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Abstract: This paper describes version management in the Secure TransAc­
tional Resources - Database System (*-DBS) currently being developed at Penn 
State. This system employs concurrency control based on a secure multiversion 
timestamp ordering protocol. Efficient version management is critical to the 
performance of such a system. This paper describes a method of version man­
agement that requires no trust, adapts effectively to skewed access patterns, 
provides access to any version with at most one disk access and supports tu­
ple level concurrency control. Based on our implementation, we report on the 
performanc;.e of this method. 

10.1 INTRODUCTION 

Multiversion databases are used as part of the design for Secure TransActional 
Resources-Database System (*-DBS) project currently being developed at Penn 
State. This paper addresses issues related to secure and efficient version man­
agement. The methods developed are implemented and the results and insights 
obtained are presented. 

Secure version management methods often assign high-level transactions 
smaller timestamps than those of low-level transactions forcing them to ac­
cess older versions. This bias can lead to performance penalties on high-level 
transaction. We attempt to improve performance of these transactions and 
at the same time improve performance for transactions that update or modify 
databases at their own security level. In this paper, we propose a dynamic 
on-page caching scheme and an in-memory version directory that reduces and 
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improves the efficiency of 1/0. The remainder of this section provides back­
ground in multilevel security and multiversioned databases. 

10.1.1 Multilevel Security 

A brief review of multilevel security (MLS) is presented here. An MLS policy 
consists of mandatory and discretionary portions. A mandatory security policy 
controls the flow of information based on the perceived trustworthiness of an 
individual while a discretionary security policy controls the flow of information 
based upon user identity. This paper considers mandatory security only. In 
systems enforcing multilevel security, objects represent elements of information 
and subjects represent active entities such as processes. Subjects and Objects 
are assigned security levels. The Bell-LaPadula model[3] provides a concrete 
method of enforcing mandatory access control policy. It defines allowable read 
and write accesses to data objects in the form of the simple security and *­
property[3]. The simple security requires that a subject be allowed to read an 
object only if the security level of the subject dominate that of the object. The 
*-property requires that a subject only be allowed to write objects with security 
levels dominating its own. In our work here, we restrict this further, and only 
a allow a subject to write objects at its own level. An implicat ion of this is 
that transactions accessing a database at a lower security level appear to the 
lower database as a query. 

10.1.2 Multiversion Databases 

Versions are retained not for the sake of satisfying temporal queries but for 
concurrency purposes. This type of versioning is called transient versioning 
[5]. This means that at startup the database is single versioned. After recov­
ery, the database is single-versioned once again. In a multiversioned system, 
transactions are assigned a timestamp value when they enter the system. Each 
version maintains both the timestamp of the transaction that created it and the 
maximum of the timestamps of alI transactions that read it. These timestamp 
values are called the write and read timestamp respectively. When a query, 
wishes to access a record, it is provided with the version having the largest 
write timestamp less than or equal to its own. 

Versions are created by update transactions. The update operation results in 
the creation of a new version of the tuple with the appropriate fields modified. 
The previous version is also maintained. Versions thus created can be chained 
together as shown in Figure 10.1. The primary version has the largest write 
timestamp within the version chain. As can be seen, besides data, a read 
and write timestamp and a pointer to the previous version are stored with 
each version. This is the overhead required to implement a multiversioned 
element. For effective version management, it is essential to limit the storage 
requirements as far as possible. 

The remainder of this paper is organized as follows: First, related work is 
presented in Section 10.2. Section 10.3 presents a new type of on-page caching 



VERSION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 161 

Data Data Data 

Write Timestamp Write Timestamp Write Timestamp 

Read Timestamp Read Timestamp Read Timestamp 

Previous Version Previous Version r-- Previous Version 

l 
Primary Secondary Secondary 

Figure 10.1 Version (hain 

called dynamic on-page caching. Section lO.4looks at efficient means for access­
ing a version and maintaining timestamp information necessary for concurrency 
control. Implementation issues are dealt with in Section 10.5. Experimental 
results obtained from the implementation are presented in the Section 10.6 
followed by concluding remarks in Section 10.7. 

10.2 RElATED WORK 

Early multiversioned systems stored primary and secondary versions in two 
different database files [7]. The files containing the secondary versions is re­
ferred to as the version pool. However, in view of the inefficiencies arising from 
this storage arrangement, Bober and Carey suggested on-page caching [5]. In 
this approach, part of the version pool resides in the data pages of the main 
database itself. 

On-page caching as suggested by [5] assigns a fixed portion of every data page 
to hold the cache. Consider for example, an update to a record. When this 
record is updated, the current primary version is copied into the cache before 
the new primary is created. If the cache is already full, garbage collection is 
attempted to remove versions in the cache that are no longer needed. Versions 
that would never be appropriate to transactions now or in the future can be 
deleted. If garbage collection is unsuccessful in freeing the required space, 
then a version in the on-page cache is chosen for replacement. This version is 
pushed to the version pool file thus creating space in the data page. Notice 
that a version is pushed when the on-page cache is full, not when the data 
page is full. One side effect of on-page caching is an improvement in data page 
utilization in the main database. This is because, more versions are made to 
reside in the main database itself using the space already available. The effect 
of on-page caches on performance is discussed in detail in [5]. 

Let us examine how a record is typically accessed using a B+ -tree. When a 
record has to be accessed by, say, a query operation, the location of the primary 
version is obtained from the leaf page in the B+ -tree. Then, starting from this 
primary version, the version chain is traversed until the appropriate version is 
found. Observe that retrieving each version in the chain can entail additional 
disk 1/0. So, even after the leaf page is reached, retrieving the appropriate ver­
sion might require several additional disk 1/0 operations. The access path to 
a version is determined by the storage organization of the database. On-page 
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caching tends to shorten the length of this path. For example, without on-page 
caching alI secondary versions would reside in the version pool. However, even 
with on-page caching, overflow from on-page cache causes secondary versions to 
be pushed to the vers ion pool. Alternative storage arrangements for faster ac­
cess to a version were proposed in [6]. Three techniques were proposed and the 
performance of these techniques were evaluated using simulation. The method 
with the best overall performance was data page version selection (DP). In this 
approach alI version information, including timestamp and version pointers are 
maintained along with the primary version in the same page in the data file. 
This ensures that any version can be acces sed in at most two disk accesses. We 
propose to store this information in memory thereby reducing the number of 
disk accesses to one. In this regard, we as sume a B+ -tree with clustering index. 

A feasibility study of multiversioned databases enforcing MLS was reported 
in [15]. The focus was on mechanisms to provide efficient access to multiple 
versions of data. In this regard, the authors studied in detail the storage 
and access costs associated with multiversioning. An analytical performance 
model was developed to predict the penalty of retaining earlier versions for 
the sake of queries and the model was validated using measurements from an 
experimental prototype. However, the model did not address on-page caching. 
It was assumed that alI secondary versions were maintained in the vers ion pool. 
Both [15] and [7] assume versions at the granularity of pages. In this work, we 
adopt a tuple- level granularity and maintain version location informat ion in 
memory. 

10.3 DYNAMIC ON-PAGE CACHING 

In our scheme, no space is dedicated to an on-page cache. The size of on-page 
cache is allowed to grow dynamicalIy to accommodate the workload require­
ments. Versions are pushed to the version pool only when the data page is full 
as opposed to the on-page cache as recommended in [5]. However, we still retain 
a version pool that would be used when a data page becomes full. Whenever a 
page becomes fulI, we check if any of the versions can be collected. If not, then 
the oldest vers ion is selected for replacement. We adopt a write-one policy, i.e., 
only one version is written to version pool each time. Note that writing one 
version at a time to a version pool does not lead to an 1/0 for every replacement 
as buffering can be used. For recovery purposes, however, we utilize a separate 
log file. This would store the updates to the databases before the transaction 
commits. This makes it unnecessary to flush the versions pool writes to disk 
before committing a transaction. 

Dynamic on-page caching allows the benefits of on-page caching described 
above to be more fully utilized. Results in [5] suggest that queries execute faster 
as the size of the on-page cache is increased. By allowing this size to be deter­
mined dynamically, we can accommodate secondary versions more efficiently. 
This method also adapts well to nonuniform access patterns. For pages that 
see Httle or no update activity, the portion of the page that otherwise would be 
set aside for the cache is available for primary versions. However, when a page 
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is updated frequently it becomes a hotspot [11]. In this case, with a fixed cache 
size, cache overflow would occur frequently and the performance benefits of 
on-page caching are reduced. To address this problem, the size of the dynamic 
on-page cache is controlled dynamically based on the update frequency of the 
page. 

One important side effect of a dynamic on-page caching scheme is the ca­
pability to tailor the cache size to meet the needs of a known work load. For 
example, when the workload is dominated by update operations, then the cache 
size will be adjusted to accommodate a sufficient number of secondary versions. 
When the workload is dominated by sequential scan queries, a smaller cache 
size will result. This will tend to preserve locality among the primary versions 
and allow these types of queries to complete faster. Databases inevitably ex­
perience non-uniform access patterns resulting in the creation of hot spots in 
certain regions of the database. An inability to adapt the cache size as required 
will tend to reduce the throughput of the database system. Fixed size on-page 
caches behave as if there is no cache at alI once they become full. This is 
because, every update causes some version to be pushed to the version pooI. 
Hotspots can provide sufficient update activity to fill an on-page cache and 
lead to reduced effectiveness. Dynamic modification of on-page cache size can 
adapt to such non-uniform access patterns. Below, we present a strategy for 
controlling on-page cache size to address this problem. 

Hotspots are characterized by rapid version creation. We propose to use the 
following measure to characterize the intensity of update activity. 

hoLrate = num_vers 
curr _timestamp - ver _timestamp 

In the definition, num_vers is the number of versions created, curr _timestamp 
is the current timestamp, and ver _timestamp is the time at which num_vers 
was last set to zero. Thus, this measure approximates the update rate for the 
page. We mitigate the effect of a hot spot by splitting the corresponding B+­
tree index page early. That means, a page that meets our criterion would be 
split even before it is full. This splitting is triggered when hoLrate reaches 
some predefined limit. 

Splitting a page early causes updates to complete faster. This is because 
the updates are now distributed to the two pages that resulted from the split. 
This leads to less contention and thus higher throughput. Further, immediately 
after a page split, the amount of free space in the page increases to 50%. So, 
more versions can be accommodated. The positive effect of on-page caching 
on utilization of disk blocks is offset by splitting the page early. However, as 
we expect only a relatively small portion of the database will meet our criteria 
for a hot spot, this reduced utilization will only apply to a small portion of the 
database. 

10.4 VERSION DIRECTORY 
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We propose storing the timestamp informat ion and vers ion pointers in memory. 
A similar idea for storing timestamp informat ion in a single versioned system 
is proposed in [4]. After the tuple identifier for a key value is located using the 
index, we can use the in-memory structure to determine where the appropriate 
version resides with no additional 1/0 operations. In this scheme, at startup, 
the database is single versioned and alI tuples have a default timestamp. At 
this moment, no timestamp information is required. Since all tuples have the 
same default timestamp, it need not be stored with each tuple. As updates 
and inserts occur, the version directory is used to store information about the 
version chains that are being formed. So, the version directory only needs to 
store information about version chains that do not have a default timestamp on 
the primary version. Thus, we assume that if information about a tuple is not 
available in the version directory, then it has a default timestamp. Note that the 
size of the version table is proportional to the number of active transactions 
and not the size of the database. This is because we only need to maintain 
information about versions that have been updated recently. From time to 
time, the default timestamp can be reset to a higher value. This allows us to 
collect some of the memory tied up in the table. When the default timestamp is 
changed, all versions with smaller timestamps can be removed from the vers ion 
directory. We ensure that no active transaction exists with a timestamp below 
the default timestamp. Any such transactions are aborted. For more details 
refer to [14]. 

Storing version information in memory improves the performance of trans­
actions at dominating security levels. We use a secure timestamp generator 
based on the protocol described in [10]. As explained earlier, due to the *­
property [3], a database can only be queried by transactions at dominating 
security levels. Combined with our timestamp generation method this forces 
high-level transactions to access older versions. If the appropriate version for 
these queries resides in the vers ion pool then it would require multiple disk 1/0 
for retrieving that vers ion. Using a version directory we can avoid this bias 
against high-Ievel transactions and ensure that all versions can be acces sed 
with at most one disk access. 

We can think of the version directory as a more efficient method of storing 
and caching, in memory, the timestamp and version chain information. To see 
the advantage of this approach, consider the following example. Assume that 
tuples require, on average, 200 bytes of storage and that timestamps requires 
16 bytes each. The two timestamps associated with each tuple amounts to 
an overhead of about 15%. Thus, each page in the buffer pool is only 85% 
effective. This is especially troubling when we realize that the majority of the 
timestamps are old enough to be replaced by a single default value. Thus by 
maintaining only those timestamps that are actually necessary, we reduce this 
overhead considerably. This leads to higher effective 1/0 rates, and a better 
use of memory. 

A hash table is used for storing the vers ion information. Hashing is done in 
such a way that all tuples lying in the same page would have their information 



VERSION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 165 

I T~ J ""gnm 

--------/ I ~ 
I~II ~ I~I. ~ i==~ ,.,,1/ ~ 

I ""'""'" I """"""" -- . ... 

File I File I fiI, I MIoare' M..,., M...,u 

Buflu MMl,itf I I BufrcrMuaga II Burr<:rManap I 
R~M)u," M(JIf/J,rt' 

'" / 
RUOfir«: M'IIII/I.St'r RUf)tlI'(Y MUlUJg~' 

/ l.oJ Mtoorct I I l.oJMaoqet i\ 
I DTOS I I DTOS I 

Figure 10.2 Architecture of Star-DBS 

stored in the same hash chain. During garbage collection, versions in a page 
can be collected by looking at one hash chain. 

10.5 IMPLEMENTATION ASPECTS 

The design discussed above was implemented as part of the *-DBS project. 
The prototype is hosted on Distributed Trusted Operating System (DT OS) 
[12]. DTOS is an experimental prototype operat ing system developed at Se­
cure Computing Corporation. It provides mechanisms to implement multilevel 
security on the CMU Mach Microkernel [1] [8]) and provides policy-based con­
trol over all Mach services. 

Figure 10.2 shows the architecure of the Star-DBS prototype. The trusted 
components are shown shaded. The prototype adopts a client/server architec­
ture. A transaction executing at a client begins by contacting a transaction 
manager (TM) which assigns it a timestamp. For details on the protocol gov­
erning secure timestamp generation refer to [10]. The TM provides timestamps 
to transactions at all security IeveIs. The transaction then proceeds to make 
service requests to one or more resource managers (RM). When the transaction 
is complete, it contacts the transaction manager again to request that its work 
be committed. 

Each RM is implemented as an untrusted subject performing operations on 
behaif of clients at a single Ievel. The RM implements a restricted SQL-like 
RPC level interface (i.e., no nested queries, no aggregates, no sortby, and no 
support for groups) . The RM makes pin/unpin requests to the buffer man­
ager (BM) [2]. The buffer manager controls the movement of data between the 
persistent and volatile portions of the database for all security levels. It also 
coordinates logging with page flushes to enforce the write ahead logging (WAL) 
protocol[9]. Each RM is multithreaded allowing it to service requests from mul-
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tiple clients concurrently. The log manager [13] writes uninterpreted undo/redo 
records to the log on behalf of RMs, writes commit and abort records on behalf 
of the TM and controls the flushing of log records to disk. 

The designs described in this paper were implemented on the DTOS oper­
ating system and consists of approximately 5000 lines written in C. The role of 
this implementation is to act as a file manager within the architecture shown 
in Figure 10.2. 

One of the important implementation challenges was the version table. The 
version directory is organized as a hash table. Bach security level maintains 
an independent version directory for the versions residing at its security level. 
This version information is accessed by alI transactions at the same security 
level as well as by transactions at dominating security levels. Thus, this involves 
realizing a logically single version directory with independent version directories 
at each security level. In our prototype, mandatory access control is enforced 
by a trusted component of the buffer manager. We utilize this component to 
alIow high-Ievel transactions to access version directories at lower levels. Bach 
RM creates a file that holds the version directory for that level. Transactions 
at higher level thus retrieve the buffer containing the entry they wish to access. 
In case, a subject at the lower security level tries to pin this page in write 
mode, the page is copied to another buffer [2]. Retrieval and traversal through 
the hash list are done transparently through an interface implemented within 
the RM. This interface abstracts away the security related issues and provides 
functionality allowing alI standard operations on a hash table. So, RMs need 
not explicitly do anything special to retrieve an entry in the version directory, 
even if it resides in another security level. 

Our RM is implemented as an untrusted subject. A single version direc­
tory for alI the RMs at different security levels would have required a trusted 
implementation. An untrusted implementation eliminates the need for formal 
security evaluation of the component and alIows simpler prototyping. 

10.6 EXPERIMENTAL RESULTS 

The implementation provided a means to test the feasibility and performance of 
the ideas we developed. We were interested in the effect of not storing version 
information in stable storage on performance. 

The first test conducted was to observe how the size of the on-page cache 
would vary if no limit was placed on its size. In particular we wanted to observe 
the variance of on-page cache size. A wide variance in on-page cache size across 
the database suggests that dynamic control will be effective. For this purpose, a 
database was populated with tuples whose key values were generated randomly 
with uniform distribution from the set 1, ... , 100,000. Then, tuples were chosen 
following a uniform distribution from this set for update. Selection is done 
with replacement so that one tuple may be updated several times during an 
experiment. On average, for every ten tuples in the database, one update 
operation was applied. This means the average size of a version chain is 1.1 
versions. This value was motivated by results of a performance study described 
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in [5]. Page size for the database was 4096 bytes. Tuple size was chosen to allow 
30 tuples per page. Tuples were inserted until the database consisted of about 
100 data pages. At the end of aH insert and update operations, the number of 
primary and secondary versions in each data page was measured. 

The distribution of on-page cache size is given by the histogram shown in 
Figure 10.3. On the x-axis is shown the size of the on-page cache as a percentage 
of the page size. The percentage of pages that have a particular cache size 
is shown on the y-axis. We repeated the experiment five times. For each 
experiment we compute the mean, i.e., Xl, X2, ... , X5. We then calculate the 
mean and standard deviation for this collection of five samples. Assuming 
a normal distribution, we calculated 90% confidence intervals for the sample 
mean using the formula: 

( X _ 1.640", X + 1.640") 
Vn Vn 

In the expression X represents the mean of the five sample means, O" represents 
their standard deviation and n represents the number of measurements (i.e., 
five). The mean cache size is 8.816% with a 90% confidence interval of (8.415, 
9.218). 

As can be seen the size of on-page cache in each page varies widely. This 
significant variation in the size of on-page cache makes it extremely difficult to 
predefine a particular size for the on-page cache. AIso, a significant portion of 
the database is populated with pages which have no secondary versions at alI. 
This is indicated by the number of data pages with zero on-page cache size. 
This shows that a significant number of elements experienced no updates at aU 
and thus validates our assumptions that storing timestamps in the data page 
is not efficient. 

Another test was devised to observe the savings in disk 1/0 due to the version 
table. The scheme we compare our savings against is Data Page scheme (DP) 
[6]. In this method, aU of the version information is stored with the primary 
version. So, the number of disk I/Os required to retrieve the primary version 
would be one, and overaH, the number of accesses needed to retrieve any version 
in the version chain would not be more than two. A database was created as 
discussed above. However, to remove the effects of dynamic on-page caching 
on the version table we set the maximum size of the on-page cache at 10% of 
the data page size. The same set of key values were used in both cases. Then, 
a query is run to execute a table scan over the tuples in the database. The disk 
1/0 required when the version directory was used is measured and the disk 1/0 
with DP is also measured. The mean savings obtained are 7.556% with a 90% 
confidence interval of (6.920, 8.192). With dynamic on-page caching enabled 
even more versions would reside in the data page itself and this would help to 
increase the savings in disk 1/0. 

To examine the combined effect of dynamic on-page caching and the version 
table, tests were conducted using a non-uniform access pattern. We characterize 
the amount of nonuniformity or access skew as x%, implying that x% of access 
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requests are directed to 100 - x% of the data elements in the database [11]. The 
database is divided into two parts, the first constitutes x% of the data items 
and the second represents the reminder (100 - x%). With probability l~~OX a 
transaction accesses the first part. An element of this set is chosen based on 
a uniform distribution. Thus, for a 70% Skew, 70% of the accesses are to 30% 
of the data elements. Our tests ranged from a uniform distribution (a skew of 
50%) to a 90% skew. 

So, for each level of skew considered, we measured the disk 1/0 that was 
saved by a query scanning the entire relation. Again, a database was created as 
described above. Only the updates to the database were skewed. Then a query 
was run in isolation when ali the update and insert activity in the database 
was complete. The timestamp of this query is between the timestamps selected 
for updates and inserts. This means, if no update was applied to a version 
then the primary vers ion is the appropriate version for this query. If an update 
operation was applied, then the secondary version is the appropriate version. 
The results obtained are shown in Figure 10.4. The difference between the 
disk 1/0 required for a query with a fixed on-page cache size of 10% using DP, 
and the disk 1/0 for our design is expressed as a percentage plotted on the 
y-axis. For each access skew, the test was repeated five times and the average 
and variance are shown on the plot. The error bars represent 90% confidence 
intervals. 
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As can be seen, as the amount of skew increases, the disk 1/0 saved also 
increases. This is because, due to the formation of hotspots, the pages are split 
earlier. This leads to more versions being held within the data page and hence 
a saving in disk 1/0. AIso, savings accrue due to the version directory that 
reduces disk 1/0 required when the appropriate version for the query resides 
in the version pooI. As noted earlier, in a hot spot, the performance of fixed 
size on-page caches degrades. This effect becomes more pronounced as access 
skew is increased. This is because more versions are pushed to version pooI. 
As disk 1/0 for retrieving versions in version pool is reduced with our scheme, 
the corresponding savings in disk 1/0 increases. 

10.7 CONCLUDING REMARKS 

We have presented a design for version management in a multilevel secure 
database system and described a prototype based on this design. In address­
ing the issues relating to storage of versions we found that a dynamic on-page 
caching scheme can effectively adapt to non-uniform access patterns. The ver­
sion directory improves performance by reducing the overhead of maintaining 
version information. However, the version directory is constructed from a set 
of independent version directories each associated with aRMat that secu­
rity leveI. This was done with support from DTOS and the buffer manager. 
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The combined effects of dynamic on-page caching and the version table show a 
reduction in 1/0 of between 32 and 47% over the DP method of [6]. 
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