
Checking the Correctness of Architectural
Transformation Steps via Proof-Carrying
Architectures

R. A. Riemenschneider
Computer Science Laboratory, SRI International, Menlo Park, CA, USA
rar@csl.sri.com

Key words: Software architectures, architecture hierarchies, transformation, refinement
verification, proof-carrying architectures

Abstract: The end product of architecting is an architectural hierarchy, a collection of
architectural descriptions linked by mappings that interpret the more abstract
descriptions in the more concrete descriptions. Formalized transformational
approaches to architecture refinement and abstraction have been proposed.
One argument in favor of formalization is that it can result in architectural
implementations that are guaranteed to be correct, relative to the abstract
descriptions. If these are correct with respect to one another, conclusions
obtained by reasoning from an abstract architectural description will also apply
to the implemented architecture. But this correctness guarantee is achieved by
requiring that the implementer use only verified transformations, i.e., ones that
have been proven to produce correct results when applied. This paper explores
an approach that allows the implementer to use transformations that have not
been proven to be generally correct, without voiding the correctness guarantee.
Checking means determining that application of the transformation produces
the desired result. It allows the use of transformations that have not been
generally verified, even ones that are known to sometimes produce incorrect
results, by showing that they work in the particular case.

1. INTRODUCTION

The process of specifying an architecture often begins by providing a
very high-level description of it. This description characterizes the

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35

66 R. A. Riemenschneider

architecture in terms of a few abstract components, perhaps the principal
functions the system must perform and some data stores. These components
are linked by abstract connectors, perhaps indicating dataflow or control
flow relationships among the components. This abstract description
provides an easily understood overview of the entire system architecture, but
omits so much detail that it provides relatively little guidance to someone
charged with implementing the architecture using programming-language­
level and operating-system-level constructs. So the abstract description must
be successively refined-with complex components and connectors
decomposed into simpler parts, and abstract specifications of operations and
relationships replaced by more concrete specifications-until an appropriate
amount of detail has been added. It usually is desirable to continue the
refinement until implementation-level constructs have replaced all the
abstractions.

Alternatively, architecting a system can consist of assembling instances
of reusable component and connector types selected from a library. Such
libraries effectively make the implementation-level architecture more
abstract, and reduce the conceptual gap between the requirements
specification and the implemented architecture. Nevertheless, combining a
large number of components and connectors in complex ways can easily
result in an architecture that is hard to understand and analyze. So, it is
desirable to generate more easily comprehensible abstract representations of
the implementation-level architecture.

In either case, the end product of the architecting process is typically a
collection of architectural descriptions, at different levels of abstraction and
often in different styles (Garlan, Allen, & Ockerbloom 1994). The more
abstract descriptions are linked to the more concrete descriptions by
interpretation mappings. An interpretation mapping says how the
abstractions are implemented.' It sends each sentence in the language of the
abstract description to a corresponding sentence in the language of the
concrete description. For example, the fact that some component a is
implemented by components at. a2, .••• , an would be indicated by mapping
the sentence

Component(a)

to the sentence

Component(a,)" Component (az)" ... "Component(an)

1For more details on characterizing implementation steps using interpretation mappings, see
our earlier paper (Moriconi, Qian, & Riemenschneider 1995).

Checking the Correctness of Architectural Transformation Steps 67

The collection of architectural descriptions and interpretation mappings that
comprise the complete architectural specification is called an architecture
hierarchy.

There are many advantages to formalizing refinement and abstraction in
system development: a library of refinement or abstraction transformations
provides a "corporate knowledge base" of standard, or preferred,
development patterns; mechanizing the application of these transformations
lessens the likelihood of clerical errors during the development process;
reuse of the transformations will result in greater validation of the patterns
they codify; and so on. But one of the most fundamental advantages of
formalization is that it allows the average developer to produce abstraction
hierarchies that are guaranteed to be consistent. In other words, the use of
verified transformations in the development process will guarantee that
abstractions accurately characterize implementations, albeit more abstractly.
A verified refinement transformation is one that has been proven to produce
a correct implementation of whatever it is applied to. A verified abstraction
transformation is one that has been proven to produce a correct abstraction
of whatever it is applied to.

Even if attention is restricted to the case of architectures, there is some
debate as to exactly what correct should mean. We have proposed a
somewhat stricter-than-usual criterion for correctness (Moriconi, Qian &
Riemenschneider 1995), while others have argued that the standard criterion
is preferable (Philipps & Rumpe 1997). For present purposes, any
reasonable criterion that characterizes correctness in terms of preservation of
truth will do perfectly well. The standard correctness criterion is that every
consequence of the abstract description must be a consequence of the
concrete description as well. More precisely, for every sentence A in the
language of the abstract description, where rl is the logical theory that
formalizes the abstract description,

where r2 is the theory that formalizes the concrete description, and ll is the
interpretation mapping that links the two theories.2 A mapping Jl that
satisfies this condition is called an interpretation of T1 in h Our proposed
stronger criterion for purely structural descriptions replaces the conditional
with a biconditional, i.e., requires that the interpretation mapping be a
faithful theory interpretation. One might also employ weaker-than-standard

20ur earlier paper explains how to fonnalize structural descriptions of architectures as logical
theories. Since structural descriptions are largely declarative, the process is quite
straightforward.

68 R. A. Riemenschneider

criteria, where only some consequences of the theory-properties of special
interest-need be preserved.

What all these criteria have in common is that they justify the use of
formal reasoning about the architecture based on the more abstract
descriptions. If some sentence is shown to be a formal consequence of the
abstract architectural theory, the concrete theory is known to correctly
implement the abstract theory, and the sentence is among those that the
correctness criterion guarantees are preserved by the implementation, then
the sentence is known to be a consequence of the concrete theory as well. It
is correctness guarantees that link the results of abstract analyses to the real
world.

The usual approach to producing a correctness guarantee is
restricting the architect to the use of verified transformations. This approach
suffers from a problem, in practice. Even given a fairly mature library of
verified transformations, it would hardly be surprising if an architect found
himself unable to perform a certain refinement or abstraction step that he
believed to be correct because the required transformation has not been
included in the library. Expecting the typical system architect to produce a
formal proof that the step is correct is unrealistic, yet the presence of a single
unverified implementation step in the hierarchy voids the correctness
guarantee provided by the restriction to verified transformations. Is there
any way to allow the user to include such arbitrary steps in the development
of the architecture hierarchy, while maintaining a correctness guarantee?

2. PROOF -CARRYING ARCHITECTURES

Our solution to this problem is based on the notion of checking the
correctness of steps in architecture hierarchy development. By checking, we
mean automatically performing some calculation that shows the step is
correct. Checking can be substantially simpler than verification, because it
is focussed on a particular step. Verifying a transformation means showing
that it always produces correct results, while checking a transformation step
means showing that a correct result was obtained in one specific case. Thus,
checking entirely avoids the sometimes difficult problem of characterizing
the preconditions required for the transformation to produce correct results
(Riemenschneider 1998).

Our initial approach to checking transformation steps was inspired by
work on compilers that generate proof-carrying code (PCC) (Necula & Lee
1998). The basic idea is that, rather than attempting to prove the
transformations performed by a compiler always produce code with certain
desired properties, to generate a purported formal proof that the complied

Checking the Correctness of Architectural Transformation Steps 69

code has those properties as part of the code generation process. The
purported proof can then be checked and, if it turns out to be a correct proof,
it follows that the generated code has the desired properties. Thus, the
emphasis is shifted from showing that compiler transformations are correct
in general to checking that they produced correct results in individual cases.

The application of this idea to architectural transformation is
straightforward. At some abstract level, the architectural description is
proven to guarantee that the architecture has some desirable property, C.
The interpretation mapping J.L that sends abstract level sentences to their
implementations can also be applied to the proof of C. If the image of the
proof under the implementation mapping turns out to be a correct proof that
the implementation has J.L(C), then, of course, the implementation has J.L(C).
Checking the transformed proof can, therefore, provide the desired
correctness guarantee.

3. AN EXAMPLE: SECURE DISTRIBUTED
TRANSACTION PROCESSING

The idea of proof-carrying architectures can be illustrated by an example,
based on our development of software architectures for secure distributed
transaction processing (SDTP) (Moriconi, Qian, Riemenschneider & Gong
1997). These architectures extend X/Open's standard DTP architecture
(X/Open Company 1993) by enforcing a simple "no read up, no write down"
security policy. The primary result of our development efforts is a hierarchy
that links an extremely abstract architectural description, shown in Figure 1,
to three implementation-level descriptions written in a style that can be
directly translated into a programming language such as Java using standard
network programming constructs. The gap between the abstract SDTP
architecture and each concrete SDTP architectures is filled by roughly two
dozen descriptions-the exact number varies among the implementations­
at intermediate levels of abstraction, linked in a chain by interpretation
mappings.

We are in the process of formally proving the implementation-level
architectures are secure by proving that the abstract description is secure,
and proving that every interpretation mapping preserves security. One of the
techniques that is being employed is showing that the interpretations
incrementally transform the abstract-level security proof into
implementation-level security proofs. The example below shows how the
interpretation mapping associated with the first refinement step in all three
chains transforms the abstract security proof into a slightly more concrete
security proof.

70 R. A. Riemenschneider

ap

ar H tx

tm rm ... - ;;;

xa

Figure 1. Abstract SDTP architecture- components linked by secure channels

3.1 The abstract SDTP architecture

Figure 1 depicts the most abstract architecture for SDTP. The boxes are
the components of the architecture: the Application (labeled "ap"), some
number of Resource Managers (labeled "rm"), and a Transaction Manager
(labeled "tm"). The components are linked by secure channels, indicated by
the heavy double headed arrows that make up the interfaces between the
Application and Resource Managers, the Application and the Transaction
Manager, and the Resource Managers and the Transaction Manager. Secure
channels are a type of connector that enforce the security policy. In other
words, secure channels will not carry classified data from a component to a
component that lacks required clearances. To say that the system as a whole
satisfies the security policy means that there is no flow of classified data to a
component that lacks the required clearances.

3.2 An abstract proof of security

Informally, the security of the system follows almost immediately from
the fact that it employs only secure channels. Not surprisingly, a textbook­
style natural deduction proof (Lemmon 1987, Mates 1972) of system
security is quite simple3• Consider the dataflow from some given Resource
Manager rm to the Application ap, for example. A proof of the formula

3 In this paper, I will use natural deduction, since that provides a familiar concrete
representation of formal proofs. In our actual verifications that the SDTP hierarchy's
interpretation steps preserve security, we are employing the PVS verification system [18].

Checking the Correctness of Architectural Transformation Steps 71

(\id: Labeled_Data) [Fiows(d, rm, ap)
:::>label(d);?: clearance(ap)]

which says

every labelled datum d that flows from rm to ap has a security label
classifying it that is less than or equal to the clearance level of ap

from five axioms of the architectural theory is shown in Figure 2.

{1} J. (Vd : Labeled.Data)(Fiows(d, rm, ap)
::> Carries(securur..channel,d, rm's..ar..port, ap's..ar..ports(rrn))]

Axiom describing specifiC urdutecturc
{2} 2. Port_Of(ap's..ar..ports(rm), ap) Axiom describing specific arehitecture
{.'l} 3. ('lc: Secure..Channel)('ld: labeled.Data)(Vx : Output.Port)

(Vy: lnpuLPort)[Carries(c,d,x,y) ::>label(d)$ clearance(y)]
Axiom characterizing secure clumnels

{4} 4. ('fa: Component)(Vy: lnput.Port)[Port-Of(y,a) ::>dearance(y) $ clemnce(a)]
Axiom constraining port clearances

{5} 5. (\Is,, ••• s. : Socurity..l.abel)[s1 $ '' "., :5 •• ::> s1 $ s.]
Axiom specifying transitivity of s<eurity label ordering

(1} 6. Flows(do, rm, ap) => Carries(secure....ar..channel, do, rm''-'•-Port, ap',....r.ports(rm))
Universal iMt.antiation (1)

{3} 7. carr;...(secure..ar..channel, do, rm's..>r-port,ap's..>r-ports(rm))

{1,3} 8.

(4} 9.

{2,4} 10.
{5} n.

{2,4,>} 12.

{1,2,3, ·1,.';} 13.
(1,2,3,4,5} 14.

::> label(do) :5 clearance(ap's..ar..ports(rm))
UniYCr5al ill6tantiatiou (3)

Flows(do, rm, ap) ::>label(do) :5 clearance(ap's..ar-ports(rm))
Tautological consequence (6,7)

Port..Of(ap'.s..ar..ports(rm), ap) ::> :5 clearance(ap)
Unh-ert;al ill6tantiatiou (4)

clearance(ap's..ar..ports(rm)) :=:; clearance(ap) Tautological oonoequence
label(do) :5 clearanee(ap's..ar.ports(rm)) h elearanct(ap's..ar.ports(rm)) $ elearance(ap)

::>label(do) 5 dearance(ap)
Uuh.ocrstt.l instantiation (5)

label(do) :5 dearance(ap's._ar..ports(rm)) :::>label(do)::; clearance(ap)
Tautological COD""'!UC!l<e (10,11)

Flows(do, rm, ap) ::>label(do) :5 dearance(ap) Tauwlogkal «>ll""'J"'"'"" (8,12)
(Vd: l•beled.D•ta)[Fiows(d, rm, ap) :::>label(d) :5 clearance(ap))

Uni\'M'&I gcncralization (13)

Figure 2. Formal proof that dataflow from rm to ap satisfies the security policy

The five axioms say
1. every labelled datum d that flows from rm to ap is carried by

secure_ar_channel form the output port rm's_ar_port to the input port
of the port array ap's_ar_ports that is indexed by rm,

2. the input port of the port array ap's_ar_ports that is indexed by rm is a
port of ap,

3. if secure channel c carries labelled datum d from output port x to input
port y, then d's security label is less than or equal to the clearance level
ofy,

72 R. A. Riemenschneider

4. the clearance level of any port y of component a must be less than or
equal to the clearance level of a, and

5. the ordering of security labels is transitive.

The first two axioms are facts about the particular architecture, the third
axiom is the defining property of the secure channel subtype, the fourth and
fifth axioms are general axioms of the security model.

3.3 A slightly more concrete SDTP architecture

The secure channels of abstract SDTP architecture can be implemented in
terms of ordinary dataflow channels and additional components in a variety
of ways, depending upon the security properties of the components
(Moriconi, Qian, Riemenschneider & Gong 1997). The most interesting
implementation is shown in Figure 3, where the light double headed arrows
represent ordinary dataflow channels that do not enforce the security policy.

ap

t
mls filter

t
rm tm

Figure 3. More concrete SDTP architecture-secure channels refined to ordinary

channels, or ordinary channels plus security filter

This implementation is suited to the case where all of the resource
managers are single-level, but not necessarily the same level. The security
policy is enforced by a multi-level secure component that filters dataflow
between the application and the resource managers: if passing a datum from
a resource manager to the application would violate the security policy, the
filter removes it from the stream.

Checking the Correctness of Architectural Transformation Steps 73

The concrete architecture can be thought of as resulting from the
abstract architecture by applying several transformations. For example, one
transformation, the Filter Introduction Transformation (FIT), replaces secure
channels between components that are not multilevel secure by ordinary
dataflow channels and a component that enforces the security policy.

3.4 A slightly more concrete proof of security

Now it must be shown that, like the abstract SDTP architecture, the more
concrete SDTP architecture has the desired security property. The two
conventional approaches to establishing this result are
1. to directly prove that the more concrete architecture is secure, in much

the same way the abstract architecture was proven secure (perhaps using
the abstract-level proof for heuristic guidance), and

2. to show that the Filter introduction Transformation (ffi), and the other
transformations that produce the more concrete architecture from the
abstract architecture, always preserves the security properly.

The use of proof-carrying architectures provides a third alternative.
When transformation FIT is applied, it can be applied not only to the

architectural description, but to the formal security proof of Figure 2 as well.
The result of applying FIT to this proof is shown in Figure 4, where the
implementation mapping J.l associated with this application is determined as
follows. A complete account of how first-order interpretation mappings are
defined, and basic facts about them, can be found in logic textbooks
(Enderton 1972, Shoenfield 1967)3• For present purposes, it is enough to
know that
1. for every term t of the language of the abstract theory, J.l(t} is a (possibly

complex) term of the language of the more concrete theory,
2. for every predicate F of the language of the abstract theory, J.l(F) is a

(possibly complex) predicate of the language of the more concrete
theory,

3. for every formula A of the language of the abstract theory,
J.l(-.A) = -.J.l(A)

and similarly for the other connectors, and
4. for every formula A of the language of the abstract theory, every variable

x, and every type predicate T of the language of the abstract theory,
J.l((V'x: T) A)= J.l(V'x : T) J.l(A)

where J.l(V'x : T) is a sequence of universal quantifiers, and similarly for
the other quantifiers.

3 Technically, we will make use of what are called n-dimensional interpretations (Hodges
1993, pp. 212.) But this is a reasonably straightforward generalization of the definition
found in the cited textbooks.

74 R. A. Riemenschneider

The Carries predicate

Carries((secure channel), (datum), (out port), (in port))

that is mentioned in formulas 1, 3, 6, and 7 of the abstract-level proof is
mapped to a conjunction of the Carries, Passes, and Carries predicates,

Carries((channel), (datum), (out port), (filter in port))

1\ Passes((filter), (datum), (filter in port), (filter out port))

1\ Passes((channel), (datum), (filter out port), (in port))

This clause in the definition of ll says that a secure channel carrying a
datum from some output port to some input port is implemented as a channel
carrying the datum from the output port to some input port of a filter, passing
the datum through the filter from the input port to some output port, and
carrying the datum from output port of the filter to the input port5. This
mapping is also applied to formula 3 in order to preserve the fact that
formula 7 should follow from formula 3 by Universal Instantiation.

The universal quantifier over secure channels in formula 3,

(V' (secure channel variable) : Secure_Channel)

is mapped by ll to universal quantifiers over channels and a universal
quantifier over MLS components,

(V' (to-filter channel variable): Channel)

(V' (filter variable) : MLS_Component)

(V' (from-filter channel variable) : Channel)

It is easy to check that the result of applying the FIT interpretation
mapping ll to the proof of security is a syntactically correct derivation of the

5 This mapping would not be appropriate to apply to every occurrence of the Carries
predicate in every derivation, because some secure channels in the abstract architecture
may not be replaced by a combination of two channels and a filter in the concrete
architecture. However, formulas I , 6, and 7 of the proof specifically refer to what
secure_ar_channel carries, and this secure channel is being implemented by two
channels and a filter , so I will use this simpler interpretation for purposes of the example.

Checking the Correctness of Architectural Transformation Steps 75

desired security property from formulas that are images of axioms of the
more abstract architectural theory. Mapping)! sends tautological
consequence steps to correct tautological consequence steps, universal
instantiation steps to correct universal instantiation steps, and universal
generalization steps to correct universal generalization steps. So)! has
indeed mapped the formal abstract-level security proof to a concrete-level
security proof, but not necessarily a proof from axioms of the concrete
architectural theory.

{J} 1. (Vd: Labeled.Data){Fk>ws(d,rm,ap)
:> Carries(rm_toJilter .channel, d, rm's..ar .port, filttrJn..port(rm))]

" Passes(mls.lilter, d, filterJn.port(rm), filter .DUt..port(rm))]
A d, filter..out..port(rm), ap's..ar..ports(rm))j

{2} 2. Port..Of(ap's..ar..ports(rm), ap)
{3} 3. (Vc, : Channel)('lf: MLS-Component)CVct : Channei)(Vd : Labeled.Data)

(Vx1 : Output_pon)(Vxo : Output..Pcrt)(Vy1 : lnput_port)(Vy2 : lnput_port)
[Carries(c,, d,x, ,y1)" Passu(f, d, y1,x,)" Carrios(c:., d, x,, y2)

::>label(d) :5 dearance(y2)]

{4} 4. (Va : Component)(Vy: lnput-Port)[PorLOf(y, a) :> dearance(y) 5 clearance(a)]
{5} 5. (Vs,,s,, .. : Security..Label)[s, 5. .. "s, 5 .. :> •• 5. sa]
{1} 6. Fl..,s(do,rm,ap)

::> Carries(m>-toJiltor ..channel, do, rm's..ar .port, filter Jn..port(rm))
" Pmes(mlsJilter,do, filter ..in..port(rm), filter ..out.port(rm))
" Carries(filter _to..ap..channel(rm), do, filt•r..out.port(rm), ap's..ar.ports(rm))

{3} i. Carries(rrn_toJilter..channel,d, rm's..ar.port, filterJn.port(rm)
"Passes(mlsJilter, d0 , filtorJn.j)ort(rm), Mter..out..port(rm))
" Carries(filttr -to.JOp..t:hannel(rm), do, filter ..out.j)ort(rm), ap's..ar-ports(rm))

::>label(do) 5. cleoronce(ap's..ar_ports(rm))
{J, 3} 8. Flows(do, rm, ap) ::>label(do) 5 clearonco(ap's..ar..ports(rm))

{4} 0. Port..Of(ap's..ar_ports(rm),ap) ::>cloaranoe(ap's..ar_ports(rm)) 5. dearanoe(ap)
{2, 4} 10. cluranco(ap's..ar_ports(rm)) 5 cloaranco(ap)

{5} 11. label(do) 5. clearance(ap's..ar_ports(rm)) "clearanoe(ap's..ar..ports(rm))::; clearance(ap)
::>label(do) 5. clurance(ap)

{2,4, 5} 12. label(do) 5 clearance(ap's..ar_ports(rm)) :::>label(do) :5 dearance(ap)
13. Flows(do,rm, ap) ::>label(do) 5 clearance(ap)

{1, 2, 3, 4, .>} H . (Vd : Labeled.Data)[Fk>ws(d, rm,ap) :::> label(d) .$ clearance(ap)J

Figure 4. Transformed formal proof that dataflow from rm to ap satisfies the security policy

3.5 Completing the proof

The image of the first axiom under)! says that every labelled datum that
flows from rm to ap is carried to the filter from rm, passed through the filter,
and then carried to ap from the filter. Just as in the case of the first axiom,
this is a fact about the particular architecture that is either an axiom of the
concrete theory, or easily and automatically derivable from axioms of the
concrete theory. The mapping)! leaves the second axiom unchanged. This
will certainly be an axiom of the concrete theory, as well as the abstract
theory. The image of the third axiom is a bit more complex. It states that
the combination of the two channels and the filter enforces the security
property. It is quite unlikely that this would be among the chosen axioms of
the concrete-level theory, since it is the filter alone, effectively, that is

76 R. A. Riemenschneider

enforcing security. Still, it is easy to see that this formula must be a
consequence of axioms of the concrete theory: the security model requires
that channels that do not enforce security can only connect ports with
matching clearances, and one of the defining properties of an MLS
component is that it only supplies data at an output port if the classification
of the data is less than to equal to the clearance of the port. A formalization
of this proof from particular axioms we use in the SDTP security verification
is shown in Figure 5.

{1} 1. 0fc : Chllnnel)0fd : ubeled.Data)(¥x : Output.Port)(¥y : lnput.Port)
[Carri .. (c, d,x, y) ::> clearance(x) = cluranee(y)]

Axiom sp•dfying coll.D<lCti<m consttaint impos<ld by security mod<>J
{2} 2. (Vf: MLS-Component)(Vd : tnput.Port)(Vx: Output.Port)

[Passes(f. d, y,x) ::>label(dearanee(x)]
Axiom r.hl>racterioiug MLS componentll

{3} 3. (Vx)(¥y)(Vz)[x = y :> [z :S x •• t $ y] ltL•truli!C of identity axiom sebl!mo
{1} 4. Carries(e., do, x,, y,) => dearanct(xo) = cl .. rance{y2} Uuiveml in>tautiatiOil (1)
{2} 5. Patse(fo,do,y1, x2) :>label(do) $ clearance(x.) Uniwn<al (2)

{1, 2} 6. Carries(c,,do,x.,y1)" Passes(fo,do,y1,x.) A(arries(c,,do, x, ,y,)
::>label(do)$ clearance(x,) " clearance(x,) = clearance(y2)

Tautologkal oo.-tuen<!C (3,4)
{3} 7. cloarance(x,) = cleorance(y2) ::>[label(do) $ clearance(x,) •label(do)$ clurance(y2)

Uni\-.rslll iu!ltantiation (3)
{1, 2, 3} S. Carries(c, , do,x.,y1) ·" Passes(fo.,do, y1,x.)" Carries(c,, do,x2.,y2)

=>label(do) $ clearance(y2)

Ta utologkal <Oll!IJ<Iuenc" (6,7)
{1, 2, 3) 9. 0fc,: Chlonnel)(¥f: MLS_Compottent)(Veo : Channei)(Vd: Labeled_Oata)

(Vxt : Output.Port)(Vx, : Output.Port)('v'y, : lnput.Port)(Vy, : lnput.Port)
(Carri .. (<, ,d,x, ,y1)" P..,.s(f,d,y1 ,x,) " Catfies{c,,d, x,,y,)

::> clearanct(y1)J
Universal generallzation (8)

Figure 5. Proof of image of abstract-level formula 3 under ll from axioms of concrete theory

Discovery of this proof is easy. The form of the desired conclusion-a
conjunction of conditions on Carries and Passes in the antecedent, and the
comparison of label to clearance in the consequent-immediately suggests
the use of the axioms on lines I and 2 of the proof. So it should be quite
plausible that the proof can be discovered without human intervention by the
transformation system. The interpretation mapping U does not affect the
images of the remaining two axioms; they remain general axioms in the
security model. So, by combining the proof in Figure 5 with the proof in
Figure 4, we obtain a proof of the security property from axioms of the
concrete theory. Moreover, this proof is recognizably a formalization of our
informal argument (Moriconi, Qian, Riemenschneider & Gong 1997, p. 890)
that the concrete architecture satisfies the security policy.

Checking the Correctness of Architectural Transformation Steps 77

4. GENERALIZING FROM THE EXAMPLE

The idea of using the architectural transformation to transform the proof
that the more abstract architecture has a desired property into a proof that the
more concrete architecture has the property worked well for this rather
simple, but real-world, example. Is there any reason to believe that it will
work equally well in other cases?

Recall that the standard criterion for correctness of an
implementation mapping)l of an abstract logical theory T1 in a more
concrete theory T2 is that)l must interpret r, in T2, i.e., it must be the case
that, for every formula A in the language of h

T, 1- A => T21-)l(A)

If)l interprets T1 in T2, an easy inductive argument shows that)l

maps formal proofs from T1 to formal proofs from)l[TJ] that can be extended
to proofs from T2. If A is an axiom of then, since)l is a theory
interpretation,)l(A) is derivable from T2• Because)l is defined so that
connectives pass through it,)l maps tautological consequence steps to
tautological consequence steps. Similarly,)l maps universal instantiation and
universal generalization steps to universal instantiation and generalization
steps, respectively. Thus,)l maps formal proofs from abstract axioms to
formal proofs from images of abstract axioms, and images of abstract
axioms can always be proved from concrete axioms, as shown in Figure 6.

(I) I "• A'"*m r,

(2)1. A, A."f..tOtacl T 1

11.21 J " · T-.(1 , 1)

Formal proof from
axioms of T1

at abstract level

"

" ..

pov•.m-oe,
(ondr_,

I) I ><A,J

provo rmogo .. _,
(21l.><A,l

(ancl r.-)

,.....,_,

Formal proof from
Images of axioms of T 1

at concrete level

1, 2,

(I) 1. 8 1
121 l. B,

lt.l. I lt .Joi{AI) ,,. n+tc,
1•+1)

:"• l , a-+ .Z..
,JI+ J, JI+!,

I • .,...

•

Formal proof from
axioms o1 T 1

at concnlle level

Figure 6. Interpretation of formal proofs

N.KDaf Tl

Ax.o.of r,
"-"""""' r,

T._ (,.,,-6.,

So, if an architectural transformation step is correct, in the standard
sense, the corresponding interpretation mapping will map formal proofs to
formal proofs containing gaps that can be filled. A fortiori, an abstract-level

78 R. A. Riemenschneider

formal proof of some particular property of interest-say, satisfaction of a
security policy-will be mapped to a proof that the implementation also has
(the implementation-level analogue of) the property. Since the replacement
of the secure channel from rm to ap by a pair of channels and a filter is
evidently correct, it is not surprising that the FIT mapping sends the abstract­
level security proof to a concrete-level security proof.

It follows that the proof-carrying architecture approach allows the
architect to perform arbitrary correct transformations when implementing an
abstract architecture, provided the transformation system that supports the
approach is clever enough to find the proofs of images of axioms.

The question remains: In general, how hard is it to discover these
proofs? In our experience, it is invariably quite easy, because we deal with
refinement patterns that make only small changes in representation of the
architecture. Indeed, the example in Figure 5 is representative of the
complexity of most of these proofs. At lower levels in the SDTP hierarchy,
there are more gaps to be filled in-because lower-level architectural
theories are more complex, and proofs are based on a larger number of
axioms-but the size of the gaps is about the same. We are confident that
considerable automated support for finding proofs to fill the gaps can be
provided.

Finally, it should be noted that incorrect transformations that happen to
preserve the proof of the property of interest will also be judged acceptable
on the proof-carrying architectures approach. Therefore, it is well-suited to
the case where the focus is on obtaining an implementation with some
particular desirable property - i.e., when a weaker-than-usual correctness
criterion is adequate - and placing minimal constraints on the architect's
implementation options is preferred, as is the case in SDTP.

5. RELATED WORK

Although there is a large and growing literature on formal software
transformation, nearly all of it is oriented toward maintaining functional
correctness, rather than system structure. Similarly, there is a large body of
literature on architectural refinement and composition, nearly all of it
employing semiformal representation and analysis techniques, at best. The
comparatively few papers on formal refinement of architectural structure
include Broy's work on component refinement (Broy 1992), Brinksma, et
al.'s, work on connector refinement (Brinksma, Jonsson & Orava 1991),
Philipps and Rumpe's recent work on refinement of information flow
architectures (Philipps & Rumpe 1997), and the work described in our own
earlier papers. Also closely related is work by Garlan's group (Abowd,

Checking the Correctness of Architectural Transformation Steps 79

Allen, and Garlan 1995), Luckham's group (Luckham, Augustin, Kenney,
Vera, Bryan & Mann 1995) , and Moriconi and Qian's work on formally
representing the semantics of connectors and relating semantic models at
different levels of abstraction (Moriconi & Qian 1994). But, the emphasis in
all these cases has always been on verification of general refinement
patterns, rather than checking particular steps.

Necula and Lee's work on proof-carrying code and its applications
(Necula & Lee 1996, 1997, 1998) introduced the notion of replacing
verification by checking in the context of compilation. The work described
in this paper can be viewed as generalizing their ideas about code refinement
transformations to architectural transformations, both refinements and
abstractions.

6. CONCLUSIONS

Transformational development of architectures can guarantee that
implementations are correct by restricting the architect to a stock of verified
transformations. But such a correctness guarantee is quite brittle, since use
of a single non-verified transformation voids it. Moreover, if many
transformations are used, and the verification of each is difficult, then
confidence in the correctness of the implementation may be less than
desired. Checking particular refinement steps offers a way of allowing the
architect greater freedom, and of achieving higher levels of confidence that
the implemented architecture has the desired properties.

Our initial approach to checking, based on the idea of proof-carrying
architectures, is especially well suited to the case where the main
requirement is high confidence that the implementation has some specific
property. The property is shown to hold at some abstract level, and every
refinement is produced by application of a transformation known to preserve
the property, or is checked for correctness by making sure that the
transformation preserves the proof of the desired property, or both.

The main limitation of this first approach to checking is that properties
are checked one at a time. We are exploring other approaches to checking
that allow an entire class of properties to be checked at once. One that
seems particularly promising is based on the idea of applying the simplified
technique for proving implementation mapping correctness
(Riemenschneider 1997) to development steps at architecture definition­
time. This complementary approach to checking will allow the correctness
of steps to be checked, relative to our strong correctness criterion, rather than
checking one or a few properties of interest. But it can be applied only to
complete architectural descriptions of single structures, not to descriptions of

80 R. A. Riemenschneider

varied families of architectural structures. The proof-checking architectures
approach applies equally well to descriptions of single structures and
descriptions of families .

As mentioned above, our preliminary experiments with proof-carrying
architecture are being performed with the PVS verification system (Owre,
Rushby & Shankar 1992). Improved support for working with proof­
carrying architectures, including automated discovery of the gap-filling
proofs, is being implemented as part of the Xform4 system, an enhanced
version of our present architectural correctness checking toolset. Xform,
pronounced transform, is a recursive acronym for "Kform, ,for Qrderly
r.eification5 and maintenance." Xform will support transformational
development and maintenance of architectural descriptions written in
languages such as SADL (Moriconi & Riemenschneider 1997) and ACME
(Garlan, Monroe & Wile 1997).

ACKNOWLEDGEMENTS

This research was supported by the Defense Advanced Projects Research
Agency (DARPA) Information Technology Office (ITO) under contracts
F30602-95-C-0277 and F30602-97-C0040, whose support is hereby
gratefully acknowledged. I would also like to thank Axel van Lamsweerde
for his many helpful comments on the first draft of this paper.

REFERENCES

Abowd, G., Allen, R., and Garlan, D., (1995) Formalizing style to understand descriptions of
software architecture. Tech. Rep. CMU-CS-95-111, School of Computer Science,
Carnegie Mellon University.

Brinksma, E., Jonsson, B., and Orava, F., (1991), Refining interfaces of communicating
systems. Proceedings ofTAPSOFf '91, S. Abramsky and T.S.E. Maibaum, Eds.,
Springer-Verlag, pp. 71-80

Broy, M. (1992), Compositional refinement of interactive systems. Tech. Rep. No. 89, Digital
Systems Research Center, Palo Alto.

Enderton, H. B. (1972), A Mathematical introduction to Logic. Academic Press.
Garlan, D., Allen, R., and Ockerbloom, J. (1994), Exploiting style in architectural design

environments. In Proceedings 2nd ACM SIGSOFf Symposium on Foundations of
Software Engineering SIGSOFf '94, ACM Press, pp. 179-185.

Garlan, D., Monroe, R.-T., and Wile, D. (1997), Acme: An archiectural description
interchange language. In Proceedings ofCASCON '97 . Available at

4Xform is a common mathematical shorthand for transform.
5To reify means to make actual. Thus, reification of software architectures is the process of

turning them into actual implementations.

Checking the Correctness of Architectural Transformation Steps

http://www.cs.cmu.edu/afs/cs/project/abel/www/acme-web/

Hodges, W. (1993), Model Theory. Cambridge University Press.
Lemmon, E. J. (1987), Beginning Logic, seconded. Chapman and Hall.
Luckham, D. C., Augustin, L. M., Kenney, J. J., Vera, J., Bryan, D., and Mann, W. (1995),

Specification and analysis of system architecture using Rapide. IEEE Transactions on
Software Engineering 21, 4, pp. 314-335.

Mates, 0. (1972), Elementary Logic, seconded. Oxford University Press.

81

Moriconi, M., and Qian, X. (1994), Correctness and composition of software architectures. In
Proceedings 2nd ACM Symposium on Foundations of Software Engineering (SIGSOFT
'94), ACM Press, pp. 164-174.

Moriconi, M., Qian, X., and Riemenschneider, R. A. (1995), Correct architecture refinement.
IEEE Transactions on Software Engineering 21, 4, 356-372. Available at
http://www.csl.sri.com/sadl/tse95 .ps.gz.

Moriconi, M., Qian, X., Riemenschneider, R. A., and Gong, L. (1997), Secure software
architectures. In Proceedings of the 19971EEE Symposium on Security and Privacy, pp.
84-93. Available at http: I /www. csl. sri. com/sadl/ sp97. ps. gz .

Moriconi, M., and Riemenschneider, R. A. (1997), Introduction to SADL 1.0: A language for
specifying software architecture hierarchies. Tech. Rep. SRI-CSL-97-01, Computer
Science Laboratory, SRI International. Available at http: I /www. csl. sri. com/
sadl/sadl-intro.ps.gz.

Necula, G. C., and Lee, P. (1998), The design and implementation of a certifying compiler.
Submitted to PLDI '98. Available at http: I /www. cs. emu . edu/ -necula/
pldi98. ps. gz.

Necula, G. C., and Lee, P. (1996), Proof-carrying code. Tech. Rep. CMU-CS-96-165, School
of Computer Science, Carnegie Mellon University. Available at
http://www.cs.cmu.edu/-necula/tr96-165.ps.gz.

Necula, G. C., and Lee, P. (1997) Efficient representation and validation of logical proofs.
Tech. Rep. CMU-CS-97-172, School of Computer Science, Carnegie Mellon University,.
Available at http://www. cs. emu . edu/-necula/tr97-172 .ps. gz.

Owre, S., Rushby, J. M., and Shankar, N. (1992), PVS: A prototype verification system. In
11th International Conference on Automated Deduction (CADE) (Saratoga, NY,), D.
Kapur, Ed., vol. 607 of Lecture Notes in Artificial Intelligence, Springer-Verlag, pp.
748-752.

Philipps, J., and Rumpe, B. (1997), Refinement of information flow architectures. In
Proceedings of the First IEEE International Conference of Formal Engineering Methods
(ICFEM '97), pp. 203-212. Available at http: I /www4. informatik. tu­
muenchen.de/papers/icfem_rumpe_l997_Publication . html .

Riemenschneider, R. A. (1997), A simplified method for establishing the correctness of
architectural refinements. SRI CSL Dependable System Archiecture Group, Working
Paper DSA-97-02. Available at http: I /www. csl. sri. com/ sadl/
simplified.ps. gz ..

Riemenschneider, R. A. (1998), Correct transformation rules for incremental development of
architecture hierarchies. SRI CSL Dependable System Archiecture Group, Working Paper
DSA-98-01. Available at http: I /www. csl. sri. com/sadl/
incremental.ps.gz.

Shoenfield, J. R. (1967), Mathematical Logic. Addison-Wesley.
X/Open Company. (1993), Distributed Transaction Processing: Reference Model. Apex

Plaza, Forbury Road, Reading, Berkshire RGl lAX, U.K., November 1993.

	Checking the Correctness of ArchitecturalTransformation Steps via Proof-CarryingArchitectures
	1. INTRODUCTION
	2. PROOF -CARRYING ARCHITECTURES
	3. AN EXAMPLE: SECURE DISTRIBUTEDTRANSACTION PROCESSING
	3.1 The abstract SDTP architecture
	3.2 An abstract proof of security
	3.3 A slightly more concrete SDTP architecture
	3.4 A slightly more concrete proof of security
	3.5 Completing the proof

	4. GENERALIZING FROM THE EXAMPLE
	5. RELATED WORK
	6. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

