
Describing Software Architecture with UML 

C. Hofmeister, R. L. Nord, D. Soni 
Siemens Corporate Research, Princeton, New Jersey, USA 
{chofmeister, mord, dsonij@scr.siemens.com 

Key words: Software architecture, UML, architecture descriptions, multiple views 

Abstract: This paper describes our experience using UML, the Unified Modeling 
Language, to describe the software architecture of a system. We found that it 
works well for communicating the static structure of the architecture: the 
elements of the architecture, their relations, and the variability of a structure. 
These static properties are much more readily described with it than the 
dynamic properties. We could easily describe a particular sequence of 
activities, but not a general sequence. In addition, the ability to show peer-to­
peer communication is missing from UML. 

1. INTRODUCTION 

UML, the Unified Modeling Language, is a standard that has wide 
acceptance and will likely become even more widely used. Although its 
original purpose was for detailed design, its ability to describe elements and 
the relations between them makes it potentially applicable much more 
broadly. This paper describes our experience using UML to describe the 
software architecture of a system. 

For these architecture descriptions, we wanted a consistent, clear 
notation that was readily accessible to architects, developers, and managers. 
It was not our goal to define a formal architecture description language. The 
notation could be incomplete, but had to nevertheless capture the most 
important aspects of the architecture. In this paper we start by giving an 
overview of the kinds of information we want to capture in a software 
architecture description. Then we give an example of a software architecture 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999 

http://dx.doi.org/10.1007/978-0-387-35563-4_35


146 C. Hofmeister, R. L. Nord, and D. Soni 

description for part of particular system: the image processing portion of a 
real-time image acquisition system. The final section discusses the strengths 
and weaknesses of UML for describing architecture. 

We separate software architecture into four views: conceptual, module, 
execution, and code. This separation is based on our study of the software 
architectures of large systems, and on our experience designing and 
reviewing architectures (Soni, 1995). The different views address different 
engineering concerns, and separation of such concerns helps the architect 
make sound decisions about design trade-offs. 

The notion of this kind of separation is not unique: most of the work in 
software architecture to date either recognizes different architecture views or 
focuses on one particular view in order to explore its distinct characteristics 
and distinguish it from the others (Bass, 1998). The 4+ 1 approach separates 
architecture into multiple views (Kruchten, 1995). The Garlen and Shaw 
work focuses on the conceptual view (Shaw, 1996). Over the years there has 
been a great deal of work on the module view (Prieto-Diaz, 1986). There is 
other work that focuses on the execution view, and in particular explores the 
dynamic aspects of a system (Kramer, 1990; Purtilo, 1994). The code view 
has been explored in the context of configuration management and system 
building. 

The conceptual view describes the architecture in terms of domain 
elements. Here the architect designs the functional features of the system. 
For example, one common goal is to organize the architecture so that 
functional features can be added, removed, or modified. This is important for 
evolution, for supporting a product line, and for reuse across generations of a 
product. 

The module view describes the decomposition of the software and its 
organization into layers. An important consideration here is limiting the 
impact of a change in external software or hardware. Another consideration 
is the focusing of software engineers' expertise, in order to increase 
implementation efficiency. 

The execution view is the run-time view of the system: it is the mapping 
of modules to run-time images, defining the communication among them, 
and assigning them to physical resources. Resource usage and performance 
are key concerns in the execution view. Decisions such as whether to use a 
link library or a shared library, or whether to use threads or processes are 
made here, although these decisions may feed back to the module view and 
require changes there. 

The code view captures how modules and interfaces in the module view 
are mapped to source files, and run-time images in the execution view are 
mapped to executable files. The partitioning of these files and how they are 



Describing Software Architectures with UML 147 

organized into directories affect the buildability of a system, and become 
increasingly important when supporting multiple versions or product lines. 

Each of the four views has particular elements that need to be described. 
The elements must be named, and their interface, attributes, behavior, and 
relations to each other must be described. Some of the views also have a 
configuration, which constrains the elements by defining what roles they can 
play in a particular system. In the configuration, the architect may want to 
describe additional attributes or behavior associated with the elements, or to 
describe the behavior of the configuration as a whole. 

In the next four sections, we show how we used UML to describe each of 
these four views, starting with the conceptual view and ending with the code 
view. To make the explanation clearer, we use an example from an image 
acquisition system. 

The image acquisition system acquires a set of digitized images. The user 
controls the acquisition by selecting an acquisition procedure from a set of 
predefined procedures, then starting the procedure and perhaps adjusting it 
during acquisition. The raw data for the images is captured by a hardware 
device, a "camera", and is then sent to an image pipeline where it is 
converted to images. The image pipeline does this conversion, first 
composing the raw data into discrete images, and then running one or more 
standard imaging transformations to improve the viewability of the images. 
The image pipeline is the portion of the system that we will use as an 
example. 

2. CONCEPTUAL ARCHITECTURE VIEW 

The basic elements in the conceptual view are components with ports through 
which all interactions occur, and connectors with roles to define how they 
can be bound to ports. The components and connectors are bound together to 
form a configuration. In order to bind together a port and role in a 
configuration, the port and role protocols must be compatible. Components 
can be decomposed into other components and connectors. These elements, 
their associated behavior, and the relations of the conceptual view are 
summarized in Table 1. 

Table 1. Elements of a conceptual architecture view 

Elements Behavior 

component 
port 
connector 
role 

component functionality 
port protocol 
connector protocol 
role protocol 

Relations 

component decomposition 
port-role binding (for 
configuration) 



148 C. Hofmeister, R. L. Nord, and D. Soni 

Figure 1 is a UML diagram that describes much of the conceptual view 
for the image pipeline. It is represented by the ImagePipeline component, 
which has ports acqControl for controlling the acquisition, packetln for the 
incoming raw data, and framedOutput for the resulting images. 

The ImagePipeline is decomposed into a set of components and 
connectors that are bound together to form a configuration. The components, 
ports, and connectors are a stereotype of Class 1, but we use the convention of 
special symbols for ports and connectors (and leave off the stereotype for 
components) in order to make the diagrams easier to read. Roles are shown 
as labels on the port-connector associations. We also use the convention that 
when an association's multiplicity is not specified, it is assumed to be one. 

lmlgePipellne 

Figure 1. Conceptual configuration 

The multiplicities on the components, connectors, and bindings show the set 
of allowable configurations. Each acquisition procedure has a distinct set of 
processing steps, represented by the Imager component. So the diagram shows 
the general structure of an image pipeline, which all acquisition procedures 
adhere to. 

The first stage of the pipeline is the Framer, followed by one or more 
subsequent stages, represented by the Imager. Each of the stages is connected to 

"A stereotype is, in effect, a new class of modeling element that is introduced at modeling 
time. It represents a subclass of an existing modeling element with the same form 
(attributes and relationships) but with a different intent... To permit limited graphical 
extension of the UML notation as well, a graphic icon or a graphic marker (such as texture 
or color) can be associated with a stereotype." (UML, 1997) 



Describing Software Architectures with UML 149 

the pipelineControl port via a Client/Server connector. The Imager component 
has a multiplicity of "1.. *", meaning that an acquisition procedure has one or 
more of these later stages. 

The Imager is bound to "1.. *" Client/Server connectors, but the association is 
one-to-one, so each Imager instance is bound to exactly one Client/Server 
instance. Each Client/Server instance is bound to the pipelineControl port of 
exactly one PipelineMgr, but pipelineControl is bound to all Client/Server 
instances in the pipeline. Similarly the "1.. *" ImagePipe connectors have a one­
to-one association with the Imagers. Because the bindings also have 
multiplicities, we can conclude that there are the same number of Client/Server, 
Imager, and lmagePipe elements bound together in a legal configuration. 

We use the " {or}" annotation at the source side of the ImagePipe to show 
that an ImagePipe is either bound to the output of the first stage or a later stage. 
But while the output of the first stage (the Framer) is always bound to the 
lmagePipe, the later stages could be bound to framedOutput. When a later stage 
is bound to framedOutput, it is necessarily the last stage in the pipeline . 

.. 
<<protocol>> 

ReQuestoataPacmt 

ircomirg /reques!P<JJ:.kel 
pac ket(p:j) 

outgoirg 
subscribe 
des ubsc ri be 
requestP <JJ:. ket 

Figure 2. Protocol for packetln Port 

Figure 2 shows the protocol RequestDataPacket, which the packetln ports on 
the ImagePipeline and Framer follow. We have adopted the ROOM notation 
here, showing the incoming and outgoing messages, then either a sequence 
diagram or state diagram to show the legal sequences of these messages (Selic, 
1994; Selic, 1998). 

The resource budgets are attributes of the components and connectors. 
They can be described in the attribute box of the appropriate class in a UML 
diagram, in a table, or in text. 



150 C. Hofmeister, R. L. Nord, and D. Soni 

For the conceptual view, we represent components, ports, and connectors 
as stereotyped classes. Decomposition is shown with nesting (association), 
and bindings are shown by association. We use: 

UML Class Diagrams for showing the static configuration. 
- ROOM protocol declarations and UML Sequence Diagrams or State 

Diagrams for showing the protocols that ports adhere to. 
UML Sequence Diagrams for showing a particular sequence of 
interactions among a group of components. 

3. MODULE ARCHITECTURE VIEW 

In the module architecture view, subsystems are decomposed into 
modules, and modules are assigned to layers in accordance with their use­
dependencies (Table 2). There is no configuration for the module view 
because it defines the modules and their inherent relations to each other, but 
not how they will be combined into a particular product. 

Table 2. Elements of the module architecture view 

Elements Behavior Relations 

module 
subsystem 
layer 

interface protocol module implements 
conceptual component 
subsystem decomposition 
module use-dependency 

Table 3 shows how the image pipeline's conceptual elements are mapped to 
module elements. Notice that ports, connectors, and components are sometimes 
combined into one module. This information could also be shown in a UML 
class diagram, with the mapping between conceptual and module elements 
shown as an explicit association. 

Table 3. Mapping between conceptual and module architecture views 

Conceptual element Subsystem or Module 

lmagePipeline 
acqControl, pipelineControl 
PipelineMgr,lmagePipe, Client/Server 
stageControl , imageln, imageOut 
Framer 
Imager 

SPipeline 
MPipelineAPI 
MPipelineControl, MlmageBuffer 
MlmageMgrAPI 
MFramer 
Mlmager 

The SPipeline subsystem is decomposed into the six modules shown in 
Figure 3. This decomposition is dictated by the modules' correspondence to 
the conceptual elements, and their decomposition. Again we use nesting to 



Describing Software Architectures with UML 151 

show the decomposition, and we use stereotypes for each different type of 
element. 

We do not use the UML "component" notation for a module, because in 
the module view the modules are abstract, not the physical modules of 
source code. 

I 

«module>> 
MPipelineAPI 

«module>> 
MlrnageMgrAPI 

<<subsystel11>> 
SPipeline 

<<module>> 
M PipelineControl 

«module>> 
M lrnageBuffer 

«module>> 
MFrarrer 

«module>> 
Mlrnager 

Figure 3. Decomposition of SPipeline 

The use-dependencies among the pipeline modules are also derived from 
the conceptual elements' associations. These are shown in Figure 4. The 
MClient and MDataMgrAPI are not part of the SPipeline subsystem, but we 
included them in order to show all use-dependencies of the SPipeline 
subsystem. We use the UML "lollipop" notation to show the interface(s) of 
each module, and to make it clear that the modules are dependent on the 
interface of another module, not the module itself. 

Figure 4 also shows some of the layers of the system. These are based on 
the use-dependencies among modules and subsystems, so we often show 
use-dependencies between and within layers in the same diagram, as we did 
here. 

For the interface definition, we use a simple list of the interface methods. 
This information could be put inside the class definition in a UML diagram. 
We generally prefer to list it separately, using the class diagrams to focus on 
the relations among modules rather than a complete description of the 
modules. In the module view, we represent modules with a stereotyped class, 
and subsystems and layers with stereotyped packages. Decomposition is 
shown by nesting (association), and the use-dependency is a UML 
dependency. 

We use: 
- tables for describing the mapping between the conceptual and module 

views. 



152 C. Hofmeister, R. L. Nord, and D. Soni 

- UML Package Diagrams for showing subsystem decomposition 
dependencies. 
UML Class Diagrams for showing use-dependencies between modules. 
UML Package Diagrams for showing use-dependencies among layers 
and the assignment of modules to layers. 

I 

I «mcdul.,.> I 
Me lien! 

<<layer>> 
ApplicalionServicos 

« layer>> 
IIIIIQIIProoessirg 

Figure 4. Use-dependencies of SPipeline 

4. EXECUTION ARCHITECTURE VIEW 

The execution architecture view describes how modules will be 
combined into a particular product by showing how they are assigned to run­
time images. Here the run-time images and communication paths are bound 
together to form a configuration. Table 4 lists the elements, behavior, and 
relations of the execution view. 

Table 4. Elements of the execution architecture view 

Elements Behavior 

run-time image 
communication path 

communication protocol 

Relations 

run-time image contains 
module 
binding (for configuration) 



Describing Software Architectures with UML 153 

The execution configuration of the Image pipeline in Figure 5 indicates 
that there is always just one EC!ient process, but multiple pipelines can exist 
at one time. A pipeline has one process each for EPipelineMgr, 
ElmageBuffer, and EFramer, and one process each for additional pipeline 
stages. 

We again use a stereotype of the UML Class for run-time images. They 
are stereotyped with the name of the platform element, in this case 
<<process>> or <<shared data>>. We originally used the UML "active 
object" notation for a process, but now prefer to use a stereotyped class. One 
reason is that we often want to use classes rather than objects in a 
configuration diagram. A second reason is that active objects have a thread 
of control, whereas passive objects run only when invoked (UML, 1997). 
This distinction was not what we wanted to describe; we wanted to 
characterize the run-time image by its platform element (e.g. process, thread, 
dynamic link library, etc.) rather than convey control flow information about 
the elements. 

<<PrOCesS>> 1 <<process>> * 
ECIIenl EPipellneMgr 

I I 0 .. 1 
MCII&nl MPipellneControl 

IPC 1 1 

«rrodUe>> * / " I MPipelneAPI·r- 7 
* <<process>> * <<shMEdda.ta>> * <<process>> 

Efran11r ElmgeiiUIIer E"'-r 

I 1/ 1 <<module>> *1 «module>> J 
UlmgeMgrAPI 11 rtw 1 l Mllnilgellltfer J 1 rtw i_ M"'-MgrAPI 

shared shared 

I I 
I «module>> I memory memory <<module>> 

UllralaMgrAPI M.,_r 

I «module>> I 
LlfntiTJlr 

Figure 5. Execution configuration of the image pipeline 

This diagram uses nesting to show the modules associated with each run­
time image. The modules have a multiplicity that is assumed to be one if 
none is explicitly shown. In the configuration in Figure 5, there are multiple 
modules MlmageMgrAPI, but at most one per process, and only in the 
EFramer and Elmager processes. There are also multiple modules 
MPipelineAPI in the configuration, but all of these reside in process EClient. 

The run-time images also have multiplicity, as do communication paths, 
which are labeled to show the communication mechanisms. This has the 
same implications as for the conceptual configuration, namely that with 
multiplicities on the run-time images, communication paths, and modules we 
can show all allowable configurations in a single diagram. 



154 C. Hofmeister, R. L. Nord, and D. Soni 

UML class diagrams cannot show dynamic behavior, so we use different 
diagrams to show the dynamic aspects of configurations. Figure 5 shows the 
configuration of the pipeline during an imaging procedure. The processes 
that implement the pipeline are created dynamically when the imaging 
procedure is requested, and are destroyed after the procedure has completed. 
A UML sequence diagram shows how the pipeline is created at the start of a 
procedure (Figure 6). 

For the execution view, we represent the run-time images as stereotyped 
classes, and the communication paths as associations. Module containment is 
shown by nesting (association). We use: 
- UML Class Diagrams for showing the static configuration. 

UML Sequence Diagrams for showing the dynamic behavior of a 
configuration, or the transition between configurations. 

- UML State Diagrams or Sequence Diagrams for showing the protocol of 
a communication path. 

:ECiient 
(module MPipelineAPI) 

create 

create 

create 

Figure 6. Image pipeline creation 

5. CODE ARCHITECTURE VIEW 

The code architecture view contains files and directories, and like the 
module view, does not have a configuration. The relations defined in the 
code view apply across all products, not just to a particular product. The 
code view elements and their relations are listed in Table 5. Modules and 
interfaces from the module view are partitioned into source files in a 
particular programming language. 

Table 6 shows this mapping for the MPipelineControl module and its 
interfaces: the public interfaces are each mapped to a file, and we have 
created an additional file for the private interface to the module. 



Describing Software Architectures with UML 

Table 5. Elements of code architecture view 
Elements Relations 

source implements module 
source includes source 

155 

source 
intermediate 
executable 
directory 

intermediate compiled from run-time image 
executable implements run-time image 
executable linked from intermediate 

Table 6. Source files for module MPipelineControl 
Module or Interface Source File 

MPipelineControl 

IPipelineControl 
IStageControl 

CPipelineControl.CPP, 
CPipelineControiPvt.H 
CPipelineControl.H 
CStageControl.H 

<<cireclory>> 
<<Source» PipelineControl 

CPIPehneControl CPP __ _ 

' 
\ ... ' 

<<directory>> 
PipelineAPI 

<<Source:-> 
CPipeline.H 

<.::Source>> 
CPipelinePvt.H 

<<Source>> 
CPipelineControiPvt.H 

<<Source» 
CstageControi.H 

Figure 7. Include dependencies among source files 

<<directory>> 
lmageMgrAPI 

<<Source>> 
ClmageMgr.H 

<<Source>> 
ClmageMgrPvt.H 

The source files are organized into directories, as shown in Figure 7. We 
use the UML "component" notation to represent the files, and the package 
notation for directories. Both files and directories have stereotypes to clarify 
their meaning. In UML, the component symbol is used for "source code 
components, binary code components, and executable components" (UML, 
1997). We believe the intention of this symbol is closest to our notion of a 
file (whether source, intermediate, or executable). 



156 C. Hofmeister, R. L. Nord, and D. Soni 

Figure 7 also shows the include dependencies for the PipelineControl 
source files. We use the UML dependency notation for these relationships, 
with the stereotype <<include>> if the diagram contains more than one type 
of dependency. Source files can also have a "generate" dependency, for 
example when a preprocessor uses one source file to generate another. 

The run-time images from the execution view also have a relationship to 
elements in the code view, in this case to executable files. Table 7 shows 
how two of the run-time images in the image pipeline are mapped to 
executable files. Here the mapping is one-to-one, but if the run-time image 
contained dynamic link libraries, each of these libraries would be in a 
separate executable file. 

Table 7. Mapping between run-time image and executable file 
Run-time Image Executable File 

EPipelineMgr 
EFramer 

EPipelineMgr.exe 
EFramer.exe 

The executable files are also organized into directories (Figure 8). The 
relationship between executable files and source files is through intermediate 
files. An executable file has link dependencies to the object files it links in, 
and an object file has compile dependencies to the source files from which it 
is compiled. These dependencies are also shown in Figure 8. 

For the code view, we represent the source, object, and executable files 
as stereotyped classes, and the directories as stereotyped packages. The 
include, compile, and link relationships are shown as stereotyped 
dependencies. We use: 
- Tables to describe the mapping between elements in the module and 

execution views and elements in the code view. 
- UML Component Diagrams for showing the dependencies among source, 

intermediate, and executable files. 

6. DISCUSSION 

Table 8 summarizes the elements of our four architecture views and their 
corresponding UML Metamodel Classes and stereotype names, if any. For 
relations among the architecture description elements, we use UML 
associations and dependencies. We generally create a separate diagram for 
each kind of relation, but sometimes we combine them (e.g. the execution 
configuration diagram). 

We use UML Class/Object, Package, and Component Diagrams for the 
elements and their relations, sometimes including the interfaces and 



Describing Software Architectures with UML 157 

attributes in these diagrams. Sequence Diagrams or State Diagrams are used 
to describe behavior. 

l 

<<d:rectory>> 

8 « executable» 
EPipellneMgr.exe 

I 
:<<link>> 

J 
------, <<cirectorv>> 

<<drectory>> 

8. IEFrmw --
EFramer.exe 

<<hnk>>,' : " .. «link>> 
/ : <<link>> " .. 

<<directory>> 

<<directory>> 

Figure 8. Dependencies among source, object, and executable files 

The configuration diagrams in the conceptual and execution views are 
UML Class/Object Diagrams, but we added some conventions to help define 
the semantics and improve the readability of the diagrams. 

One convention is to use nesting to indicate decomposition. This makes 
the structure easier to see, although it can make layout difficult for complex 
structures. With this convention we cannot show recursive or indefinite 
nesting, which could be easily described in a diagram that depicts 
decomposition as a labeled association (a line) between two objects. 

A semantic convention we use is that a configuration diagram describes 
the set of possible configurations at a single point in time. Systems generally 
have defined modes, e.g. start-up, shut-down, operational, diagnosis, 
recovery, etc. Each of these modes can have a different configuration, so 
should have a different diagram. In some modes (in our example, the 
operational mode) the configuration changes over time (in our case, 
pipelines are created and destroyed with each acquisition procedure). The 
dynamic behavior should be described separately. A sequence diagram 
works well to describe start-up and shut-down behavior. 



158 C. Hofmeister, R. L. Nord, and D. Soni 

Table 8. Summary of architecture description elements 
Element UML Metamodel Class 

component Class 
port Class 
connector Class 
role label on association 
port or role protocol Class 
module Class 
subsystem Package 
layer Package 
run-time image Class 

communication path association 
source Component 
intermediate Component 
executable Component 
directory Package 

Stereotype Name 

<<component>> 
<<port>> 
<<connector>> 

<<protocol>> 
<<module>> 
<<subsystem>> 
<<layer>> 
<<process>>, <<shared 
data>>, 
<<thread>>, etc. 

<<source>> 
<<object>> 
<<executable>> 
<<directory>> 

An important concern we have about using UML to describe software 
architecture is that the same notation can have a wide range of semantics. 
We use the same basic diagram, the UML Class/Object diagram to show 
most of the aspects of the architecture. We use stereotypes and special 
symbols to minimize the confusion between different views. 

The more traditional use of UML is for the design of implementation 
classes for a system. We are also concerned that by using the same notation 
to describe the software architecture, we run the risk of further blurring the 
distinction between the architecture and the implementation. This is another 
reason to consistently use particular conventions, stereotypes, and special 
symbols for these architecture diagrams. 

In summary, we found UML deficient in describing: 
correspondences: A graphical notation is too cumbersome for 
straightforward mappings such as the correspondence between elements 
in different views. This information is more efficiently described in a 
table (e.g. Table 3). 
protocols: The ability to show peer-to-peer communication is missing 
from UML. We used ROOM to describe protocols (e.g. Figure 2). 
ports on components: We used nesting to show the relationship between 
ports and components, but this is visually somewhat misleading. We 
would prefer a notation more similar to the lollipop notation for the 
interfaces of a module. 
dynamic aspects of the structure 

- a general sequence of activities 
UML worked well for describing: 



Describing Software Architectures with UML 

the static structure of the architecture 
variability: e.g. the conceptual configuration in Figure 1 describes the 
structure of a set of pipelines. 

159 

a particular sequence of activities: e.g. the start-up behavior of an Image 
Pipeline (Figure 6). 

REFERENCES 

Bass, L., Clements, P., and Kazman, R. (1998) Software Architecture in Practice. Addison­
Wesley, Massachusetts. 

Eriksson, H., and Penker, M. (1998) UML Toolkit. John Wiley and Sons, London. 

Fowler, M., with Scott, K. (1997) UML Distilled. Applying the Standard Object Modeling 
Language. Addison-Wesley, Massachusetts. 

Hofmeister, C., Nord, R., Soni, D. (to appear) Applied Software Architecture. Addison­
Wesley, Massachusetts. 

Kramer, J., and Magee, J. (1990) The Evolving Philosophers Problem: Dynamic Change 
Management. ACM Transactions on Software Engineering, 16(11), 1293-1306. 

Kruchten, P. (1995) The 4+ 1 View Model of Architecture, IEEE Software, 12(6). 
Prieto-Diaz, R., and Neighbors, J.M. (1986) Module Interconnection Languages. The Journal 

of Systems and Software, 6(4), 307-334. 
Purtilo, J.M. (1994) The Polylith Software Bus. ACM Transactions on Programming 

Languages and Systems, 16(1), 151-174. 
Selic, B., Gullekson, G., and Ward, P.T. (1994) Real-Time Object-Oriented Modeling. John 

Wiley and Sons, New York. 
Selic, B., and Rumbaugh, J. (1998) Using UML for Modeling Complex Real-Time Systems. 

http://www.objectime.com/uml/uml.html. 
Shaw, M., and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging 

Discipline. Prentice Hall. 
Soni, D., Nord, R.L., and Hofmeister, C. (1995) Software Architecture in Industrial 

Applications, in Proceedings of the 17th International Conference on Software 
Engineering, Seattle, W A. 

UML (1997) UML Notation Guide, Version 1.1. http://www.rational .com/uml. 


	Describing Software Architecture with UML
	1. INTRODUCTION
	2. CONCEPTUAL ARCHITECTURE VIEW
	3. MODULE ARCHITECTURE VIEW
	4. EXECUTION ARCHITECTURE VIEW
	5. CODE ARCHITECTURE VIEW
	6. DISCUSSION
	REFERENCES




