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Abstract: Several notations and languages for software architectural specification have 
been recently proposed. However, some important aspects of composition, 
extension, and reuse deserve further research. These problems are particularly 
relevant in the context of open systems, where system structure can evolve 
dynamically, either by incorporating new components, or by replacing existing 
components with compatible ones. Our approach tries to address some of these 
open problems by combining the use of formal methods, particularly process 
algebras, with concepts coming from the object-oriented domain. In this paper 
we present LEDA, an Architecture Description Language for the specification, 
validation, prototyping and construction of dynamic software systems. 
Systems specified in LEDA can be checked for compatibility, ensuring that the 
behaviour of their components conforms to each other and that the systems can 
be safely composed. A notion of polymorphism of behaviour is used to extend 
and refine components while maintaining their compatibility, allowing the 
parameterisation of architectures, and encouraging reuse of architectural 
designs. 

1. INTRODUCTION 

The term software architecture (SA) has been recently adopted referring 
to the discipline of Software Engineering that deals with the description, 
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verification, and reuse of the structure of software systems (Shaw and 
Garlan, 1996). At the level of abstraction of SA, software is represented as a 
collection of computational and data elements, or components, 
interconnected in a certain way, and it is at this level where the structural 
properties of software systems are naturally addressed. SA pays special 
attention to the interaction among components, instead of the internal 
computations of these components. 

The significance of explicit architectural specifications is widely 
accepted. First, they raise the level of abstraction, facilitating the description 
and comprehension of complex systems. Second, they increase reuse of both 
architectures and components (Shaw and Garlan, 1995). However, effective 
reuse of a certain architecture often requires that some of its components can 
be removed, replaced, and reconfigured without perturbing other parts of the 
application (Nierstrasz and Meijler, 1995). These aspects are particularly 
relevant when dealing with open distributed systems, whose architecture 
evolves dynamically, and consistency has to be guaranteed for every 
substantial change produced on the system. In the context of SA, consistency 
must be analysed in terms of the compatibility between components, since 
system performance depends on the correct interaction among them. 

Although object-orientation can be applied to all levels of software 
design, in SA the more general term component-oriented is preferred, 
allowing to consider not only objects but architectures, interaction 
mechanisms and design patterns as first-class concepts of an architecture 
(Nierstrasz, 1995). However, most concepts corning from the object-oriented 
paradigm can be applied to SA. Particularly, in this work we address the 
application of inheritance, parameterisation, and polymorphism to the 
specification of software architectures. 

A number of Architectural Description Languages (ADLs) have been 
already proposed. ADLs address the need for expressive notations in 
architectural design, trying to provide precise descriptions of the glue for 
combining components into larger systems. Despite the proposed notations 
are useful for the description of complex software systems, most of them are 
not formally based, which prevents the analysis and proof of the properties 
of the systems and architectures described (Abowd et al., 1993). In addition, 
several significant issues, such as specification of dynamic systems, 
architecture parameterisation and refinement, are not usually addressed. In 
Section 9 we compare our approach with other related works, particularly 
Wright and Darwin, while an exhaustive comparison on the characteristics of 
some outstanding ADLs can be found in (Medvidovic and Rosenblum, 
1997). 

In order to avoid some of these limitations, our interests focus on the 
application of formal methods to SA. Formal specifications have a precise 
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meaning derived from the semantics of the notation used, and validation 
tools can be developed to prove properties of the systems specified. To this 
effect, process algebras are widely accepted for the specification of software 
systems, which can be checked for equivalence, deadlock freedom, and other 
interesting properties. 

Dynamic architectures are those which describe how components are 
created, interconnected, and removed during system execution, and which 
allow run-time reconfiguration of their communication topology. Formal 
specification of such systems requires the use of an adequate formalism. In 
particular, we propose the use of the 7t-calculus (Milner et al., 1992), a 
simple but powerful process algebra which can express directly mobility, 
allowing the specification of dynamic systems in a very natural manner. 
However, the 7t-calculus is a low level notation, which makes difficult its 
direct application to the specification of large systems. 

This was our original motivation for the development of LEDA, an ADL 
which embodies mechanisms of inheritance and dynamic reconfiguration. 
The language is structured in two levels: components, representing system 
parts or modules, and roles, which describe the observable behaviour of 
components. Roles are written in an extension of the 1t-calculus, thus 
allowing the specification of dynamic architectures. Each role describes the 
protocol that a component follows in its interaction with other components. 
In turn, components are described as composed of other components. The 
structure or architecture of a component is indicated by the relations among 
its subcomponents, which are expressed by a set of attachments or 
connections among the roles of these subcomponents. 

LEDA differs from other ADLs in that it makes no distinction, at the 
language level, between components and connectors, i.e. connectors are 
specified as a special kind of components. This allows the language to be 
more simple and regular, and does not impose a particular compositional 
model in the description of software architectures. 

Since the semantics of LEDA is written in terms of the 7t-calculus (Canal 
et al., 1998b ), specifications can be both executed, allowing architecture 
prototyping, and analysed. In this sense, it is possible to determine whether a 
system is safely composable, i.e. whether its components present compatible 
behaviour and can be combined to form the system. This kind of analysis has 
been traditionally limited to interface conformance, but we are also 
interested in determining whether the behaviour of a component is 
compatible with that of its environment. On the other hand, component reuse 
would be encouraged if we could check whether a certain existing 
component can be used in a new system where a similar behaviour is 
required. Again, the intuitive notion of compatibility arises. We have 
formalised compatibility of behaviour in the context of 7t-calculus (Canal et 
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a!., 1998a), ensuring that compatible roles are able to interact successfully 
until they reach a well-defined final state. Architectures written in LEDA are 
tested for compatibility in each of the attachments among roles of their 
components. Compatibility does not require that the components involved 
have strictly complementary behaviour, since we usually want to connect 
components which match only partially. 

Reuse of existing software components would be promoted if we had a 
way for adapting a component to an interface which is not compatible with 
its own interface. This is what LEDA adaptors are made for. Adaptors are 
small elements, similar to roles and also written in 1t-calculus, which are 
able to communicate successfully components whose behaviour is not 
compatible. 

Our approach is completed with mechanisms of inheritance and 
parameterisation for roles and components which ensure that compatibility is 
preserved. A child component inherits its roles from its parents, while 
redefinition of behaviour is restricted by several conditions which ensure the 
maintenance of compatibility. Thus, we can replace safely a component in an 
architecture with any other component which inherits from the former. This 
gives place to a mechanism of architecture instantiation, by which a software 
architecture can be considered as a generic framework, which can be 
partially instanced and reused as many times as needed. Component 
frameworks derive from the idea of design patterns, and they represent the 
highest level of reusability in software development: not only source code of 
components, but also architectural design is reused in applications built on 
top of the framework (Pree, 1996). In this sense, LEDA specifications can be 
considered as generic architectural patterns or frameworks which can be 
extended and reused, adapting them to new requirements (Canal et a!. , 
1997). 

Although specification certainly plays an important role during system 
design and prototyping, the final goal of software design is to obtain real 
executable applications. LEDA specifications are also used for the creation, 
interconnection and deletion of components on an executable distributed 
platform. Combining the capabilities of prototyping and execution of LEDA, 
it is possible to simulate the execution of partially implemented systems. 
Hence, system development can be done gradually, providing a smooth 
transition from specification to implementation. 

The structure of this paper is as follows . First, we describe briefly the 
1t- calculus and the notation we use for specifying roles with it. Then, 
Sections 3 and 4 deal with the specification of components, roles and 
attachments in LEDA. Next, in Section 5 we discuss how our approach 
addresses architecture prototyping and validation, while Section 6 deals with 
component and role inheritance, and also addresses the topic of architecture 
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refinement. Section 7 shows how non-compatible components can be 
interconnected using adaptors . All the notions introduced in these sections 
are illustrated by several examples. Finally, Section 8 discuss briefly how 
LEDA specifications can be used in order to derive executable applications 
from an architecture. We conclude comparing our approach with some 
related proposals. 

2. THE 1t-CALCULUS 

The 1t-calculus, developed by Milner as a successor of CCS, is specially 
suited for the description of dynamic systems, in which components are 
created and interconnected during system execution, because it permits 
direct expression of mobility. Mobility is achieved in 1t-calculus by the 
transmission of channel names as arguments or objects of messages. When a 
process receives a channel name, it can use this channel as a subject for 
future transmissions. This allows an easy and effective reconfiguration of the 
system. In fact, the calculus does not distinguish between channels and data, 
all of them are generically names. This homogeneous treatment of names is 
used to construct a very simple but powerful calculus. In contrast, 
1t-calculus is a low level notation, and its use in industrial-size problems 
would be tedious and difficult. 

LEDA embodies the 1t-calculus for specifying the roles which describe 
the behaviour of components. Roles are described in LEDA as processes, 
using a syntax which derives from the original notation of the 1t-calculus, 
adding some syntactic sugar to obtain more friendly specifications. Let 
P,Q, ... range over processes, and a,b,c, ... range over names. Sequences of 
names are abbreviated using tildes (li). Then, processes are built from names 
and processes as follows: 

P ::;;. 0 I r.P I x!(o).P I x?(ii).P I (x)P l{x;;.z}P I PIQ I P+Q I A(ii) 

Empty or inactive behaviour is represented by 0. Silent transitions, given 
by 't, model internal actipns. Thus, a process r.P will eventually evolve to P 
without with its environment. An output-prefixed process x!(o).P 
sends the na,mes o (objects) name x (subject) and then continues like 
P. An input-prefixed process x?(ii).P waits for some names ii to be sent 
along x and then behaves like P{o/ii}, where {alii} is the substitution of a 
with a. 

Restrictions are used to create private names. Thus, in (x)P, the name xis 
private to P. Private names can be exported to other processes simply by 
sending them as objects of output actions, as in (z)x!(z) . A match {x;;.z}P 
behaves like P if the names x and z are identical, and otherwise like 0. 
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The composition operator is defined in the expected way: P I Q consists 
of P and Q acting in parallel. Summation is used for specifying alternatives: 
P + Q may proceed to P or Q. The choice can be locally or globally taken. In 
a global choice, two processes agree synchronously in the commitment to 
complementary actions, as in 

(. .. + x!(o).P + ... )I( ... + x?(ii).Q + ... Q{O!ii} 
On the other hand, local choices are expressed combining the summation 

operator with silent actions. Hence, a process like(. .. + r.P + r.Q + ... )may 
proceed to P or to Q with independence of its context. We use local and 
global choices to state the responsibilities for action and reaction. 

Finally, A(ii) is an agent with names ii. Each agent identifier A is defined 
by an unique equation: A(ii) = P. The use of agents allows modular and 
recursive definition of processes. 

Some examples of processes written in 1t-calculus can be found in the 
following sections, but for a detailed description of the calculus, including its 
transition system, we refer to (Milner et al., 1992). 

3. COMPONENTS AND ROLES 

LEDA is an ADL for the description and validation of structural and 
behavioural properties of software systems. The language is structured in 
two levels: components and roles. Components represent software pieces or 
modules, each one providing a certain functionality while roles describe the 
behaviour of components and are used for architecture validation, 
prototyping, and execution. 

3.1 Components 

LEDA distinguishes between component classes and instances, and 
provides mechanisms for the extension and parameterisation of components. 
The specification of a component class consists of three main sections: (i) 
interface, consisting of several role instances; (ii) structure or composition, 
consisting of several component instances; and (iii) attachments, which 
contains a list of connections which indicate how the component is built 
from its parts. 

The interface of a component is described as a set of role instances, 
which specify the behaviour of the component from the point of view of 
each other component that interacts with it. Each role is a partial abstraction 
representing both the behaviour that the component offers to its 
environment, and the behaviour that it requires from those connected to it. 
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LEDA distinguishes between role classes and instances, and provides 
constructions for the extension and derivation of roles. 

For instance, consider a file transmission between two components, 
named Sender and Receiver respectively. Component Receiver plays the role 
of reader, receiving the data which is sent by Sender, which acts as writer 
(Figure 1). 

component Sender { 
interface 

writer: Writer; 
} 

component Receiver { 
interface 

reader : Reader; 
} 

Figure 1: Components Sender and Receiver 

3.2 Specification of component's behaviour 

Traditionally, interface description has been limited to the signature of 
the methods that a component imports and exports, or the messages that it 
can send or receive. However, our goal is to describe the observable 
behaviour of components, that is, how they react to external stimuli, and how 
input and output stimuli are related. This behaviour is described by the roles 
that form the interface of the component. Roles are specified as processes in 
the 7t-calculus. 

Roles Writer and Reader in Figure 2 specify the protocol of interaction 
between the components Sender and Receiver, i.e. they describe how these 
components behave in order to perform a successful data transmission. Data 
is transmitted matching two complementary actions w!(data) and w?(data). 
As indicated by the use of local choices, the responsibility for action falls in 
the Writer part, which knows when the file has been completely transmitted, 
and sends an event wq!() (writer quits), while the Reader must be able to 
react to both Writer actions. 

role Writer(w,wq) { 
spec is 

} 

't.(data)w!(data). Writer(w,wq) 
+ 't.wq!().O; 

role Reader(w,wq) { 
spec is 

} 

w?(data).Reader(w, wq) 
+ wq?().O; 

Figure 2: Roles Writer and Reader, from components Sender and Receiver 

3.3 Composites 

Components can be either simple or composite. A composite contains 
several subcomponents which are instances of other component classes. Any 
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software system can be described as a composite. Thus, the syntax of LEDA 
does not distinguish between components and systems or architectures. As 
we have shown, simple components are described by the roles of their 
interfaces, but for composites, we must also describe their internal 
architecture. This architecture is the result of the interconnection or 
attachment of several subcomponents. The specification of composites in 
LEDA will be shown by means of a set of examples of increased 
complexity, describing a family of systems following a Client/Server 
architectural pattern. 

Consider first a very simple Client/Server system in which the Client 
requests services from the Server (Figure 3). Both the Client and the Server 
are composites which contain an unbound array of service components. Role 
request describes the behaviour of the Client, while role serve describes that 
of the Server. When receiving a request, the Server creates a service 
component with the statement new. Then, the reference to the service is 
transmitted to the Client through the private link reply. Notice that the type 
of the component service is not indicated, but is declared of a generic type 
any, allowing future refinement of the Client/Server architecture, as will be 
shown in Section 6, for providing different kinds of services. The name n is 
used in the role serve for taking account of the number of requests received, 
which will be also used in a subsequent example. 

component Client { 
interface 

request : Request( request) { 
spec is 

(reply )request!( reply). 
reply?( service ).Request( request); 

composition 
service[] : any; 

I 

component Server { 
interface 

serve : Serve( request) { 
names 

n : Integer:= 0; 
spec is 

request?(reply). 
(new service )reply!( service). 
n++.Serve( request); 

composition 
service[] : any; 

} 

Figure 3: Components Client and Server with their roles 

4. ATTACHMENTS 

The architecture of a composite is determined by the relations that its 
subcomponents maintain with each other. These relations are explicitly 
represented in LEDA by a set of attachments among the roles of these 
subcomponents. Attachments relate roles of several components, and they 
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are specified in the composite which contains these components. 
Attachments are set when the corresponding components and role instances 
are created, possibly dynamically, and can be modified during system 
execution. 

LEDA distinguishes among several kinds of attachments, which permit 
the specification of both static, reconfigurable, and dynamic software 
systems. 

Static attachments are those which are never modified once they are set. 
For instance, recall the components Client and Server from Figure 3. We can 
specify our Client/Server architecture as a composite which contains both 
components and connects their roles using a static attachment (Figure 4). 
The symbol used for indicating the attachment is<>. 

component ClientServer { 
interface none; 
composition 

client: Client; 
server : Server; 

attachments 
client.request(r) <> server.serve(r); 

} 

Figure 4: A simple Client/Server system 

On the other hand, reconfigurable attachments are used for architectures 
that present several configurations, i.e. those in which the interconnection 
patterns among components changes over time, and the roles connected 
depend on a certain condition . For instance, suppose that we have two Server 
components, and each request is assigned to one of them trying to balance 
their work load (Figure 5). 

component ReconfigurableClientServer { 
interface none; 
composition 

client: Client; 
server[2] : Server; 

attachments 
client.request(r) <>if (server[ I ].n <= server[2].n) 

then server[l ].serve(r) 
else server[2].serve(r); 

} 

Figure 5: A reconfigurable system, consisting of one Client and two Servers 

Finally, multiple attachments describe communication patterns among 
arrays of components. Each pair of interconnected components may use 
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private links in their communication, or these links may be shared by all the 
components involved. Thus, multiple attachments can be either shared or 
private. A shared attachment describes a 1 :M communication channel, while 
private attachments establish multiple 1: 1 communication channels. 

For instance, consider a more realistic Client/Server system in which 
several Clients are connected to a pool of Servers. The composite 
ServerPool (Figure 6, left) contains an array of Servers whose roles are tied 
together using a multiple shared attachment (represented by the '*' in the left 
part of the attachment), and exported as a single role serve (role exportation 
is described below). Each request will be served by one of the Servers non­
deterministically. On the other hand, the attachment between the Clients and 
the ServerPool is also multiple (Figure 6, right), and all clients share the link 
r through which they request services. Notice that mobility is used to 
establish private reply links for each request, though all the Clients are 
connected to the ServerPool using a single request link. Such an example 
can be hardly specified using formalisms like CSP (and consequently with 
CSP-based ADLs like Wright), which shows the richer expressiveness of the 
7t-calculus when compared with other process algebras . 

component Server Pool { 
interface 

serve : Pool; 
composition 

server[] : Server; 
attachments 

server{*].serve(r) >> serve(r); 
} 

component MultipleClientServer { 
interface none; 

composition 
client[} : Client; 
pool : ServerPool; 

attachments 
client[*].request(r) <> pool.serve(r); 

} 

Figure 6: A Client/Server system, with multiple clients and a pool of Servers 

An additional form of attachment is that of role exportation. Usually, 
when dealing with a composite, some of the roles of its components are not 
used for the interconnection of these components, but to form the interface 
of the composite. Thus, we say that these roles are exported by the 
composite, which is indicated in LEDA using the operator>> instead of<>. 
We have already used this mechanism in Figure 6, left, where the roles of 
the Servers were exported to form the interface of the ServerPool. 

5. ARCHITECTURE PROTOTYPING AND 
VALIDATION 

The specifications written in LEDA can be used for prototyping. 
Attachments have a formal semantics (Canal et al., 1998b) which allows the 
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derivation of 1t-calculus prototypes from architectural specifications. These 
prototypes can be executed using a 1t-calculus interpreter like the MWB 
(Victor, 1994). Thus, specifications can be tested at an early stage of the 
development process, checking their conformance with system requirements. 

Apart from description and prototyping, LEDA specifications also serve 
for validation purposes. In particular, for determining whether a system is 
consistent, i.e. whether the behaviour of its components is compatible. 

As we usually want to connect components that match only partially, the 
relations of bisimilarity customarily used in process algebras are not well 
suited for our purposes. Thus, we have defined a relation of role 
compatibility in the context of 1t-calculus. A formal definition of 
compatibility and its properties is out of the scope of this paper, but it can be 
found in (Canal et al., 1998a). A proof of compatibility for every system 
attachment using this relation ensures that the corresponding components 
will be able to interact safely until they reach a well-defined final state. 
Thus, if a software system is built according to the specifications of the 
architecture, no failure will arise from the interaction in any attachment 
between its components. 

Obviously, local analysis of compatibility cannot ensure that the whole 
system is deadlock-free, since deadlock could arise from the global 
interaction of a set of components whose roles are compatible. However, 
compatibility serves for determining whether two components can be 
composed or plugged into each other, guaranteeing that the connector <> is 
safe. We consider that a system is consistent when each attachment in its 
architecture connects compatible roles, indicating behavioural conformance 
of the corresponding components. On the other hand, a failure detected when 
analysing an attachment stands for a mismatch in the behaviour of the 
corresponding components, usually leading to a system crash. 

6. EXTENSION AND REFINEMENT 

6.1 Extension of roles and components 

In order to promote effective reuse of both components and architectures, 
a mechanism of redefinition and extension for roles and components is 
required. In the object-oriented paradigm, reuse is achieved by inheritance 
and polymorphism. Data polymorphism is defined as the capability of an 
identifier to point or refer to instances of different classes, while inheritance 
refers to a relation among object classes by which an heir class inherits the 
features (methods and attributes) of its parent classes. Heirs can extend their 
parents by adding new features, and they may also redefine some of the 
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inherited features, usually under certain restrictions. Inheritance is a natural 
precondition for polymorphism, since it ensures that heirs will have at least 
the same features than their parents, and that they can replace them safely. 

A relation of inheritance will be also of use for specifications of software 
components. However, in our context the interface of a component is defined 
not only by the signature of its features (i. e. the signature of its roles), but it 
also includes the behavioural patterns described in the roles. Thus, role 
redefinition and extension must be restricted in order to preserve the 
behaviour specified in the parent role. We have defined a relation of 
inheritance among roles in the context of 7t-calculus. This relation defines 
the restrictions for polymorphism of behaviour, allowing the replacement of 
a role by a derived version, while preserving compatibility. Role extension in 
LEDA can be formally validated. Again, we refer to (Canal et al., 1998a) for 
a formal definition of role inheritance and its properties. 

Role extension can be used to (i) redefine, partially or completely, the 
parent role, giving a new specification for some of its agents; and (ii) extend 
a role, providing it with additional functionality. In both cases we must 
check, using the relation of inheritance, that the extended role is effectively 
an heir of the parent role. 

For instance, consider the role Serve of Figure 3. Its behaviour can be 
extended allowing clients to query the number of requests solved by the 
server, which can be used for statistics. 

role StatServe(request,statistics) extends Serve { 
adding 

statistics! ( n ). StatServe( request, statistics); 
} 

Figure 7: An extension of role Serve 

The notion of extension can be also applied to components. Derived 
components inherit their parent's specification, including roles, 
subcomponents and attachments. An heir component extends its parent by 
adding new roles, components, or attachments, or by redefining some of its 
parent's. In case of redefinition of a role or component, the redefined 
instance must be an heir of the original instance. 

Component extension can be implicitly achieved by architecture 
instantiation, which indicates the replacement of a component instance in a 
composite with another one whose class extends that of the former. 
Architecture instantiation can be used for incremental specification, 
description of families of software products sharing a common architecture, 
and also for dynamic replacement of a component in a software system. The 
syntax of instantiation is as follows: 
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derivedComponent : ComponentClass[subcomponent: DerivedSubcomponentClass]; 

which means that derivedComponent is an instance of ComponentClass in 
which we have replaced its subcomponent (which let's suppose was declared 
of a certain SubcomponentClass) by an instance of DerivedSubcomponent­
Class, where DerivedSubcomponentClass must be an heir of Subcomponent­
Class. 

When instancing an architecture, some of its attachments are modified, 
since some of its former components are replaced by derived versions. 
However, compatibility rechecking of the instanced architecture is not 
required, since role inheritance ensures the preservation of compatibility. 

6.2 Architecture Refinement 

Architectural descriptions can be used with different levels of abstraction 
during the development process. This property is commonly referred to as 
refinement. For example, we can begin with a high level specification of a 
system in which we describe only its top-level components, their interface, 
and how they are attached to construct the system. Then, refinement is 
applied to obtain a more detailed specification, by describing the internal 
structure or the behaviour of previously defined components, obtaining more 
complex specifications which come gradually closer to implementation. As 
we have seen, component extension is a useful mechanism for refinement, 
but other forms of refinement can be applied using LED A. 

In the Client/Server system in Figure 6, services were defined as generic 
components of type any. Thus, we have described an abstract Client/Server 
architecture which follows a simple protocol of requests and replies. We can 
obtain more specific architectures by describing the details of the service, i.e. 
describing the behaviour that both components follow during the service. 

component ReceiverClient extends Client { 
interface 

request : RequestSenders( request) extends Request { 
spec is 
(reply )request!( reply). 
( new receiver )reply?( service ).RequestSenders( request); 

composition 
receiver[] : Receiver; 
service[ J : Sender; 

attachments 
receiver[J.reader(w, wq) <> service[J.writer(w, wq); 

} 

Figure 8: Specialisation of a Client/Server, using Senders and Receivers 
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The ReceiverClient in Figure 8 is a specialisation of the Client in Figure 
3. Its role request is refined indicating that a component receiver is created 
each time the client requests a service. The service itself is refined, too, 
indicating that its type is now Sender instead of any, and a new attachment is 
included, connecting the roles of the receiver and the service. Components 
Receiver and Sender were specified in Figure 1, while its roles were 
described in Figure 2. 

Hence, we have refined our Client/Server architecture, obtaining the 
description of a system in which the service provided is a file transmission. 
We can use the mechanism of architecture instantiation for obtaining an 
instance of the refined architecture: 

refinedCS : MultipleClientServer[client: ReceiverClient, pool.server[].service[] : Sender]; 

Since role RequestSenders extends Request, compatibility with server's 
role Serve is ensured. On the contrary, the compatibility of the new 
attachment between the roles Reader and Writer, which was not present in 
the original architecture, must be checked. 

7. ADAPTORS 

Sometimes the behaviour of two components is not compatible, but these 
components can be adapted so they can collaborate with each other. This 
will be done using an adaptor, which acts as a glue allowing the construction 
of composites from components which are not strictly compatible. Adaptors 
are also used to modify the interface that a certain component exports to its 
environment. 

Adaptors are specified in 7t-calculus, using the same syntax as for roles. 
However, roles describe the interface of a component, and they are declared 
in the interface section, while adaptors are mainly used as a glue to tie the 
components of a composite, and they are declared in the composition 
section. 

In the preceding examples, servers are always prepared to receive 
requests, which is not a realistic assumption. The specification of a non­
reliable server NRServer is shown in Figure 9, left. Observe how local 
choices, indicated by the combination of the sum operator and '!-transitions, 
specify that the NRServer may crash unexpectedly. 

Obviously, the behaviour of our NRServer is not compatible with that of 
Clients, which suppose that servers are always willing to attend their 
requests. However, using a simple adaptor restart we can build a fault­
tolerant server pool (FTServerPool, Figure 9, right). Each time an NRServer 
crashes it is restarted by the adaptor (in fact, it creates a new NRServer). 
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Thus, the adaptor modifies the observable behaviour of the pool of 
NRServers, and the combination of roles NRServe and the adaptor Restart 
provides an interface which can be proved as a refinement of role serve in 
Figure 6. Thus, FTServerPool extends ServerPool, and its behaviour is also 
compatible with role Request. 

component NRServer { 
interface 

serve : NRServe(request,crash) { 
spec is 

J 

1:. request?( reply). 
(new service)reply!(service). 

NRServe( request, crash) 
+ 't.crash!().O; 

composition 
service[] : any; 

J 

component FTServerPool extends Server Pool { 
composition 

server[] : NRServer; 
restart : Restart( crash) { 
spec is 

crash?()( new server)Restart(crash); 

J 
attachments 

restart(e),server[*].serve(r,e) >> serve(r); 

J 

Figure 9: A fault-tolerant pool of servers, built from non-reliable servers 

Hence, we can instance the Client/Server architecture of Figure 6 
replacing its component ServerPool by an instance of FTServerPool: 

ftcs: MultipleClientServer[pool: FTServerPool]; 

Compatibility with client's role request is ensured by inheritance, and 
there is no need to recheck the attachment between the server pool and the 
clients. Thus, we obtain a specialised version of the Client/Server system in 
which we use non-reliable servers, but maintaining the properties of the 
original architecture. 

8. SYSTEM CONSTRUCTION AND EXECUTION 

We have already discussed how LEDA specifications can be used for 
system validation and prototyping, but we can go one step further, and use 
them also for obtaining an executable system. 

Using LEDA we can validate that each attachment in an architecture 
connects compatible roles. Our goal is now to translate this compatibility to 
the implementation level. First, each role is automatically translated into a 
state machine which encapsulates the behaviour of the corresponding 
component. These implementations of roles control the interaction of the 
corresponding components with the rest of the system. Thus, they are similar 
to IDL specifications, but augmented with the protocol that describes the 
behaviour of the components. 
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In tum, composites are responsible for the creation of components and 
for interconnecting their roles, following the communication patterns 
described in their attachments. Communication between roles is done using a 
process communication mechanism, (e.g. sockets). 

Finally, components must be implemented using a programming 
language. Typically each component specification will be implemented as a 
class or group of classes using an object-oriented language. Each component 
is connected to its roles, through which it communicates with the rest of the 
system. When a component requires to invoke a method of another one, it 
invokes the corresponding method in its own role, which will contact the 
role of the other component in order to invoke the method. 

Consider again the Client/Server system specified in Figure 3. 
Components Client and Server are implemented as classes, while their roles 
are translated into RoleRequest and RoleServe respectively (Figure 10, top) . 

invoke 

request () 

request (rep ly) 

inv oke 

r eques t () 

re turn 

servi ce 

reply . r ead (servi ce } 

re t ur n s e rvi c e 

rep l y (servi c e) 

return 

service 

[ r eturn s ervi ce I 
r epy. wri te (service ) 

r e quest () 

r equest . write (reply) 

reque s t. r ea d (reply ) 

s erver. request ( l 

Figure 10: Implementation scheme of the Client/Server architecture 

In order to obtain a service, the object Client invokes the method 
request() from its role RoleRequest. Then, RoleRequest sends the request to 
RoleServe through the appropriate channel. Next, RoleServe invokes the 
method request() from Server, and gets the service returned. The service is 
sent through a specific reply channel to RoleRequest, which in turns returns 
the service to Client. Thus, the implementations of Client and Server invoke 
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or are invoked by their roles, but they don't know the location of the objects 
which finally receive the invocation, nor they are responsible for establishing 
or managing the communication channels indicated in the architecture. 

This scheme for system implementation has several advantages. First, 
connections among components are encapsulated in the roles, which 
establish and modify them according to the interaction patterns specified in 
the architecture. Second, components are implemented as object classes that 
invoke or receive invocations of methods, but which are independent of the 
interaction mechanisms used in the architecture. Third, a component may 
have several implementations which can be interchanged without affecting 
the behaviour of the system. 

9. DISCUSSION 

In this paper we have presented LEDA, an ADL for the description of 
dynamic software architectures. In these systems, components interact 
following flexible patterns that can be modified during system execution. 
The basic unit in LEDA is that of components, which are represented by 
their interface, divided into a set of roles. These roles describe, using the 
1t-calculus, the behaviour of the corresponding components. Software 
architectures are specified in LEDA as sets of components related by 
attachments between their roles. The semantics of components and 
attachments is given using the 1t-calculus, a well-known process algebra, 
which allows us to use this formalism for architecture prototyping and 
validation of properties like behavioural compatibility. LEDA roles and 
components can be extended, adapting them to new requirements, but 
maintaining the compatibility of the original roles. Analysis of compatibility 
and inheritance can be both automated, which leads to the development of 
tools for the analysis of the specifications. Formal validation of compatibility 
and inheritance encourage both software quality and reuse, determining 
whether some existing software components can be used to build a larger 
system. 

In the last years several proposals related to the specification of software 
architectures have been presented. Although most of them are not formally 
founded, which limits their possibility of analysis, several works have 
already proposed the use of different formalisms for architecture 
specification. 

A first formalisation of the notion of compatibility is described in (Allen 
and Garlan, 1997), where CSP is used for determining compatibility in the 
ADL Wright. However, formalisms like CSP or CCS do not seem 
appropriate for the description of evolving or dynamic structures. At most, 
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CSP can be used in systems with a finite number of configurations, as it is 
shown in (Allen et al., 1998), but not in highly dynamic systems, where the 
1t-calculus is best suited. Furthennore, Wright does not address aspects of 
component and role extension or refinement, nor of architecture simulation 
or execution. 

Our approach differs from that of Allen and Garlan in other significant 
aspect: LEDA does not distinguish between components and connectors, nor 
between ports and roles. This distinction would complicate unnecessarily the 
language, specially the fonnalisation of compatibility and inheritance in 
1t-calculus. Besides, we consider that the distinction between components 
and connectors does not scale properly, since composition would lead to 
mixed composites with free ports and roles which could not be considered 
either as components nor as connectors. For these reasons, connectors are 
described in LEDA as specific classes of components, their behaviour being 
described by roles. 

The 1t-calculus has been used for describing the semantics of several 
computer languages. In fact, the operational semantics of the ADL Darwin 
(Magee and Kramer, 1996) is described using 1t-calculus, endowing this 
language with a mechanism of dynamic binding. However, type checking is 
restricted in Darwin to name matching, and the behaviour of components is 
not described, neither this language incorporates characteristics of extension 
or inheritance. On the contrary, our approach uses the 1t-calculus not only 
for semantics, but it integrates the calculus in the language. LEDA 
components and attachments are higher-level constructs that simplify the 
description of complex software systems, while LEDA roles take advantage 
of the expressiveness of the 1t-calculus for describing the behaviour of 
components. This allows us to state more precisely which are the relations 
between the components of a certain software architecture, and also to 
perfonn analysis of compatibility and inheritance. 

The notions of component subtyping and inheritance are present in 
several other ADLs, and recent work of (Medvidovic et al., 1998), addresses 
description and verification of behavioural conformance using the Z 
notation. On the contrary, our approach describes component's behaviour 
using state machines, and addresses what they call protocol conformance. 

We are currently working in the development of a Java run-time platform 
for LEDA, capable to use the information about component behaviour and 
architecture configuration present in the specifications to create, interconnect 
and remove the implementations of the components described using the 
language, thus obtaining executable applications. 

Our future work will be the application of LEDA to the specification of 
different industrial software systems, in order to determine the need for new 
forms of interaction in the language. Another task will be the development of 
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supporting tools, such as graphic editors or validation tools . All these tools 
should hide the difficulties inherent to the formal foundations of the 
language, making easier the specification of software systems in LEDA to 
those not acquainted with formal methods. 
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