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Abstract: The end product of architecting is an architectural hierarchy, a collection of 
architectural descriptions linked by mappings that interpret the more abstract 
descriptions in the more concrete descriptions. Formalized transformational 
approaches to architecture refinement and abstraction have been proposed. 
One argument in favor of formalization is that it can result in architectural 
implementations that are guaranteed to be correct, relative to the abstract 
descriptions. If these are correct with respect to one another, conclusions 
obtained by reasoning from an abstract architectural description will also apply 
to the implemented architecture. But this correctness guarantee is achieved by 
requiring that the implementer use only verified transformations, i.e., ones that 
have been proven to produce correct results when applied. This paper explores 
an approach that allows the implementer to use transformations that have not 
been proven to be generally correct, without voiding the correctness guarantee. 
Checking means determining that application of the transformation produces 
the desired result. It allows the use of transformations that have not been 
generally verified, even ones that are known to sometimes produce incorrect 
results, by showing that they work in the particular case. 

1. INTRODUCTION 

The process of specifying an architecture often begins by providing a 
very high-level description of it. This description characterizes the 
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architecture in terms of a few abstract components, perhaps the principal 
functions the system must perform and some data stores. These components 
are linked by abstract connectors, perhaps indicating dataflow or control 
flow relationships among the components. This abstract description 
provides an easily understood overview of the entire system architecture, but 
omits so much detail that it provides relatively little guidance to someone 
charged with implementing the architecture using programming-language­
level and operating-system-level constructs. So the abstract description must 
be successively refined-with complex components and connectors 
decomposed into simpler parts, and abstract specifications of operations and 
relationships replaced by more concrete specifications-until an appropriate 
amount of detail has been added. It usually is desirable to continue the 
refinement until implementation-level constructs have replaced all the 
abstractions. 

Alternatively, architecting a system can consist of assembling instances 
of reusable component and connector types selected from a library. Such 
libraries effectively make the implementation-level architecture more 
abstract, and reduce the conceptual gap between the requirements 
specification and the implemented architecture. Nevertheless, combining a 
large number of components and connectors in complex ways can easily 
result in an architecture that is hard to understand and analyze. So, it is 
desirable to generate more easily comprehensible abstract representations of 
the implementation-level architecture. 

In either case, the end product of the architecting process is typically a 
collection of architectural descriptions, at different levels of abstraction and 
often in different styles (Garlan, Allen, & Ockerbloom 1994). The more 
abstract descriptions are linked to the more concrete descriptions by 
interpretation mappings. An interpretation mapping says how the 
abstractions are implemented.' It sends each sentence in the language of the 
abstract description to a corresponding sentence in the language of the 
concrete description. For example, the fact that some component a is 
implemented by components at. a2, .••• , an would be indicated by mapping 
the sentence 

Component( a) 

to the sentence 

Component(a,)" Component (az)" ... "Component(an) 

1For more details on characterizing implementation steps using interpretation mappings, see 
our earlier paper (Moriconi, Qian, & Riemenschneider 1995). 
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The collection of architectural descriptions and interpretation mappings that 
comprise the complete architectural specification is called an architecture 
hierarchy. 

There are many advantages to formalizing refinement and abstraction in 
system development: a library of refinement or abstraction transformations 
provides a "corporate knowledge base" of standard, or preferred, 
development patterns; mechanizing the application of these transformations 
lessens the likelihood of clerical errors during the development process; 
reuse of the transformations will result in greater validation of the patterns 
they codify; and so on. But one of the most fundamental advantages of 
formalization is that it allows the average developer to produce abstraction 
hierarchies that are guaranteed to be consistent. In other words, the use of 
verified transformations in the development process will guarantee that 
abstractions accurately characterize implementations, albeit more abstractly. 
A verified refinement transformation is one that has been proven to produce 
a correct implementation of whatever it is applied to. A verified abstraction 
transformation is one that has been proven to produce a correct abstraction 
of whatever it is applied to. 

Even if attention is restricted to the case of architectures, there is some 
debate as to exactly what correct should mean. We have proposed a 
somewhat stricter-than-usual criterion for correctness (Moriconi, Qian & 
Riemenschneider 1995), while others have argued that the standard criterion 
is preferable (Philipps & Rumpe 1997). For present purposes, any 
reasonable criterion that characterizes correctness in terms of preservation of 
truth will do perfectly well. The standard correctness criterion is that every 
consequence of the abstract description must be a consequence of the 
concrete description as well. More precisely, for every sentence A in the 
language of the abstract description, where rl is the logical theory that 
formalizes the abstract description, 

where r2 is the theory that formalizes the concrete description, and ll is the 
interpretation mapping that links the two theories.2 A mapping Jl that 
satisfies this condition is called an interpretation of T1 in h Our proposed 
stronger criterion for purely structural descriptions replaces the conditional 
with a biconditional, i.e., requires that the interpretation mapping be a 
faithful theory interpretation. One might also employ weaker-than-standard 

20ur earlier paper explains how to fonnalize structural descriptions of architectures as logical 
theories. Since structural descriptions are largely declarative, the process is quite 
straightforward. 
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criteria, where only some consequences of the theory-properties of special 
interest-need be preserved. 

What all these criteria have in common is that they justify the use of 
formal reasoning about the architecture based on the more abstract 
descriptions. If some sentence is shown to be a formal consequence of the 
abstract architectural theory, the concrete theory is known to correctly 
implement the abstract theory, and the sentence is among those that the 
correctness criterion guarantees are preserved by the implementation, then 
the sentence is known to be a consequence of the concrete theory as well. It 
is correctness guarantees that link the results of abstract analyses to the real 
world. 

The usual approach to producing a correctness guarantee is 
restricting the architect to the use of verified transformations. This approach 
suffers from a problem, in practice. Even given a fairly mature library of 
verified transformations, it would hardly be surprising if an architect found 
himself unable to perform a certain refinement or abstraction step that he 
believed to be correct because the required transformation has not been 
included in the library. Expecting the typical system architect to produce a 
formal proof that the step is correct is unrealistic, yet the presence of a single 
unverified implementation step in the hierarchy voids the correctness 
guarantee provided by the restriction to verified transformations. Is there 
any way to allow the user to include such arbitrary steps in the development 
of the architecture hierarchy, while maintaining a correctness guarantee? 

2. PROOF -CARRYING ARCHITECTURES 

Our solution to this problem is based on the notion of checking the 
correctness of steps in architecture hierarchy development. By checking, we 
mean automatically performing some calculation that shows the step is 
correct. Checking can be substantially simpler than verification, because it 
is focussed on a particular step. Verifying a transformation means showing 
that it always produces correct results, while checking a transformation step 
means showing that a correct result was obtained in one specific case. Thus, 
checking entirely avoids the sometimes difficult problem of characterizing 
the preconditions required for the transformation to produce correct results 
(Riemenschneider 1998). 

Our initial approach to checking transformation steps was inspired by 
work on compilers that generate proof-carrying code (PCC) (Necula & Lee 
1998). The basic idea is that, rather than attempting to prove the 
transformations performed by a compiler always produce code with certain 
desired properties, to generate a purported formal proof that the complied 
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code has those properties as part of the code generation process. The 
purported proof can then be checked and, if it turns out to be a correct proof, 
it follows that the generated code has the desired properties. Thus, the 
emphasis is shifted from showing that compiler transformations are correct 
in general to checking that they produced correct results in individual cases. 

The application of this idea to architectural transformation is 
straightforward. At some abstract level, the architectural description is 
proven to guarantee that the architecture has some desirable property, C. 
The interpretation mapping J.L that sends abstract level sentences to their 
implementations can also be applied to the proof of C. If the image of the 
proof under the implementation mapping turns out to be a correct proof that 
the implementation has J.L(C), then, of course, the implementation has J.L(C). 
Checking the transformed proof can, therefore, provide the desired 
correctness guarantee. 

3. AN EXAMPLE: SECURE DISTRIBUTED 
TRANSACTION PROCESSING 

The idea of proof-carrying architectures can be illustrated by an example, 
based on our development of software architectures for secure distributed 
transaction processing (SDTP) (Moriconi, Qian, Riemenschneider & Gong 
1997). These architectures extend X/Open's standard DTP architecture 
(X/Open Company 1993) by enforcing a simple "no read up, no write down" 
security policy. The primary result of our development efforts is a hierarchy 
that links an extremely abstract architectural description, shown in Figure 1, 
to three implementation-level descriptions written in a style that can be 
directly translated into a programming language such as Java using standard 
network programming constructs. The gap between the abstract SDTP 
architecture and each concrete SDTP architectures is filled by roughly two 
dozen descriptions-the exact number varies among the implementations­
at intermediate levels of abstraction, linked in a chain by interpretation 
mappings. 

We are in the process of formally proving the implementation-level 
architectures are secure by proving that the abstract description is secure, 
and proving that every interpretation mapping preserves security. One of the 
techniques that is being employed is showing that the interpretations 
incrementally transform the abstract-level security proof into 
implementation-level security proofs. The example below shows how the 
interpretation mapping associated with the first refinement step in all three 
chains transforms the abstract security proof into a slightly more concrete 
security proof. 
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tm rm ... - ;;; 

xa 

Figure 1. Abstract SDTP architecture- components linked by secure channels 

3.1 The abstract SDTP architecture 

Figure 1 depicts the most abstract architecture for SDTP. The boxes are 
the components of the architecture: the Application (labeled "ap"), some 
number of Resource Managers (labeled "rm"), and a Transaction Manager 
(labeled "tm"). The components are linked by secure channels, indicated by 
the heavy double headed arrows that make up the interfaces between the 
Application and Resource Managers, the Application and the Transaction 
Manager, and the Resource Managers and the Transaction Manager. Secure 
channels are a type of connector that enforce the security policy. In other 
words, secure channels will not carry classified data from a component to a 
component that lacks required clearances. To say that the system as a whole 
satisfies the security policy means that there is no flow of classified data to a 
component that lacks the required clearances. 

3.2 An abstract proof of security 

Informally, the security of the system follows almost immediately from 
the fact that it employs only secure channels. Not surprisingly, a textbook­
style natural deduction proof (Lemmon 1987, Mates 1972) of system 
security is quite simple3• Consider the dataflow from some given Resource 
Manager rm to the Application ap, for example. A proof of the formula 

3 In this paper, I will use natural deduction, since that provides a familiar concrete 
representation of formal proofs. In our actual verifications that the SDTP hierarchy's 
interpretation steps preserve security, we are employing the PVS verification system [18]. 
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(\id: Labeled_Data) [Fiows(d, rm, ap) 
:::>label( d);?: clearance(ap)] 

which says 

every labelled datum d that flows from rm to ap has a security label 
classifying it that is less than or equal to the clearance level of ap 

from five axioms of the architectural theory is shown in Figure 2. 

{1} J. (Vd : Labeled.Data)(Fiows(d, rm, ap) 
::> Carries(securur..channel,d, rm's..ar..port, ap's..ar..ports(rrn))] 

Axiom describing specifiC urdutecturc 
{2} 2. Port_Of(ap's..ar..ports(rm), ap) Axiom describing specific arehitecture 
{.'l} 3. ('lc: Secure..Channel)('ld: labeled.Data)(Vx : Output.Port) 

(Vy: lnpuLPort)[Carries(c,d,x,y) ::>label( d)$ clearance(y)] 
Axiom characterizing secure clumnels 

{4} 4. ('fa: Component)(Vy: lnput.Port)[Port-Of(y,a) ::>dearance(y) $ clemnce(a)] 
Axiom constraining port clearances 

{5} 5. (\Is,, ••• s. : Socurity..l.abel)[s1 $ '' "., :5 •• ::> s1 $ s.] 
Axiom specifying transitivity of s<eurity label ordering 

(1} 6. Flows( do, rm, ap) => Carries(secure....ar..channel, do, rm''-'•-Port, ap',....r.ports(rm)) 
Universal iMt.antiation (1) 

{3} 7. carr;...(secure..ar..channel, do, rm's..>r-port,ap's..>r-ports(rm)) 

{1,3} 8. 

(4} 9. 

{2,4} 10. 
{5} n. 

{2,4,>} 12. 

{1,2,3, ·1,.';} 13. 
(1,2,3,4,5} 14. 

::> label( do) :5 clearance(ap's..ar..ports(rm)) 
UniYCr5al ill6tantiatiou (3) 

Flows( do, rm, ap) ::>label( do) :5 clearance(ap's..ar-ports(rm)) 
Tautological consequence (6,7) 

Port..Of(ap'.s..ar..ports(rm), ap) ::> :5 clearance(ap) 
Unh-ert;al ill6tantiatiou (4) 

clearance(ap's..ar..ports(rm)) :=:; clearance(ap) Tautological oonoequence 
label( do) :5 clearanee(ap's..ar.ports(rm)) h elearanct(ap's..ar.ports(rm)) $ elearance(ap) 

::>label( do) 5 dearance(ap) 
Uuh.ocrstt.l instantiation (5) 

label( do) :5 dearance(ap's._ar..ports(rm)) :::>label( do)::; clearance(ap) 
Tautological COD""'!UC!l<e (10,11) 

Flows( do, rm, ap) ::>label( do) :5 dearance(ap) Tauwlogkal «>ll""'J"'"'"" (8,12) 
(Vd: l•beled.D•ta)[Fiows(d, rm, ap) :::>label( d) :5 clearance(ap)) 

Uni\'M'&I gcncralization (13) 

Figure 2. Formal proof that dataflow from rm to ap satisfies the security policy 

The five axioms say 
1. every labelled datum d that flows from rm to ap is carried by 

secure_ar_channel form the output port rm's_ar_port to the input port 
of the port array ap's_ar_ports that is indexed by rm, 

2. the input port of the port array ap's_ar_ports that is indexed by rm is a 
port of ap, 

3. if secure channel c carries labelled datum d from output port x to input 
port y, then d's security label is less than or equal to the clearance level 
ofy, 
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4. the clearance level of any port y of component a must be less than or 
equal to the clearance level of a, and 

5. the ordering of security labels is transitive. 

The first two axioms are facts about the particular architecture, the third 
axiom is the defining property of the secure channel subtype, the fourth and 
fifth axioms are general axioms of the security model. 

3.3 A slightly more concrete SDTP architecture 

The secure channels of abstract SDTP architecture can be implemented in 
terms of ordinary dataflow channels and additional components in a variety 
of ways, depending upon the security properties of the components 
(Moriconi, Qian, Riemenschneider & Gong 1997). The most interesting 
implementation is shown in Figure 3, where the light double headed arrows 
represent ordinary dataflow channels that do not enforce the security policy. 

ap 

t 
mls filter 

t 
rm tm 

Figure 3. More concrete SDTP architecture-secure channels refined to ordinary 

channels, or ordinary channels plus security filter 

This implementation is suited to the case where all of the resource 
managers are single-level, but not necessarily the same level. The security 
policy is enforced by a multi-level secure component that filters dataflow 
between the application and the resource managers: if passing a datum from 
a resource manager to the application would violate the security policy, the 
filter removes it from the stream. 
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The concrete architecture can be thought of as resulting from the 
abstract architecture by applying several transformations. For example, one 
transformation, the Filter Introduction Transformation (FIT), replaces secure 
channels between components that are not multilevel secure by ordinary 
dataflow channels and a component that enforces the security policy. 

3.4 A slightly more concrete proof of security 

Now it must be shown that, like the abstract SDTP architecture, the more 
concrete SDTP architecture has the desired security property. The two 
conventional approaches to establishing this result are 
1. to directly prove that the more concrete architecture is secure, in much 

the same way the abstract architecture was proven secure (perhaps using 
the abstract-level proof for heuristic guidance), and 

2. to show that the Filter introduction Transformation (ffi), and the other 
transformations that produce the more concrete architecture from the 
abstract architecture, always preserves the security properly. 

The use of proof-carrying architectures provides a third alternative. 
When transformation FIT is applied, it can be applied not only to the 

architectural description, but to the formal security proof of Figure 2 as well. 
The result of applying FIT to this proof is shown in Figure 4, where the 
implementation mapping J.l associated with this application is determined as 
follows. A complete account of how first-order interpretation mappings are 
defined, and basic facts about them, can be found in logic textbooks 
(Enderton 1972, Shoenfield 1967)3• For present purposes, it is enough to 
know that 
1. for every term t of the language of the abstract theory, J.l(t} is a (possibly 

complex) term of the language of the more concrete theory, 
2. for every predicate F of the language of the abstract theory, J.l(F) is a 

(possibly complex) predicate of the language of the more concrete 
theory, 

3. for every formula A of the language of the abstract theory, 
J.l( -.A) = -.J.l(A) 

and similarly for the other connectors, and 
4. for every formula A of the language of the abstract theory, every variable 

x, and every type predicate T of the language of the abstract theory, 
J.l((V'x: T) A)= J.l(V'x : T) J.l(A) 

where J.l(V'x : T) is a sequence of universal quantifiers, and similarly for 
the other quantifiers. 

3 Technically, we will make use of what are called n-dimensional interpretations (Hodges 
1993, pp. 212.) But this is a reasonably straightforward generalization of the definition 
found in the cited textbooks. 
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The Carries predicate 

Carries((secure channel), (datum), (out port), (in port)) 

that is mentioned in formulas 1, 3, 6, and 7 of the abstract-level proof is 
mapped to a conjunction of the Carries, Passes, and Carries predicates, 

Carries((channel), (datum), (out port), (filter in port)) 

1\ Passes( (filter), (datum), (filter in port), (filter out port)) 

1\ Passes((channel), (datum), (filter out port), (in port)) 

This clause in the definition of ll says that a secure channel carrying a 
datum from some output port to some input port is implemented as a channel 
carrying the datum from the output port to some input port of a filter, passing 
the datum through the filter from the input port to some output port, and 
carrying the datum from output port of the filter to the input port5. This 
mapping is also applied to formula 3 in order to preserve the fact that 
formula 7 should follow from formula 3 by Universal Instantiation. 

The universal quantifier over secure channels in formula 3, 

(V' (secure channel variable) : Secure_Channel) 

is mapped by ll to universal quantifiers over channels and a universal 
quantifier over MLS components, 

(V' (to-filter channel variable): Channel) 

(V' (filter variable) : MLS_Component) 

(V' (from-filter channel variable) : Channel) 

It is easy to check that the result of applying the FIT interpretation 
mapping ll to the proof of security is a syntactically correct derivation of the 

5 This mapping would not be appropriate to apply to every occurrence of the Carries 
predicate in every derivation, because some secure channels in the abstract architecture 
may not be replaced by a combination of two channels and a filter in the concrete 
architecture. However, formulas I , 6, and 7 of the proof specifically refer to what 
secure_ar_channel carries, and this secure channel is being implemented by two 
channels and a filter , so I will use this simpler interpretation for purposes of the example. 
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desired security property from formulas that are images of axioms of the 
more abstract architectural theory. Mapping )! sends tautological 
consequence steps to correct tautological consequence steps, universal 
instantiation steps to correct universal instantiation steps, and universal 
generalization steps to correct universal generalization steps. So )! has 
indeed mapped the formal abstract-level security proof to a concrete-level 
security proof, but not necessarily a proof from axioms of the concrete 
architectural theory. 

{J} 1. (Vd: Labeled.Data){Fk>ws(d,rm,ap) 
:> Carries( rm_toJilter .channel, d, rm's..ar .port, filttrJn..port( rm))] 

" Passes( mls.lilter, d, filterJn.port(rm), filter .DUt..port(rm) )] 
A d, filter..out..port(rm), ap's..ar..ports(rm))j 

{2} 2. Port..Of(ap's..ar..ports(rm), ap) 
{3} 3. (Vc, : Channel)('lf: MLS-Component)CVct : Channei)(Vd : Labeled.Data) 

(Vx1 : Output_pon)(Vxo : Output..Pcrt)(Vy1 : lnput_port)(Vy2 : lnput_port) 
[Carries(c,, d,x, ,y1)" Passu(f, d, y1,x,)" Carrios(c:., d, x,, y2) 

::>label( d) :5 dearance(y2)] 

{4} 4. (Va : Component)(Vy: lnput-Port)[PorLOf(y, a) :> dearance(y) 5 clearance( a)] 
{5} 5. (Vs,,s,, .. : Security..Label)[s, 5. .. "s, 5 .. :> •• 5. sa] 
{1} 6. Fl..,s(do,rm,ap) 

::> Carries( m>-toJiltor ..channel, do, rm's..ar .port, filter Jn..port( rm)) 
" Pmes(mlsJilter,do, filter ..in..port(rm), filter ..out.port(rm)) 
" Carries( filter _to..ap..channel(rm ), do, filt•r..out.port(rm ), ap's..ar.ports( rm)) 

{3} i. Carries(rrn_toJilter..channel,d, rm's..ar.port, filterJn.port(rm) 
"Passes(mlsJilter, d0 , filtorJn.j)ort(rm), Mter..out..port(rm)) 
" Carries(filttr -to.JOp..t:hannel( rm), do, filter ..out.j)ort(rm), ap's..ar-ports(rm)) 

::>label( do) 5. cleoronce(ap's..ar_ports(rm)) 
{J, 3} 8. Flows( do, rm, ap) ::>label( do) 5 clearonco(ap's..ar..ports(rm)) 

{4} 0. Port..Of(ap's..ar_ports(rm),ap) ::>cloaranoe(ap's..ar_ports(rm)) 5. dearanoe(ap) 
{2, 4} 10. cluranco(ap's..ar_ports(rm)) 5 cloaranco(ap) 

{5} 11. label( do) 5. clearance(ap's..ar_ports(rm)) "clearanoe(ap's..ar..ports(rm))::; clearance(ap) 
::>label( do) 5. clurance(ap) 

{2,4, 5} 12. label( do) 5 clearance(ap's..ar_ports(rm)) :::>label( do) :5 dearance(ap) 
13. Flows(do,rm, ap) ::>label( do) 5 clearance(ap) 

{1, 2, 3, 4, .>} H . (Vd : Labeled.Data)[Fk>ws(d, rm,ap) :::> label( d) .$ clearance(ap)J 

Figure 4. Transformed formal proof that dataflow from rm to ap satisfies the security policy 

3.5 Completing the proof 

The image of the first axiom under )! says that every labelled datum that 
flows from rm to ap is carried to the filter from rm, passed through the filter, 
and then carried to ap from the filter. Just as in the case of the first axiom, 
this is a fact about the particular architecture that is either an axiom of the 
concrete theory, or easily and automatically derivable from axioms of the 
concrete theory. The mapping)! leaves the second axiom unchanged. This 
will certainly be an axiom of the concrete theory, as well as the abstract 
theory. The image of the third axiom is a bit more complex. It states that 
the combination of the two channels and the filter enforces the security 
property. It is quite unlikely that this would be among the chosen axioms of 
the concrete-level theory, since it is the filter alone, effectively, that is 
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enforcing security. Still, it is easy to see that this formula must be a 
consequence of axioms of the concrete theory: the security model requires 
that channels that do not enforce security can only connect ports with 
matching clearances, and one of the defining properties of an MLS 
component is that it only supplies data at an output port if the classification 
of the data is less than to equal to the clearance of the port. A formalization 
of this proof from particular axioms we use in the SDTP security verification 
is shown in Figure 5. 

{1} 1. 0fc : Chllnnel)0fd : ubeled.Data)(¥x : Output.Port)(¥y : lnput.Port) 
[Carri .. (c, d,x, y) ::> clearance(x) = cluranee(y)] 

Axiom sp•dfying coll.D<lCti<m consttaint impos<ld by security mod<>J 
{2} 2. (Vf: MLS-Component)(Vd : tnput.Port)(Vx: Output.Port) 

[Passes( f. d, y,x) ::>label( dearanee(x)] 
Axiom r.hl>racterioiug MLS componentll 

{3} 3. (Vx)(¥y)(Vz)[x = y :> [z :S x •• t $ y] ltL•truli!C of identity axiom sebl!mo 
{1} 4. Carries( e., do, x,, y,) => dearanct(xo) = cl .. rance{y2} Uuiveml in>tautiatiOil (1) 
{2} 5. Patse(fo,do,y1, x2) :>label( do) $ clearance(x.) Uniwn<al (2) 

{1, 2} 6. Carries(c,,do,x.,y1)" Passes(fo,do,y1,x.) A(arries(c,,do, x, ,y,) 
::>label( do)$ clearance(x,) " clearance(x,) = clearance(y2) 

Tautologkal oo.-tuen<!C (3,4) 
{3} 7. cloarance(x,) = cleorance(y2) ::>[label( do) $ clearance(x,) •label( do)$ clurance(y2) 

Uni\-.rslll iu!ltantiation (3) 
{1, 2, 3} S. Carries(c, , do,x.,y1) ·" Passes(fo.,do, y1,x.)" Carries(c,, do,x2.,y2) 

=>label( do) $ clearance(y2) 

Ta utologkal <Oll!IJ<Iuenc" (6,7) 
{1, 2, 3) 9. 0fc,: Chlonnel)(¥f: MLS_Compottent)(Veo : Channei)(Vd: Labeled_Oata) 

(Vxt : Output.Port)(Vx, : Output.Port)('v'y, : lnput.Port)(Vy, : lnput.Port) 
(Carri .. (<, ,d,x, ,y1)" P..,.s(f,d,y1 ,x,) " Catfies{c,,d, x,,y,) 

::> clearanct(y1)J 
Universal generallzation (8) 

Figure 5. Proof of image of abstract-level formula 3 under ll from axioms of concrete theory 

Discovery of this proof is easy. The form of the desired conclusion-a 
conjunction of conditions on Carries and Passes in the antecedent, and the 
comparison of label to clearance in the consequent-immediately suggests 
the use of the axioms on lines I and 2 of the proof. So it should be quite 
plausible that the proof can be discovered without human intervention by the 
transformation system. The interpretation mapping U does not affect the 
images of the remaining two axioms; they remain general axioms in the 
security model. So, by combining the proof in Figure 5 with the proof in 
Figure 4, we obtain a proof of the security property from axioms of the 
concrete theory. Moreover, this proof is recognizably a formalization of our 
informal argument (Moriconi, Qian, Riemenschneider & Gong 1997, p. 890) 
that the concrete architecture satisfies the security policy. 
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4. GENERALIZING FROM THE EXAMPLE 

The idea of using the architectural transformation to transform the proof 
that the more abstract architecture has a desired property into a proof that the 
more concrete architecture has the property worked well for this rather 
simple, but real-world, example. Is there any reason to believe that it will 
work equally well in other cases? 

Recall that the standard criterion for correctness of an 
implementation mapping )l of an abstract logical theory T1 in a more 
concrete theory T2 is that )l must interpret r, in T2, i.e., it must be the case 
that, for every formula A in the language of h 

T, 1- A => T21- )l(A) 

If )l interprets T1 in T2, an easy inductive argument shows that )l 

maps formal proofs from T1 to formal proofs from )l[TJ] that can be extended 
to proofs from T2. If A is an axiom of then, since )l is a theory 
interpretation, )l(A) is derivable from T2• Because )l is defined so that 
connectives pass through it, )l maps tautological consequence steps to 
tautological consequence steps. Similarly, )l maps universal instantiation and 
universal generalization steps to universal instantiation and generalization 
steps, respectively. Thus, )l maps formal proofs from abstract axioms to 
formal proofs from images of abstract axioms, and images of abstract 
axioms can always be proved from concrete axioms, as shown in Figure 6. 
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So, if an architectural transformation step is correct, in the standard 
sense, the corresponding interpretation mapping will map formal proofs to 
formal proofs containing gaps that can be filled. A fortiori, an abstract-level 



78 R. A. Riemenschneider 

formal proof of some particular property of interest-say, satisfaction of a 
security policy-will be mapped to a proof that the implementation also has 
(the implementation-level analogue of) the property. Since the replacement 
of the secure channel from rm to ap by a pair of channels and a filter is 
evidently correct, it is not surprising that the FIT mapping sends the abstract­
level security proof to a concrete-level security proof. 

It follows that the proof-carrying architecture approach allows the 
architect to perform arbitrary correct transformations when implementing an 
abstract architecture, provided the transformation system that supports the 
approach is clever enough to find the proofs of images of axioms. 

The question remains: In general, how hard is it to discover these 
proofs? In our experience, it is invariably quite easy, because we deal with 
refinement patterns that make only small changes in representation of the 
architecture. Indeed, the example in Figure 5 is representative of the 
complexity of most of these proofs. At lower levels in the SDTP hierarchy, 
there are more gaps to be filled in-because lower-level architectural 
theories are more complex, and proofs are based on a larger number of 
axioms-but the size of the gaps is about the same. We are confident that 
considerable automated support for finding proofs to fill the gaps can be 
provided. 

Finally, it should be noted that incorrect transformations that happen to 
preserve the proof of the property of interest will also be judged acceptable 
on the proof-carrying architectures approach. Therefore, it is well-suited to 
the case where the focus is on obtaining an implementation with some 
particular desirable property - i.e., when a weaker-than-usual correctness 
criterion is adequate - and placing minimal constraints on the architect's 
implementation options is preferred, as is the case in SDTP. 

5. RELATED WORK 

Although there is a large and growing literature on formal software 
transformation, nearly all of it is oriented toward maintaining functional 
correctness, rather than system structure. Similarly, there is a large body of 
literature on architectural refinement and composition, nearly all of it 
employing semiformal representation and analysis techniques, at best. The 
comparatively few papers on formal refinement of architectural structure 
include Broy's work on component refinement (Broy 1992), Brinksma, et 
al.'s, work on connector refinement (Brinksma, Jonsson & Orava 1991), 
Philipps and Rumpe's recent work on refinement of information flow 
architectures (Philipps & Rumpe 1997), and the work described in our own 
earlier papers. Also closely related is work by Garlan's group (Abowd, 
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Allen, and Garlan 1995), Luckham's group (Luckham, Augustin, Kenney, 
Vera, Bryan & Mann 1995) , and Moriconi and Qian's work on formally 
representing the semantics of connectors and relating semantic models at 
different levels of abstraction (Moriconi & Qian 1994). But, the emphasis in 
all these cases has always been on verification of general refinement 
patterns, rather than checking particular steps. 

Necula and Lee's work on proof-carrying code and its applications 
(Necula & Lee 1996, 1997, 1998) introduced the notion of replacing 
verification by checking in the context of compilation. The work described 
in this paper can be viewed as generalizing their ideas about code refinement 
transformations to architectural transformations, both refinements and 
abstractions. 

6. CONCLUSIONS 

Transformational development of architectures can guarantee that 
implementations are correct by restricting the architect to a stock of verified 
transformations. But such a correctness guarantee is quite brittle, since use 
of a single non-verified transformation voids it. Moreover, if many 
transformations are used, and the verification of each is difficult, then 
confidence in the correctness of the implementation may be less than 
desired. Checking particular refinement steps offers a way of allowing the 
architect greater freedom, and of achieving higher levels of confidence that 
the implemented architecture has the desired properties. 

Our initial approach to checking, based on the idea of proof-carrying 
architectures, is especially well suited to the case where the main 
requirement is high confidence that the implementation has some specific 
property. The property is shown to hold at some abstract level, and every 
refinement is produced by application of a transformation known to preserve 
the property, or is checked for correctness by making sure that the 
transformation preserves the proof of the desired property, or both. 

The main limitation of this first approach to checking is that properties 
are checked one at a time. We are exploring other approaches to checking 
that allow an entire class of properties to be checked at once. One that 
seems particularly promising is based on the idea of applying the simplified 
technique for proving implementation mapping correctness 
(Riemenschneider 1997) to development steps at architecture definition­
time. This complementary approach to checking will allow the correctness 
of steps to be checked, relative to our strong correctness criterion, rather than 
checking one or a few properties of interest. But it can be applied only to 
complete architectural descriptions of single structures, not to descriptions of 
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varied families of architectural structures. The proof-checking architectures 
approach applies equally well to descriptions of single structures and 
descriptions of families . 

As mentioned above, our preliminary experiments with proof-carrying 
architecture are being performed with the PVS verification system (Owre, 
Rushby & Shankar 1992). Improved support for working with proof­
carrying architectures, including automated discovery of the gap-filling 
proofs, is being implemented as part of the Xform4 system, an enhanced 
version of our present architectural correctness checking toolset. Xform, 
pronounced transform, is a recursive acronym for "Kform, ,for Qrderly 
r.eification5 and maintenance." Xform will support transformational 
development and maintenance of architectural descriptions written in 
languages such as SADL (Moriconi & Riemenschneider 1997) and ACME 
(Garlan, Monroe & Wile 1997). 
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