
10 VERSION MANAGEMENT IN THE
STAR MLS DATABASE SYSTEM

Ramprasad Sripada and Thomas F. Keefe

Abstract: This paper describes version management in the Secure TransAc­
tional Resources - Database System (*-DBS) currently being developed at Penn
State. This system employs concurrency control based on a secure multiversion
timestamp ordering protocol. Efficient version management is critical to the
performance of such a system. This paper describes a method of version man­
agement that requires no trust, adapts effectively to skewed access patterns,
provides access to any version with at most one disk access and supports tu­
ple level concurrency control. Based on our implementation, we report on the
performanc;.e of this method.

10.1 INTRODUCTION

Multiversion databases are used as part of the design for Secure TransActional
Resources-Database System (*-DBS) project currently being developed at Penn
State. This paper addresses issues related to secure and efficient version man­
agement. The methods developed are implemented and the results and insights
obtained are presented.

Secure version management methods often assign high-level transactions
smaller timestamps than those of low-level transactions forcing them to ac­
cess older versions. This bias can lead to performance penalties on high-level
transaction. We attempt to improve performance of these transactions and
at the same time improve performance for transactions that update or modify
databases at their own security level. In this paper, we propose a dynamic
on-page caching scheme and an in-memory version directory that reduces and

S. Jajodia (ed.), Database Security XII
© Springer Science+Business Media New York 1999

160 DATABASE SECURITY XII

improves the efficiency of 1/0. The remainder of this section provides back­
ground in multilevel security and multiversioned databases.

10.1.1 Multilevel Security

A brief review of multilevel security (MLS) is presented here. An MLS policy
consists of mandatory and discretionary portions. A mandatory security policy
controls the flow of information based on the perceived trustworthiness of an
individual while a discretionary security policy controls the flow of information
based upon user identity. This paper considers mandatory security only. In
systems enforcing multilevel security, objects represent elements of information
and subjects represent active entities such as processes. Subjects and Objects
are assigned security levels. The Bell-LaPadula model[3] provides a concrete
method of enforcing mandatory access control policy. It defines allowable read
and write accesses to data objects in the form of the simple security and *­
property[3]. The simple security requires that a subject be allowed to read an
object only if the security level of the subject dominate that of the object. The
*-property requires that a subject only be allowed to write objects with security
levels dominating its own. In our work here, we restrict this further, and only
a allow a subject to write objects at its own level. An implicat ion of this is
that transactions accessing a database at a lower security level appear to the
lower database as a query.

10.1.2 Multiversion Databases

Versions are retained not for the sake of satisfying temporal queries but for
concurrency purposes. This type of versioning is called transient versioning
[5]. This means that at startup the database is single versioned. After recov­
ery, the database is single-versioned once again. In a multiversioned system,
transactions are assigned a timestamp value when they enter the system. Each
version maintains both the timestamp of the transaction that created it and the
maximum of the timestamps of alI transactions that read it. These timestamp
values are called the write and read timestamp respectively. When a query,
wishes to access a record, it is provided with the version having the largest
write timestamp less than or equal to its own.

Versions are created by update transactions. The update operation results in
the creation of a new version of the tuple with the appropriate fields modified.
The previous version is also maintained. Versions thus created can be chained
together as shown in Figure 10.1. The primary version has the largest write
timestamp within the version chain. As can be seen, besides data, a read
and write timestamp and a pointer to the previous version are stored with
each version. This is the overhead required to implement a multiversioned
element. For effective version management, it is essential to limit the storage
requirements as far as possible.

The remainder of this paper is organized as follows: First, related work is
presented in Section 10.2. Section 10.3 presents a new type of on-page caching

VERSION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 161

Data Data Data

Write Timestamp Write Timestamp Write Timestamp

Read Timestamp Read Timestamp Read Timestamp

Previous Version Previous Version r-- Previous Version

l
Primary Secondary Secondary

Figure 10.1 Version (hain

called dynamic on-page caching. Section lO.4looks at efficient means for access­
ing a version and maintaining timestamp information necessary for concurrency
control. Implementation issues are dealt with in Section 10.5. Experimental
results obtained from the implementation are presented in the Section 10.6
followed by concluding remarks in Section 10.7.

10.2 RElATED WORK

Early multiversioned systems stored primary and secondary versions in two
different database files [7]. The files containing the secondary versions is re­
ferred to as the version pool. However, in view of the inefficiencies arising from
this storage arrangement, Bober and Carey suggested on-page caching [5]. In
this approach, part of the version pool resides in the data pages of the main
database itself.

On-page caching as suggested by [5] assigns a fixed portion of every data page
to hold the cache. Consider for example, an update to a record. When this
record is updated, the current primary version is copied into the cache before
the new primary is created. If the cache is already full, garbage collection is
attempted to remove versions in the cache that are no longer needed. Versions
that would never be appropriate to transactions now or in the future can be
deleted. If garbage collection is unsuccessful in freeing the required space,
then a version in the on-page cache is chosen for replacement. This version is
pushed to the version pool file thus creating space in the data page. Notice
that a version is pushed when the on-page cache is full, not when the data
page is full. One side effect of on-page caching is an improvement in data page
utilization in the main database. This is because, more versions are made to
reside in the main database itself using the space already available. The effect
of on-page caches on performance is discussed in detail in [5].

Let us examine how a record is typically accessed using a B+ -tree. When a
record has to be accessed by, say, a query operation, the location of the primary
version is obtained from the leaf page in the B+ -tree. Then, starting from this
primary version, the version chain is traversed until the appropriate version is
found. Observe that retrieving each version in the chain can entail additional
disk 1/0. So, even after the leaf page is reached, retrieving the appropriate ver­
sion might require several additional disk 1/0 operations. The access path to
a version is determined by the storage organization of the database. On-page

162 DATABASE SECURITY XII

caching tends to shorten the length of this path. For example, without on-page
caching alI secondary versions would reside in the version pool. However, even
with on-page caching, overflow from on-page cache causes secondary versions to
be pushed to the vers ion pool. Alternative storage arrangements for faster ac­
cess to a version were proposed in [6]. Three techniques were proposed and the
performance of these techniques were evaluated using simulation. The method
with the best overall performance was data page version selection (DP). In this
approach alI version information, including timestamp and version pointers are
maintained along with the primary version in the same page in the data file.
This ensures that any version can be acces sed in at most two disk accesses. We
propose to store this information in memory thereby reducing the number of
disk accesses to one. In this regard, we as sume a B+ -tree with clustering index.

A feasibility study of multiversioned databases enforcing MLS was reported
in [15]. The focus was on mechanisms to provide efficient access to multiple
versions of data. In this regard, the authors studied in detail the storage
and access costs associated with multiversioning. An analytical performance
model was developed to predict the penalty of retaining earlier versions for
the sake of queries and the model was validated using measurements from an
experimental prototype. However, the model did not address on-page caching.
It was assumed that alI secondary versions were maintained in the vers ion pool.
Both [15] and [7] assume versions at the granularity of pages. In this work, we
adopt a tuple- level granularity and maintain version location informat ion in
memory.

10.3 DYNAMIC ON-PAGE CACHING

In our scheme, no space is dedicated to an on-page cache. The size of on-page
cache is allowed to grow dynamicalIy to accommodate the workload require­
ments. Versions are pushed to the version pool only when the data page is full
as opposed to the on-page cache as recommended in [5]. However, we still retain
a version pool that would be used when a data page becomes full. Whenever a
page becomes fulI, we check if any of the versions can be collected. If not, then
the oldest vers ion is selected for replacement. We adopt a write-one policy, i.e.,
only one version is written to version pool each time. Note that writing one
version at a time to a version pool does not lead to an 1/0 for every replacement
as buffering can be used. For recovery purposes, however, we utilize a separate
log file. This would store the updates to the databases before the transaction
commits. This makes it unnecessary to flush the versions pool writes to disk
before committing a transaction.

Dynamic on-page caching allows the benefits of on-page caching described
above to be more fully utilized. Results in [5] suggest that queries execute faster
as the size of the on-page cache is increased. By allowing this size to be deter­
mined dynamically, we can accommodate secondary versions more efficiently.
This method also adapts well to nonuniform access patterns. For pages that
see Httle or no update activity, the portion of the page that otherwise would be
set aside for the cache is available for primary versions. However, when a page

VERSION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 163

is updated frequently it becomes a hotspot [11]. In this case, with a fixed cache
size, cache overflow would occur frequently and the performance benefits of
on-page caching are reduced. To address this problem, the size of the dynamic
on-page cache is controlled dynamically based on the update frequency of the
page.

One important side effect of a dynamic on-page caching scheme is the ca­
pability to tailor the cache size to meet the needs of a known work load. For
example, when the workload is dominated by update operations, then the cache
size will be adjusted to accommodate a sufficient number of secondary versions.
When the workload is dominated by sequential scan queries, a smaller cache
size will result. This will tend to preserve locality among the primary versions
and allow these types of queries to complete faster. Databases inevitably ex­
perience non-uniform access patterns resulting in the creation of hot spots in
certain regions of the database. An inability to adapt the cache size as required
will tend to reduce the throughput of the database system. Fixed size on-page
caches behave as if there is no cache at alI once they become full. This is
because, every update causes some version to be pushed to the version pooI.
Hotspots can provide sufficient update activity to fill an on-page cache and
lead to reduced effectiveness. Dynamic modification of on-page cache size can
adapt to such non-uniform access patterns. Below, we present a strategy for
controlling on-page cache size to address this problem.

Hotspots are characterized by rapid version creation. We propose to use the
following measure to characterize the intensity of update activity.

hoLrate = num_vers
curr _timestamp - ver _timestamp

In the definition, num_vers is the number of versions created, curr _timestamp
is the current timestamp, and ver _timestamp is the time at which num_vers
was last set to zero. Thus, this measure approximates the update rate for the
page. We mitigate the effect of a hot spot by splitting the corresponding B+­
tree index page early. That means, a page that meets our criterion would be
split even before it is full. This splitting is triggered when hoLrate reaches
some predefined limit.

Splitting a page early causes updates to complete faster. This is because
the updates are now distributed to the two pages that resulted from the split.
This leads to less contention and thus higher throughput. Further, immediately
after a page split, the amount of free space in the page increases to 50%. So,
more versions can be accommodated. The positive effect of on-page caching
on utilization of disk blocks is offset by splitting the page early. However, as
we expect only a relatively small portion of the database will meet our criteria
for a hot spot, this reduced utilization will only apply to a small portion of the
database.

10.4 VERSION DIRECTORY

164 DATABASE SECURITY XII

We propose storing the timestamp informat ion and vers ion pointers in memory.
A similar idea for storing timestamp informat ion in a single versioned system
is proposed in [4]. After the tuple identifier for a key value is located using the
index, we can use the in-memory structure to determine where the appropriate
version resides with no additional 1/0 operations. In this scheme, at startup,
the database is single versioned and alI tuples have a default timestamp. At
this moment, no timestamp information is required. Since all tuples have the
same default timestamp, it need not be stored with each tuple. As updates
and inserts occur, the version directory is used to store information about the
version chains that are being formed. So, the version directory only needs to
store information about version chains that do not have a default timestamp on
the primary version. Thus, we assume that if information about a tuple is not
available in the version directory, then it has a default timestamp. Note that the
size of the version table is proportional to the number of active transactions
and not the size of the database. This is because we only need to maintain
information about versions that have been updated recently. From time to
time, the default timestamp can be reset to a higher value. This allows us to
collect some of the memory tied up in the table. When the default timestamp is
changed, all versions with smaller timestamps can be removed from the vers ion
directory. We ensure that no active transaction exists with a timestamp below
the default timestamp. Any such transactions are aborted. For more details
refer to [14].

Storing version information in memory improves the performance of trans­
actions at dominating security levels. We use a secure timestamp generator
based on the protocol described in [10]. As explained earlier, due to the *­
property [3], a database can only be queried by transactions at dominating
security levels. Combined with our timestamp generation method this forces
high-level transactions to access older versions. If the appropriate version for
these queries resides in the vers ion pool then it would require multiple disk 1/0
for retrieving that vers ion. Using a version directory we can avoid this bias
against high-Ievel transactions and ensure that all versions can be acces sed
with at most one disk access.

We can think of the version directory as a more efficient method of storing
and caching, in memory, the timestamp and version chain information. To see
the advantage of this approach, consider the following example. Assume that
tuples require, on average, 200 bytes of storage and that timestamps requires
16 bytes each. The two timestamps associated with each tuple amounts to
an overhead of about 15%. Thus, each page in the buffer pool is only 85%
effective. This is especially troubling when we realize that the majority of the
timestamps are old enough to be replaced by a single default value. Thus by
maintaining only those timestamps that are actually necessary, we reduce this
overhead considerably. This leads to higher effective 1/0 rates, and a better
use of memory.

A hash table is used for storing the vers ion information. Hashing is done in
such a way that all tuples lying in the same page would have their information

VERSION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 165

I T~ J ""gnm

--------/ I ~
I~II ~ I~I. ~ i==~ ,.,,1/ ~

I ""'""'" I """"""" --

File I File I fiI, I MIoare' M..,., M...,u

Buflu MMl,itf I I BufrcrMuaga II Burr<:rManap I
R~M)u," M(JIf/J,rt'

'" /
RUOfir«: M'IIII/I.St'r RUf)tlI'(Y MUlUJg~'

/ l.oJ Mtoorct I I l.oJMaoqet i\
I DTOS I I DTOS I

Figure 10.2 Architecture of Star-DBS

stored in the same hash chain. During garbage collection, versions in a page
can be collected by looking at one hash chain.

10.5 IMPLEMENTATION ASPECTS

The design discussed above was implemented as part of the *-DBS project.
The prototype is hosted on Distributed Trusted Operating System (DT OS)
[12]. DTOS is an experimental prototype operat ing system developed at Se­
cure Computing Corporation. It provides mechanisms to implement multilevel
security on the CMU Mach Microkernel [1] [8]) and provides policy-based con­
trol over all Mach services.

Figure 10.2 shows the architecure of the Star-DBS prototype. The trusted
components are shown shaded. The prototype adopts a client/server architec­
ture. A transaction executing at a client begins by contacting a transaction
manager (TM) which assigns it a timestamp. For details on the protocol gov­
erning secure timestamp generation refer to [10]. The TM provides timestamps
to transactions at all security IeveIs. The transaction then proceeds to make
service requests to one or more resource managers (RM). When the transaction
is complete, it contacts the transaction manager again to request that its work
be committed.

Each RM is implemented as an untrusted subject performing operations on
behaif of clients at a single Ievel. The RM implements a restricted SQL-like
RPC level interface (i.e., no nested queries, no aggregates, no sortby, and no
support for groups) . The RM makes pin/unpin requests to the buffer man­
ager (BM) [2]. The buffer manager controls the movement of data between the
persistent and volatile portions of the database for all security levels. It also
coordinates logging with page flushes to enforce the write ahead logging (WAL)
protocol[9]. Each RM is multithreaded allowing it to service requests from mul-

166 DATABASE SECURITY XII

tiple clients concurrently. The log manager [13] writes uninterpreted undo/redo
records to the log on behalf of RMs, writes commit and abort records on behalf
of the TM and controls the flushing of log records to disk.

The designs described in this paper were implemented on the DTOS oper­
ating system and consists of approximately 5000 lines written in C. The role of
this implementation is to act as a file manager within the architecture shown
in Figure 10.2.

One of the important implementation challenges was the version table. The
version directory is organized as a hash table. Bach security level maintains
an independent version directory for the versions residing at its security level.
This version information is accessed by alI transactions at the same security
level as well as by transactions at dominating security levels. Thus, this involves
realizing a logically single version directory with independent version directories
at each security level. In our prototype, mandatory access control is enforced
by a trusted component of the buffer manager. We utilize this component to
alIow high-Ievel transactions to access version directories at lower levels. Bach
RM creates a file that holds the version directory for that level. Transactions
at higher level thus retrieve the buffer containing the entry they wish to access.
In case, a subject at the lower security level tries to pin this page in write
mode, the page is copied to another buffer [2]. Retrieval and traversal through
the hash list are done transparently through an interface implemented within
the RM. This interface abstracts away the security related issues and provides
functionality allowing alI standard operations on a hash table. So, RMs need
not explicitly do anything special to retrieve an entry in the version directory,
even if it resides in another security level.

Our RM is implemented as an untrusted subject. A single version direc­
tory for alI the RMs at different security levels would have required a trusted
implementation. An untrusted implementation eliminates the need for formal
security evaluation of the component and alIows simpler prototyping.

10.6 EXPERIMENTAL RESULTS

The implementation provided a means to test the feasibility and performance of
the ideas we developed. We were interested in the effect of not storing version
information in stable storage on performance.

The first test conducted was to observe how the size of the on-page cache
would vary if no limit was placed on its size. In particular we wanted to observe
the variance of on-page cache size. A wide variance in on-page cache size across
the database suggests that dynamic control will be effective. For this purpose, a
database was populated with tuples whose key values were generated randomly
with uniform distribution from the set 1, ... , 100,000. Then, tuples were chosen
following a uniform distribution from this set for update. Selection is done
with replacement so that one tuple may be updated several times during an
experiment. On average, for every ten tuples in the database, one update
operation was applied. This means the average size of a version chain is 1.1
versions. This value was motivated by results of a performance study described

VERSION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 167

in [5]. Page size for the database was 4096 bytes. Tuple size was chosen to allow
30 tuples per page. Tuples were inserted until the database consisted of about
100 data pages. At the end of aH insert and update operations, the number of
primary and secondary versions in each data page was measured.

The distribution of on-page cache size is given by the histogram shown in
Figure 10.3. On the x-axis is shown the size of the on-page cache as a percentage
of the page size. The percentage of pages that have a particular cache size
is shown on the y-axis. We repeated the experiment five times. For each
experiment we compute the mean, i.e., Xl, X2, ... , X5. We then calculate the
mean and standard deviation for this collection of five samples. Assuming
a normal distribution, we calculated 90% confidence intervals for the sample
mean using the formula:

(X _ 1.640", X + 1.640")
Vn Vn

In the expression X represents the mean of the five sample means, O" represents
their standard deviation and n represents the number of measurements (i.e.,
five). The mean cache size is 8.816% with a 90% confidence interval of (8.415,
9.218).

As can be seen the size of on-page cache in each page varies widely. This
significant variation in the size of on-page cache makes it extremely difficult to
predefine a particular size for the on-page cache. AIso, a significant portion of
the database is populated with pages which have no secondary versions at alI.
This is indicated by the number of data pages with zero on-page cache size.
This shows that a significant number of elements experienced no updates at aU
and thus validates our assumptions that storing timestamps in the data page
is not efficient.

Another test was devised to observe the savings in disk 1/0 due to the version
table. The scheme we compare our savings against is Data Page scheme (DP)
[6]. In this method, aU of the version information is stored with the primary
version. So, the number of disk I/Os required to retrieve the primary version
would be one, and overaH, the number of accesses needed to retrieve any version
in the version chain would not be more than two. A database was created as
discussed above. However, to remove the effects of dynamic on-page caching
on the version table we set the maximum size of the on-page cache at 10% of
the data page size. The same set of key values were used in both cases. Then,
a query is run to execute a table scan over the tuples in the database. The disk
1/0 required when the version directory was used is measured and the disk 1/0
with DP is also measured. The mean savings obtained are 7.556% with a 90%
confidence interval of (6.920, 8.192). With dynamic on-page caching enabled
even more versions would reside in the data page itself and this would help to
increase the savings in disk 1/0.

To examine the combined effect of dynamic on-page caching and the version
table, tests were conducted using a non-uniform access pattern. We characterize
the amount of nonuniformity or access skew as x%, implying that x% of access

168 DATABASE SECURITY XII

35

30

î
'" 25

j
1;j
"C

'O 20

~
lij"15

8
'O
(;;
-g 10

" z

5

o

-

2

-

-
,---

-

II .--------.
6 10 14 18 22 26 30

On-page Cache Size (% of page size)

Figure 10.3 Distribution of On-page Cache Size

34 38

requests are directed to 100 - x% of the data elements in the database [11]. The
database is divided into two parts, the first constitutes x% of the data items
and the second represents the reminder (100 - x%). With probability l~~OX a
transaction accesses the first part. An element of this set is chosen based on
a uniform distribution. Thus, for a 70% Skew, 70% of the accesses are to 30%
of the data elements. Our tests ranged from a uniform distribution (a skew of
50%) to a 90% skew.

So, for each level of skew considered, we measured the disk 1/0 that was
saved by a query scanning the entire relation. Again, a database was created as
described above. Only the updates to the database were skewed. Then a query
was run in isolation when ali the update and insert activity in the database
was complete. The timestamp of this query is between the timestamps selected
for updates and inserts. This means, if no update was applied to a version
then the primary vers ion is the appropriate version for this query. If an update
operation was applied, then the secondary version is the appropriate version.
The results obtained are shown in Figure 10.4. The difference between the
disk 1/0 required for a query with a fixed on-page cache size of 10% using DP,
and the disk 1/0 for our design is expressed as a percentage plotted on the
y-axis. For each access skew, the test was repeated five times and the average
and variance are shown on the plot. The error bars represent 90% confidence
intervals.

VERSION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 169

48

46

44

"O

~42
cn
O
~40
III
Ci

~38
'E
8
Gl36 o..

34

32

30
45 50 55 60 65 70 75 80 85 90 95

AccessSkew

Figure 10.4 Disk 1/0 Reduction as a function of Access Skew

As can be seen, as the amount of skew increases, the disk 1/0 saved also
increases. This is because, due to the formation of hotspots, the pages are split
earlier. This leads to more versions being held within the data page and hence
a saving in disk 1/0. AIso, savings accrue due to the version directory that
reduces disk 1/0 required when the appropriate version for the query resides
in the version pooI. As noted earlier, in a hot spot, the performance of fixed
size on-page caches degrades. This effect becomes more pronounced as access
skew is increased. This is because more versions are pushed to version pooI.
As disk 1/0 for retrieving versions in version pool is reduced with our scheme,
the corresponding savings in disk 1/0 increases.

10.7 CONCLUDING REMARKS

We have presented a design for version management in a multilevel secure
database system and described a prototype based on this design. In address­
ing the issues relating to storage of versions we found that a dynamic on-page
caching scheme can effectively adapt to non-uniform access patterns. The ver­
sion directory improves performance by reducing the overhead of maintaining
version information. However, the version directory is constructed from a set
of independent version directories each associated with aRMat that secu­
rity leveI. This was done with support from DTOS and the buffer manager.

170 DATABASE SECURITY XII

The combined effects of dynamic on-page caching and the version table show a
reduction in 1/0 of between 32 and 47% over the DP method of [6].

References

[1] Mike Accetta, William Bolosky Robert Baron, David Golub, Richard
Rashid, Avadis Tevanian, and Michael Young. Mach: A new kernel foun­
dation for unix development. Proceedings oI the Summer 1986 USENIX
Conlerence, Summer 1986.

[2] Ashwin Baskaran. Buffer management for a multilevel secure dbms. Mas­
ter's thesis, Dept. of Computer Science and Engineering, The Pennsylvania
State University, University Park, PA 16802, December 1996.

[3] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition
and multics interpretations. Technical Report MTR-2997, Mitre Corp.,
March 1976.

[4] P.A. Bernstein, V. Hadzilacos, and N.Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, Reading, MA, 1987.

[5] Paul Bober and Michael Carey. On mixing queries and transactions via
multiversion locking. Proceedings oI the Eight IEEE Data Engineering
Conlerence, 1992.

[6] Paul Bober and Michael Carey. Indexing alternatives for multiversion
locking. Technical Report 1184, Dept. of Computer Science, University of
Wisconsin-Madison, November 1993.

[7] A. Chan, S.Fox, W. Lin, A. Nori, and D. Ries. The implementation of an
integrated concurrency control and recovery scheme. Proceedings oI ACM
SIGMOD Conlerence, 1982.

[8] David Golub, Randall Dean, Alessandro Forin, and Richard Rashid. Unix
as an application program. Proceedings oI the USENIX Conlerence, Sum­
mer 1990.

[9] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, San Mateo, CA, 1993.

[10] T. F. Keefe and W. T. Tsai. Multiversion transaction scheduler for central­
ized multilevel secure database systems. Technical Report TR-93-116, De­
partment of Computer Science and Engineering, The Pennsylvania State
University, January 1993.

[11] Vijay Kumar, editor. Perlormance of Concurrency Control mechanisms in
Centralized Database Dystems. Prentice HalI, Englewood Cliffs, NJ, 1996.

[12] Spencer E. Minear. Providing policy control over object operations in a
mach based system. Proceedings of USENIX Conference, pages 1-15, April
1995.

[13] V. R. Pesati, T. F. Keefe, and S. Pal. The design and implementation of
a multilevel secure log manager. Proceedings of the IEEE Symposium on
Security and Privacy, page 55 64, May 1997.

VERS ION MANAGEMENT IN THE STAR MLS DATABASE SYSTEM 171

[14] Ramprasad Sripada. The design of a multiversion database file manager
for multilevel secure systems. Master's thesis, Deptartment of Computer
Science and Engineering, The Pennsylvania State University, August 1997.

[15] A. C. Warner and T. F. Keefe. Version pool management in a multilevel
secure multiversion transaction manager. Proceedings of IEEE Symposium
on Research in Security and Privacy, May 1995.

