
Specification and Refinement of Dynamic Software
Architectures

Calos Canal, Emesto PimenteP, Jose M. Troya
Depto. de Lenguajes y Ciencias de Ia Computaci6n, Universidad de Malaga, Spain
E-mail: {canal, emesto, troyaj@lcc.uma.es

Key words: Software architecture, architecture description languages, 7t-calculus,
compatibility, inheritance of behaviour, prototyping

Abstract: Several notations and languages for software architectural specification have
been recently proposed. However, some important aspects of composition,
extension, and reuse deserve further research. These problems are particularly
relevant in the context of open systems, where system structure can evolve
dynamically, either by incorporating new components, or by replacing existing
components with compatible ones. Our approach tries to address some of these
open problems by combining the use of formal methods, particularly process
algebras, with concepts coming from the object-oriented domain. In this paper
we present LEDA, an Architecture Description Language for the specification,
validation, prototyping and construction of dynamic software systems.
Systems specified in LEDA can be checked for compatibility, ensuring that the
behaviour of their components conforms to each other and that the systems can
be safely composed. A notion of polymorphism of behaviour is used to extend
and refine components while maintaining their compatibility, allowing the
parameterisation of architectures, and encouraging reuse of architectural
designs.

1. INTRODUCTION

The term software architecture (SA) has been recently adopted referring
to the discipline of Software Engineering that deals with the description,

1 This work was funded in part by the "Comisi6n Interministerial de Ciencia y Tecnologfa"
(CICYD under grant TIC98-0445-C03-03.

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35

108 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

verification, and reuse of the structure of software systems (Shaw and
Garlan, 1996). At the level of abstraction of SA, software is represented as a
collection of computational and data elements, or components,
interconnected in a certain way, and it is at this level where the structural
properties of software systems are naturally addressed. SA pays special
attention to the interaction among components, instead of the internal
computations of these components.

The significance of explicit architectural specifications is widely
accepted. First, they raise the level of abstraction, facilitating the description
and comprehension of complex systems. Second, they increase reuse of both
architectures and components (Shaw and Garlan, 1995). However, effective
reuse of a certain architecture often requires that some of its components can
be removed, replaced, and reconfigured without perturbing other parts of the
application (Nierstrasz and Meijler, 1995). These aspects are particularly
relevant when dealing with open distributed systems, whose architecture
evolves dynamically, and consistency has to be guaranteed for every
substantial change produced on the system. In the context of SA, consistency
must be analysed in terms of the compatibility between components, since
system performance depends on the correct interaction among them.

Although object-orientation can be applied to all levels of software
design, in SA the more general term component-oriented is preferred,
allowing to consider not only objects but architectures, interaction
mechanisms and design patterns as first-class concepts of an architecture
(Nierstrasz, 1995). However, most concepts corning from the object-oriented
paradigm can be applied to SA. Particularly, in this work we address the
application of inheritance, parameterisation, and polymorphism to the
specification of software architectures.

A number of Architectural Description Languages (ADLs) have been
already proposed. ADLs address the need for expressive notations in
architectural design, trying to provide precise descriptions of the glue for
combining components into larger systems. Despite the proposed notations
are useful for the description of complex software systems, most of them are
not formally based, which prevents the analysis and proof of the properties
of the systems and architectures described (Abowd et al., 1993). In addition,
several significant issues, such as specification of dynamic systems,
architecture parameterisation and refinement, are not usually addressed. In
Section 9 we compare our approach with other related works, particularly
Wright and Darwin, while an exhaustive comparison on the characteristics of
some outstanding ADLs can be found in (Medvidovic and Rosenblum,
1997).

In order to avoid some of these limitations, our interests focus on the
application of formal methods to SA. Formal specifications have a precise

Specification and Refinement of Dynamic Software Architectures 109

meaning derived from the semantics of the notation used, and validation
tools can be developed to prove properties of the systems specified. To this
effect, process algebras are widely accepted for the specification of software
systems, which can be checked for equivalence, deadlock freedom, and other
interesting properties.

Dynamic architectures are those which describe how components are
created, interconnected, and removed during system execution, and which
allow run-time reconfiguration of their communication topology. Formal
specification of such systems requires the use of an adequate formalism. In
particular, we propose the use of the 7t-calculus (Milner et al., 1992), a
simple but powerful process algebra which can express directly mobility,
allowing the specification of dynamic systems in a very natural manner.
However, the 7t-calculus is a low level notation, which makes difficult its
direct application to the specification of large systems.

This was our original motivation for the development of LEDA, an ADL
which embodies mechanisms of inheritance and dynamic reconfiguration.
The language is structured in two levels: components, representing system
parts or modules, and roles, which describe the observable behaviour of
components. Roles are written in an extension of the 1t-calculus, thus
allowing the specification of dynamic architectures. Each role describes the
protocol that a component follows in its interaction with other components.
In turn, components are described as composed of other components. The
structure or architecture of a component is indicated by the relations among
its subcomponents, which are expressed by a set of attachments or
connections among the roles of these subcomponents.

LEDA differs from other ADLs in that it makes no distinction, at the
language level, between components and connectors, i.e. connectors are
specified as a special kind of components. This allows the language to be
more simple and regular, and does not impose a particular compositional
model in the description of software architectures.

Since the semantics of LEDA is written in terms of the 7t-calculus (Canal
et al., 1998b), specifications can be both executed, allowing architecture
prototyping, and analysed. In this sense, it is possible to determine whether a
system is safely composable, i.e. whether its components present compatible
behaviour and can be combined to form the system. This kind of analysis has
been traditionally limited to interface conformance, but we are also
interested in determining whether the behaviour of a component is
compatible with that of its environment. On the other hand, component reuse
would be encouraged if we could check whether a certain existing
component can be used in a new system where a similar behaviour is
required. Again, the intuitive notion of compatibility arises. We have
formalised compatibility of behaviour in the context of 7t-calculus (Canal et

110 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

a!., 1998a), ensuring that compatible roles are able to interact successfully
until they reach a well-defined final state. Architectures written in LEDA are
tested for compatibility in each of the attachments among roles of their
components. Compatibility does not require that the components involved
have strictly complementary behaviour, since we usually want to connect
components which match only partially.

Reuse of existing software components would be promoted if we had a
way for adapting a component to an interface which is not compatible with
its own interface. This is what LEDA adaptors are made for. Adaptors are
small elements, similar to roles and also written in 1t-calculus, which are
able to communicate successfully components whose behaviour is not
compatible.

Our approach is completed with mechanisms of inheritance and
parameterisation for roles and components which ensure that compatibility is
preserved. A child component inherits its roles from its parents, while
redefinition of behaviour is restricted by several conditions which ensure the
maintenance of compatibility. Thus, we can replace safely a component in an
architecture with any other component which inherits from the former. This
gives place to a mechanism of architecture instantiation, by which a software
architecture can be considered as a generic framework, which can be
partially instanced and reused as many times as needed. Component
frameworks derive from the idea of design patterns, and they represent the
highest level of reusability in software development: not only source code of
components, but also architectural design is reused in applications built on
top of the framework (Pree, 1996). In this sense, LEDA specifications can be
considered as generic architectural patterns or frameworks which can be
extended and reused, adapting them to new requirements (Canal et a!. ,
1997).

Although specification certainly plays an important role during system
design and prototyping, the final goal of software design is to obtain real
executable applications. LEDA specifications are also used for the creation,
interconnection and deletion of components on an executable distributed
platform. Combining the capabilities of prototyping and execution of LEDA,
it is possible to simulate the execution of partially implemented systems.
Hence, system development can be done gradually, providing a smooth
transition from specification to implementation.

The structure of this paper is as follows . First, we describe briefly the
1t- calculus and the notation we use for specifying roles with it. Then,
Sections 3 and 4 deal with the specification of components, roles and
attachments in LEDA. Next, in Section 5 we discuss how our approach
addresses architecture prototyping and validation, while Section 6 deals with
component and role inheritance, and also addresses the topic of architecture

Specification and Refinement of Dynamic Software Architectures 111

refinement. Section 7 shows how non-compatible components can be
interconnected using adaptors . All the notions introduced in these sections
are illustrated by several examples. Finally, Section 8 discuss briefly how
LEDA specifications can be used in order to derive executable applications
from an architecture. We conclude comparing our approach with some
related proposals.

2. THE 1t-CALCULUS

The 1t-calculus, developed by Milner as a successor of CCS, is specially
suited for the description of dynamic systems, in which components are
created and interconnected during system execution, because it permits
direct expression of mobility. Mobility is achieved in 1t-calculus by the
transmission of channel names as arguments or objects of messages. When a
process receives a channel name, it can use this channel as a subject for
future transmissions. This allows an easy and effective reconfiguration of the
system. In fact, the calculus does not distinguish between channels and data,
all of them are generically names. This homogeneous treatment of names is
used to construct a very simple but powerful calculus. In contrast,
1t-calculus is a low level notation, and its use in industrial-size problems
would be tedious and difficult.

LEDA embodies the 1t-calculus for specifying the roles which describe
the behaviour of components. Roles are described in LEDA as processes,
using a syntax which derives from the original notation of the 1t-calculus,
adding some syntactic sugar to obtain more friendly specifications. Let
P,Q, ... range over processes, and a,b,c, ... range over names. Sequences of
names are abbreviated using tildes (li). Then, processes are built from names
and processes as follows:

P ::;;. 0 I r.P I x!(o).P I x?(ii).P I (x)P l{x;;.z}P I PIQ I P+Q I A(ii)

Empty or inactive behaviour is represented by 0. Silent transitions, given
by 't, model internal actipns. Thus, a process r.P will eventually evolve to P
without with its environment. An output-prefixed process x!(o).P
sends the na,mes o (objects) name x (subject) and then continues like
P. An input-prefixed process x?(ii).P waits for some names ii to be sent
along x and then behaves like P{o/ii}, where {alii} is the substitution of a
with a.

Restrictions are used to create private names. Thus, in (x)P, the name xis
private to P. Private names can be exported to other processes simply by
sending them as objects of output actions, as in (z)x!(z) . A match {x;;.z}P
behaves like P if the names x and z are identical, and otherwise like 0.

112 Carlos Canal, Emesto Pimentel, and Jose M. Troya

The composition operator is defined in the expected way: P I Q consists
of P and Q acting in parallel. Summation is used for specifying alternatives:
P + Q may proceed to P or Q. The choice can be locally or globally taken. In
a global choice, two processes agree synchronously in the commitment to
complementary actions, as in

(. .. + x!(o).P + ...)I(... + x?(ii).Q + ... Q{O!ii}
On the other hand, local choices are expressed combining the summation

operator with silent actions. Hence, a process like(. .. + r.P + r.Q + ...)may
proceed to P or to Q with independence of its context. We use local and
global choices to state the responsibilities for action and reaction.

Finally, A(ii) is an agent with names ii. Each agent identifier A is defined
by an unique equation: A(ii) = P. The use of agents allows modular and
recursive definition of processes.

Some examples of processes written in 1t-calculus can be found in the
following sections, but for a detailed description of the calculus, including its
transition system, we refer to (Milner et al., 1992).

3. COMPONENTS AND ROLES

LEDA is an ADL for the description and validation of structural and
behavioural properties of software systems. The language is structured in
two levels: components and roles. Components represent software pieces or
modules, each one providing a certain functionality while roles describe the
behaviour of components and are used for architecture validation,
prototyping, and execution.

3.1 Components

LEDA distinguishes between component classes and instances, and
provides mechanisms for the extension and parameterisation of components.
The specification of a component class consists of three main sections: (i)
interface, consisting of several role instances; (ii) structure or composition,
consisting of several component instances; and (iii) attachments, which
contains a list of connections which indicate how the component is built
from its parts.

The interface of a component is described as a set of role instances,
which specify the behaviour of the component from the point of view of
each other component that interacts with it. Each role is a partial abstraction
representing both the behaviour that the component offers to its
environment, and the behaviour that it requires from those connected to it.

Specification and Refinement of Dynamic Software Architectures 113

LEDA distinguishes between role classes and instances, and provides
constructions for the extension and derivation of roles.

For instance, consider a file transmission between two components,
named Sender and Receiver respectively. Component Receiver plays the role
of reader, receiving the data which is sent by Sender, which acts as writer
(Figure 1).

component Sender {
interface

writer: Writer;
}

component Receiver {
interface

reader : Reader;
}

Figure 1: Components Sender and Receiver

3.2 Specification of component's behaviour

Traditionally, interface description has been limited to the signature of
the methods that a component imports and exports, or the messages that it
can send or receive. However, our goal is to describe the observable
behaviour of components, that is, how they react to external stimuli, and how
input and output stimuli are related. This behaviour is described by the roles
that form the interface of the component. Roles are specified as processes in
the 7t-calculus.

Roles Writer and Reader in Figure 2 specify the protocol of interaction
between the components Sender and Receiver, i.e. they describe how these
components behave in order to perform a successful data transmission. Data
is transmitted matching two complementary actions w!(data) and w?(data).
As indicated by the use of local choices, the responsibility for action falls in
the Writer part, which knows when the file has been completely transmitted,
and sends an event wq!() (writer quits), while the Reader must be able to
react to both Writer actions.

role Writer(w,wq) {
spec is

}

't.(data)w!(data). Writer(w,wq)
+ 't.wq!().O;

role Reader(w,wq) {
spec is

}

w?(data).Reader(w, wq)
+ wq?().O;

Figure 2: Roles Writer and Reader, from components Sender and Receiver

3.3 Composites

Components can be either simple or composite. A composite contains
several subcomponents which are instances of other component classes. Any

114 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

software system can be described as a composite. Thus, the syntax of LEDA
does not distinguish between components and systems or architectures. As
we have shown, simple components are described by the roles of their
interfaces, but for composites, we must also describe their internal
architecture. This architecture is the result of the interconnection or
attachment of several subcomponents. The specification of composites in
LEDA will be shown by means of a set of examples of increased
complexity, describing a family of systems following a Client/Server
architectural pattern.

Consider first a very simple Client/Server system in which the Client
requests services from the Server (Figure 3). Both the Client and the Server
are composites which contain an unbound array of service components. Role
request describes the behaviour of the Client, while role serve describes that
of the Server. When receiving a request, the Server creates a service
component with the statement new. Then, the reference to the service is
transmitted to the Client through the private link reply. Notice that the type
of the component service is not indicated, but is declared of a generic type
any, allowing future refinement of the Client/Server architecture, as will be
shown in Section 6, for providing different kinds of services. The name n is
used in the role serve for taking account of the number of requests received,
which will be also used in a subsequent example.

component Client {
interface

request : Request(request) {
spec is

(reply)request!(reply).
reply?(service).Request(request);

composition
service[] : any;

I

component Server {
interface

serve : Serve(request) {
names

n : Integer:= 0;
spec is

request?(reply).
(new service)reply!(service).
n++.Serve(request);

composition
service[] : any;

}

Figure 3: Components Client and Server with their roles

4. ATTACHMENTS

The architecture of a composite is determined by the relations that its
subcomponents maintain with each other. These relations are explicitly
represented in LEDA by a set of attachments among the roles of these
subcomponents. Attachments relate roles of several components, and they

Specification and Refinement of Dynamic Software Architectures 115

are specified in the composite which contains these components.
Attachments are set when the corresponding components and role instances
are created, possibly dynamically, and can be modified during system
execution.

LEDA distinguishes among several kinds of attachments, which permit
the specification of both static, reconfigurable, and dynamic software
systems.

Static attachments are those which are never modified once they are set.
For instance, recall the components Client and Server from Figure 3. We can
specify our Client/Server architecture as a composite which contains both
components and connects their roles using a static attachment (Figure 4).
The symbol used for indicating the attachment is<>.

component ClientServer {
interface none;
composition

client: Client;
server : Server;

attachments
client.request(r) <> server.serve(r);

}

Figure 4: A simple Client/Server system

On the other hand, reconfigurable attachments are used for architectures
that present several configurations, i.e. those in which the interconnection
patterns among components changes over time, and the roles connected
depend on a certain condition . For instance, suppose that we have two Server
components, and each request is assigned to one of them trying to balance
their work load (Figure 5).

component ReconfigurableClientServer {
interface none;
composition

client: Client;
server[2] : Server;

attachments
client.request(r) <>if (server[I].n <= server[2].n)

then server[l].serve(r)
else server[2].serve(r);

}

Figure 5: A reconfigurable system, consisting of one Client and two Servers

Finally, multiple attachments describe communication patterns among
arrays of components. Each pair of interconnected components may use

116 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

private links in their communication, or these links may be shared by all the
components involved. Thus, multiple attachments can be either shared or
private. A shared attachment describes a 1 :M communication channel, while
private attachments establish multiple 1: 1 communication channels.

For instance, consider a more realistic Client/Server system in which
several Clients are connected to a pool of Servers. The composite
ServerPool (Figure 6, left) contains an array of Servers whose roles are tied
together using a multiple shared attachment (represented by the '*' in the left
part of the attachment), and exported as a single role serve (role exportation
is described below). Each request will be served by one of the Servers non­
deterministically. On the other hand, the attachment between the Clients and
the ServerPool is also multiple (Figure 6, right), and all clients share the link
r through which they request services. Notice that mobility is used to
establish private reply links for each request, though all the Clients are
connected to the ServerPool using a single request link. Such an example
can be hardly specified using formalisms like CSP (and consequently with
CSP-based ADLs like Wright), which shows the richer expressiveness of the
7t-calculus when compared with other process algebras .

component Server Pool {
interface

serve : Pool;
composition

server[] : Server;
attachments

server{*].serve(r) >> serve(r);
}

component MultipleClientServer {
interface none;

composition
client[} : Client;
pool : ServerPool;

attachments
client[*].request(r) <> pool.serve(r);

}

Figure 6: A Client/Server system, with multiple clients and a pool of Servers

An additional form of attachment is that of role exportation. Usually,
when dealing with a composite, some of the roles of its components are not
used for the interconnection of these components, but to form the interface
of the composite. Thus, we say that these roles are exported by the
composite, which is indicated in LEDA using the operator>> instead of<>.
We have already used this mechanism in Figure 6, left, where the roles of
the Servers were exported to form the interface of the ServerPool.

5. ARCHITECTURE PROTOTYPING AND
VALIDATION

The specifications written in LEDA can be used for prototyping.
Attachments have a formal semantics (Canal et al., 1998b) which allows the

Specification and Refinement of Dynamic Software Architectures 117

derivation of 1t-calculus prototypes from architectural specifications. These
prototypes can be executed using a 1t-calculus interpreter like the MWB
(Victor, 1994). Thus, specifications can be tested at an early stage of the
development process, checking their conformance with system requirements.

Apart from description and prototyping, LEDA specifications also serve
for validation purposes. In particular, for determining whether a system is
consistent, i.e. whether the behaviour of its components is compatible.

As we usually want to connect components that match only partially, the
relations of bisimilarity customarily used in process algebras are not well
suited for our purposes. Thus, we have defined a relation of role
compatibility in the context of 1t-calculus. A formal definition of
compatibility and its properties is out of the scope of this paper, but it can be
found in (Canal et al., 1998a). A proof of compatibility for every system
attachment using this relation ensures that the corresponding components
will be able to interact safely until they reach a well-defined final state.
Thus, if a software system is built according to the specifications of the
architecture, no failure will arise from the interaction in any attachment
between its components.

Obviously, local analysis of compatibility cannot ensure that the whole
system is deadlock-free, since deadlock could arise from the global
interaction of a set of components whose roles are compatible. However,
compatibility serves for determining whether two components can be
composed or plugged into each other, guaranteeing that the connector <> is
safe. We consider that a system is consistent when each attachment in its
architecture connects compatible roles, indicating behavioural conformance
of the corresponding components. On the other hand, a failure detected when
analysing an attachment stands for a mismatch in the behaviour of the
corresponding components, usually leading to a system crash.

6. EXTENSION AND REFINEMENT

6.1 Extension of roles and components

In order to promote effective reuse of both components and architectures,
a mechanism of redefinition and extension for roles and components is
required. In the object-oriented paradigm, reuse is achieved by inheritance
and polymorphism. Data polymorphism is defined as the capability of an
identifier to point or refer to instances of different classes, while inheritance
refers to a relation among object classes by which an heir class inherits the
features (methods and attributes) of its parent classes. Heirs can extend their
parents by adding new features, and they may also redefine some of the

118 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

inherited features, usually under certain restrictions. Inheritance is a natural
precondition for polymorphism, since it ensures that heirs will have at least
the same features than their parents, and that they can replace them safely.

A relation of inheritance will be also of use for specifications of software
components. However, in our context the interface of a component is defined
not only by the signature of its features (i. e. the signature of its roles), but it
also includes the behavioural patterns described in the roles. Thus, role
redefinition and extension must be restricted in order to preserve the
behaviour specified in the parent role. We have defined a relation of
inheritance among roles in the context of 7t-calculus. This relation defines
the restrictions for polymorphism of behaviour, allowing the replacement of
a role by a derived version, while preserving compatibility. Role extension in
LEDA can be formally validated. Again, we refer to (Canal et al., 1998a) for
a formal definition of role inheritance and its properties.

Role extension can be used to (i) redefine, partially or completely, the
parent role, giving a new specification for some of its agents; and (ii) extend
a role, providing it with additional functionality. In both cases we must
check, using the relation of inheritance, that the extended role is effectively
an heir of the parent role.

For instance, consider the role Serve of Figure 3. Its behaviour can be
extended allowing clients to query the number of requests solved by the
server, which can be used for statistics.

role StatServe(request,statistics) extends Serve {
adding

statistics! (n). StatServe(request, statistics);
}

Figure 7: An extension of role Serve

The notion of extension can be also applied to components. Derived
components inherit their parent's specification, including roles,
subcomponents and attachments. An heir component extends its parent by
adding new roles, components, or attachments, or by redefining some of its
parent's. In case of redefinition of a role or component, the redefined
instance must be an heir of the original instance.

Component extension can be implicitly achieved by architecture
instantiation, which indicates the replacement of a component instance in a
composite with another one whose class extends that of the former.
Architecture instantiation can be used for incremental specification,
description of families of software products sharing a common architecture,
and also for dynamic replacement of a component in a software system. The
syntax of instantiation is as follows:

Specification and Refinement of Dynamic Software Architectures 119

derivedComponent : ComponentClass[subcomponent: DerivedSubcomponentClass];

which means that derivedComponent is an instance of ComponentClass in
which we have replaced its subcomponent (which let's suppose was declared
of a certain SubcomponentClass) by an instance of DerivedSubcomponent­
Class, where DerivedSubcomponentClass must be an heir of Subcomponent­
Class.

When instancing an architecture, some of its attachments are modified,
since some of its former components are replaced by derived versions.
However, compatibility rechecking of the instanced architecture is not
required, since role inheritance ensures the preservation of compatibility.

6.2 Architecture Refinement

Architectural descriptions can be used with different levels of abstraction
during the development process. This property is commonly referred to as
refinement. For example, we can begin with a high level specification of a
system in which we describe only its top-level components, their interface,
and how they are attached to construct the system. Then, refinement is
applied to obtain a more detailed specification, by describing the internal
structure or the behaviour of previously defined components, obtaining more
complex specifications which come gradually closer to implementation. As
we have seen, component extension is a useful mechanism for refinement,
but other forms of refinement can be applied using LED A.

In the Client/Server system in Figure 6, services were defined as generic
components of type any. Thus, we have described an abstract Client/Server
architecture which follows a simple protocol of requests and replies. We can
obtain more specific architectures by describing the details of the service, i.e.
describing the behaviour that both components follow during the service.

component ReceiverClient extends Client {
interface

request : RequestSenders(request) extends Request {
spec is
(reply)request!(reply).
(new receiver)reply?(service).RequestSenders(request);

composition
receiver[] : Receiver;
service[J : Sender;

attachments
receiver[J.reader(w, wq) <> service[J.writer(w, wq);

}

Figure 8: Specialisation of a Client/Server, using Senders and Receivers

120 Carlos Canal, Emesto Pimentel, and Jose M. Troya

The ReceiverClient in Figure 8 is a specialisation of the Client in Figure
3. Its role request is refined indicating that a component receiver is created
each time the client requests a service. The service itself is refined, too,
indicating that its type is now Sender instead of any, and a new attachment is
included, connecting the roles of the receiver and the service. Components
Receiver and Sender were specified in Figure 1, while its roles were
described in Figure 2.

Hence, we have refined our Client/Server architecture, obtaining the
description of a system in which the service provided is a file transmission.
We can use the mechanism of architecture instantiation for obtaining an
instance of the refined architecture:

refinedCS : MultipleClientServer[client: ReceiverClient, pool.server[].service[] : Sender];

Since role RequestSenders extends Request, compatibility with server's
role Serve is ensured. On the contrary, the compatibility of the new
attachment between the roles Reader and Writer, which was not present in
the original architecture, must be checked.

7. ADAPTORS

Sometimes the behaviour of two components is not compatible, but these
components can be adapted so they can collaborate with each other. This
will be done using an adaptor, which acts as a glue allowing the construction
of composites from components which are not strictly compatible. Adaptors
are also used to modify the interface that a certain component exports to its
environment.

Adaptors are specified in 7t-calculus, using the same syntax as for roles.
However, roles describe the interface of a component, and they are declared
in the interface section, while adaptors are mainly used as a glue to tie the
components of a composite, and they are declared in the composition
section.

In the preceding examples, servers are always prepared to receive
requests, which is not a realistic assumption. The specification of a non­
reliable server NRServer is shown in Figure 9, left. Observe how local
choices, indicated by the combination of the sum operator and '!-transitions,
specify that the NRServer may crash unexpectedly.

Obviously, the behaviour of our NRServer is not compatible with that of
Clients, which suppose that servers are always willing to attend their
requests. However, using a simple adaptor restart we can build a fault­
tolerant server pool (FTServerPool, Figure 9, right). Each time an NRServer
crashes it is restarted by the adaptor (in fact, it creates a new NRServer).

Specification and Refinement of Dynamic Software Architectures 121

Thus, the adaptor modifies the observable behaviour of the pool of
NRServers, and the combination of roles NRServe and the adaptor Restart
provides an interface which can be proved as a refinement of role serve in
Figure 6. Thus, FTServerPool extends ServerPool, and its behaviour is also
compatible with role Request.

component NRServer {
interface

serve : NRServe(request,crash) {
spec is

J

1:. request?(reply).
(new service)reply!(service).

NRServe(request, crash)
+ 't.crash!().O;

composition
service[] : any;

J

component FTServerPool extends Server Pool {
composition

server[] : NRServer;
restart : Restart(crash) {
spec is

crash?()(new server)Restart(crash);

J
attachments

restart(e),server[*].serve(r,e) >> serve(r);

J

Figure 9: A fault-tolerant pool of servers, built from non-reliable servers

Hence, we can instance the Client/Server architecture of Figure 6
replacing its component ServerPool by an instance of FTServerPool:

ftcs: MultipleClientServer[pool: FTServerPool];

Compatibility with client's role request is ensured by inheritance, and
there is no need to recheck the attachment between the server pool and the
clients. Thus, we obtain a specialised version of the Client/Server system in
which we use non-reliable servers, but maintaining the properties of the
original architecture.

8. SYSTEM CONSTRUCTION AND EXECUTION

We have already discussed how LEDA specifications can be used for
system validation and prototyping, but we can go one step further, and use
them also for obtaining an executable system.

Using LEDA we can validate that each attachment in an architecture
connects compatible roles. Our goal is now to translate this compatibility to
the implementation level. First, each role is automatically translated into a
state machine which encapsulates the behaviour of the corresponding
component. These implementations of roles control the interaction of the
corresponding components with the rest of the system. Thus, they are similar
to IDL specifications, but augmented with the protocol that describes the
behaviour of the components.

122 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

In tum, composites are responsible for the creation of components and
for interconnecting their roles, following the communication patterns
described in their attachments. Communication between roles is done using a
process communication mechanism, (e.g. sockets).

Finally, components must be implemented using a programming
language. Typically each component specification will be implemented as a
class or group of classes using an object-oriented language. Each component
is connected to its roles, through which it communicates with the rest of the
system. When a component requires to invoke a method of another one, it
invokes the corresponding method in its own role, which will contact the
role of the other component in order to invoke the method.

Consider again the Client/Server system specified in Figure 3.
Components Client and Server are implemented as classes, while their roles
are translated into RoleRequest and RoleServe respectively (Figure 10, top) .

invoke

request ()

request (rep ly)

inv oke

r eques t ()

re turn

servi ce

reply . r ead (servi ce }

re t ur n s e rvi c e

rep l y (servi c e)

return

service

[r eturn s ervi ce I
r epy. wri te (service)

r e quest ()

r equest . write (reply)

reque s t. r ea d (reply)

s erver. request (l

Figure 10: Implementation scheme of the Client/Server architecture

In order to obtain a service, the object Client invokes the method
request() from its role RoleRequest. Then, RoleRequest sends the request to
RoleServe through the appropriate channel. Next, RoleServe invokes the
method request() from Server, and gets the service returned. The service is
sent through a specific reply channel to RoleRequest, which in turns returns
the service to Client. Thus, the implementations of Client and Server invoke

Specification and Refinement of Dynamic Software Architectures 123

or are invoked by their roles, but they don't know the location of the objects
which finally receive the invocation, nor they are responsible for establishing
or managing the communication channels indicated in the architecture.

This scheme for system implementation has several advantages. First,
connections among components are encapsulated in the roles, which
establish and modify them according to the interaction patterns specified in
the architecture. Second, components are implemented as object classes that
invoke or receive invocations of methods, but which are independent of the
interaction mechanisms used in the architecture. Third, a component may
have several implementations which can be interchanged without affecting
the behaviour of the system.

9. DISCUSSION

In this paper we have presented LEDA, an ADL for the description of
dynamic software architectures. In these systems, components interact
following flexible patterns that can be modified during system execution.
The basic unit in LEDA is that of components, which are represented by
their interface, divided into a set of roles. These roles describe, using the
1t-calculus, the behaviour of the corresponding components. Software
architectures are specified in LEDA as sets of components related by
attachments between their roles. The semantics of components and
attachments is given using the 1t-calculus, a well-known process algebra,
which allows us to use this formalism for architecture prototyping and
validation of properties like behavioural compatibility. LEDA roles and
components can be extended, adapting them to new requirements, but
maintaining the compatibility of the original roles. Analysis of compatibility
and inheritance can be both automated, which leads to the development of
tools for the analysis of the specifications. Formal validation of compatibility
and inheritance encourage both software quality and reuse, determining
whether some existing software components can be used to build a larger
system.

In the last years several proposals related to the specification of software
architectures have been presented. Although most of them are not formally
founded, which limits their possibility of analysis, several works have
already proposed the use of different formalisms for architecture
specification.

A first formalisation of the notion of compatibility is described in (Allen
and Garlan, 1997), where CSP is used for determining compatibility in the
ADL Wright. However, formalisms like CSP or CCS do not seem
appropriate for the description of evolving or dynamic structures. At most,

124 Carlos Canal, Ernesto Pimentel, and Jose M. Troya

CSP can be used in systems with a finite number of configurations, as it is
shown in (Allen et al., 1998), but not in highly dynamic systems, where the
1t-calculus is best suited. Furthennore, Wright does not address aspects of
component and role extension or refinement, nor of architecture simulation
or execution.

Our approach differs from that of Allen and Garlan in other significant
aspect: LEDA does not distinguish between components and connectors, nor
between ports and roles. This distinction would complicate unnecessarily the
language, specially the fonnalisation of compatibility and inheritance in
1t-calculus. Besides, we consider that the distinction between components
and connectors does not scale properly, since composition would lead to
mixed composites with free ports and roles which could not be considered
either as components nor as connectors. For these reasons, connectors are
described in LEDA as specific classes of components, their behaviour being
described by roles.

The 1t-calculus has been used for describing the semantics of several
computer languages. In fact, the operational semantics of the ADL Darwin
(Magee and Kramer, 1996) is described using 1t-calculus, endowing this
language with a mechanism of dynamic binding. However, type checking is
restricted in Darwin to name matching, and the behaviour of components is
not described, neither this language incorporates characteristics of extension
or inheritance. On the contrary, our approach uses the 1t-calculus not only
for semantics, but it integrates the calculus in the language. LEDA
components and attachments are higher-level constructs that simplify the
description of complex software systems, while LEDA roles take advantage
of the expressiveness of the 1t-calculus for describing the behaviour of
components. This allows us to state more precisely which are the relations
between the components of a certain software architecture, and also to
perfonn analysis of compatibility and inheritance.

The notions of component subtyping and inheritance are present in
several other ADLs, and recent work of (Medvidovic et al., 1998), addresses
description and verification of behavioural conformance using the Z
notation. On the contrary, our approach describes component's behaviour
using state machines, and addresses what they call protocol conformance.

We are currently working in the development of a Java run-time platform
for LEDA, capable to use the information about component behaviour and
architecture configuration present in the specifications to create, interconnect
and remove the implementations of the components described using the
language, thus obtaining executable applications.

Our future work will be the application of LEDA to the specification of
different industrial software systems, in order to determine the need for new
forms of interaction in the language. Another task will be the development of

Specification and Refinement of Dynamic Software Architectures 125

supporting tools, such as graphic editors or validation tools . All these tools
should hide the difficulties inherent to the formal foundations of the
language, making easier the specification of software systems in LEDA to
those not acquainted with formal methods.

REFERENCES

Abowd, G., Allen, R., and Garlan, D. (1993). Using style to understand descriptions of
software architecture. In Proc. ACM FSE'93.

Allen, R., Doucence, R., and Garlan, D. (1998). Specifying and analyzing dynamic software
architectures. In Proc. ETAPS'98, Lisbon.

Allen, R. and Garlan, D. (1997). A formal basis for architectural connection. ACM Trans. on
Software Engineering and Methodology.

Canal, C., Pimentel , E., and Troya, J. (1997). On the composition and extension of software
systems. In Proc. of FSE'97 FoCBS Workshop, pp. 50-59, Zurich.

Canal, C., Pimentel, E., and Troya, J. (1998a). Compatibility, inheritance and extension of
n-calculus agents. Technical Report LCC-ITI-98-13, Computer Science Dept.,
Universidad de Malaga. http://www.lcc.uma.es/-canaVLCC-ITI-98-13.

Canal, C., Pimentel, E., and Troya, J. (1998b). it-calculus semantics of an architecture
description language. Technical Report LCC-ITI-98-17, Computer Science Dept.,
Universidad de Malaga. http://www.lcc.uma.es/-canal!LCC-ITI-98-17.

Magee, J. and Kramer, J. (1996). Dynamic structure in software architectures. In Proc. ACM
FSE'96, pp. 3-14, San Francisco.

Medvidovic, N. and Rosenblum, D. (1997). Domains of concern in software architectures and
architecture description languages. In Proc. USENIX Conf. on Domain-Specific
Languages, Santa Barbara (USA).

Medvidovic, N., Rosenblum, D. and Taylor, R. (1998). A Type Theory for Software
Architectures. Technical Report UCI-ICS-98-14. Dept. Information and Computer
Science, University of California, Irvine.

Milner, R., Parrow, J. and Walker, D. (1992). A calculus of mobile processes. Journal of
Information and Computation, 100:1-77.

Nierstrasz, 0. (1995). Requirements for a composition language. In Proc. of ECOOP'94
Workshop on Models and Languages for Coordination of Parallelism and Distribution,
no. 924 in LNCS, pp. 147-161. Springer Verlag.

Nierstrasz, 0 . and Meijler, T. (1995). Research directions in software composition. ACM
Computing Surveys, 27(2):262-264.

Pree, W. (1996). Framework Patterns. S!GS Publications.
Shaw, M. and Garlan, D. (1995). Formulations and formalisms in software architecture. In

van Leeuwen, J., editor, Computer Science Today, no. 1000 in LNCS, pp. 307-323.
Springer Verlag.

Shaw, M. and Garlan, D. (1996). Software Architecture. Perspectives of an Emerging
Discipline. Prentice Hall.

Victor, B. (1994). A verification tool for the polyadic n-calculus. Master's thesis, Department
of Computer Systems, Uppsala University (Sweden).

	Specification and Refinement of Dynamic SoftwareArchitectures
	1. INTRODUCTION
	2. THE 1t-CALCULUS
	3. COMPONENTS AND ROLES
	3.1 Components
	3.2 Specification of component's behaviour
	3.3 Composites

	4. ATTACHMENTS
	5. ARCHITECTURE PROTOTYPING ANDVALIDATION
	6. EXTENSION AND REFINEMENT
	6.1 Extension of roles and components
	6.2 Architecture Refinement

	7. ADAPTORS
	8. SYSTEM CONSTRUCTION AND EXECUTION
	9. DISCUSSION
	REFERENCES

