, 5, 6, and 7. N proj takes the values of 4, 5, 6, 
and 7. It shows that the system runs faster as Ncond increases. This is because 
the larger the number of conjuncts in the selection criteria of the queries, the 
lesser the chance that the subsume relations hold among the queries, and hence 
the smaller number of occurrences of inferences. However, the effect is not 
significant when Ncond > 3. 

Experiment 5 investigates the effect of the number of tuples in the database 
on the system performance. Figure 16.6 shows the result for Ndata..dist = 50%, 
N attr = 80, Nret..tuple = 50, Nquery_num = 500, N proj = 4, and Ncond = 3. 
Nrec_num is varied with the following values: 1000, 2500, 5000, 7500, and 10000. 
It shows that the system runs faster as the number of tuples of the database 
increases. As the size of the database increases, the possible amount of overlap­
ping among the queries decreases, and hence the lesser number of inferences. 
For NreLtuple = 10000, the set of queries happen to generate more inferences 
than the case for NreLtuple = 5000 or 7500, and hence it has a longer running 
time. 

Experiment 6 investigates the effect of the number of queries on the system 
performance. Figure 16.7 shows the results for Nrec_num = 1000, Ndata..dist = 
50%, N attr = 80, Nret..tuple = 30, N proj = 4, and N cond = 3. Nrec..number takes 
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the values of 200,400,600,800, 1000, and 1200. It shows that the system runs 
slower as the number of queries ta be proces sed increases. This is because the 
more the number of queries, the more the number of inferences. AIso, as each 
user query needs ta be compared with previously issued queries for the subsume 
relations, the more the number of queries, the longer it takes to determine all 
possible sub sume relations. 

16.7 SUMMARY 

In this paper, we describe our effort in developing a data level inference de­
tection system. We have identified six inference rules: split query, subsume, 
unique characteristic, overlapping, complementary, and functional dependency 
inference rules. We have also discussed the applications of the inference rules 
an union queries. The existence of these inference rules shows that simply using 
functional dependencies to detect inference is inadequate. We have developed 
a prototype of the inference detection system using Perl on a Sun SPARC 20 
workstation. 

Although the data level inference detection approach is inevitably expensive, 
there are cases where the uses of such approach is practical. As shown in our 
experimental results, the system generally performs better with a larger size 
of the database, and queries that return smaller number of tuples and project 
smaller number of attributes. The system running time becomes high when 
queries retrieve a large amount of data from the database, and there are large 
amount of overlapping among query results. However, when a user issues such 
type of queries, it is suspicious that the user is attempting to infer associations 
among the data. 
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