
Security Issues with the Global Command and
Control System (GCCS)

Shawn A. Butler
Computer Science Department, Carnegie Mellon University Pittsburgh, PA 15213
shawn. butler@ cs.cmu. edu

Key words: Architecture, security, command and control, common operating environment,
COE,GCCS

Abstract: The Global Command and Control System (GCCS) was one of the most
ambitious and largest software integration tasks in the history of the
Department of Defense. As the Chief Systems Engineer for GCCS, I found
architectural differences among command and control systems presented
unique integration and interoperability challenges. In this paper I present 3
security-related examples of specific problems I encountered when I attempted
to integrate several systems into GCCS. I also discuss the problem of system­
level security analysis and introduce a framework that software engineers can
use to evaluate security.

1. INTRODUCTION

The Global Command and Control System (GCCS) was one of the most
ambitious and largest software integration tasks in the history of the
Department of Defense. Applications in all stages of maturity were chosen to
be integrated into a seamless system, organized around the Common
Operating Environment (COE). The COE was a collection of software
components commonly found in all command and control systems. As the
Chief Systems Engineer for GCCS, I was responsible for every aspect of
integration and development including GCCS security.

Security proved the most difficult of all the system integration tasks for
two reasons. First, although security specialists talked about the "security

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35

408 Shawn A. Butler

architecture" of GCCS, a security checklist derived from a set of security
requirements and policies was the best they could produce. Checklists
provide a piecemeal approach to system security and usually lack a system
level perspective. GCCS interoperability requirements and the process of
integrating legacy applications highlighted the role that architectures and
system designs played in GCCS security. Second, users ' demands for
configuration flexibility presented significant challenges to maintaining a
consistent level of security with each system. A team of independent security
specialists verified the system's security just before fielding. Each security
evaluation drained off scarce resources for several weeks at a time. The
security team attempted to find security flaws using whatever means they
considered reasonable. System security was re-verified each time the
configuration of GCCS changed, which was almost monthly during initial
fielding.

The Department of Defense relies on a security process that is not
compatible with modem software development processes and designs. What
I really needed were concrete architectural and design guidance and
methodologies for analyzing system security that did not depend on a
security specialist's ability to defeat the system after I build it. My
frustrations with these two problems led to my current research and the
beginnings of a framework to help solve the second problem.

2. BACKGROUND

For many years the Department of Defense operated the World Wide
Military Command and Control System (WWMCCS) as the primary
command and control system1• WWMCCS was a distributed information
system that linked major military command centers throughout the world,
such as the European and Pacific theaters and the National Military
Command Center in the Pentagon. The system processed TOP SECRET,
SECRET, and UNCLASSIFIED information, but the bulk of information
was SECRET. Since WWMCCS did not have multi-level security, the
system operated as if all the information were TOP SECRET. The security
requirements for a TOP SECRET system are greater than for systems
processing SECRET information.

Military computer security requirements are found in a number of
military directives, regulations, and publications. The most well known set
of publications are the "rainbow" series, which consist of more than 20
books, each book a different color. The Orange Book defines the concept of

1 "Command and control" is a term used to define the activity of monitoring, planning and
directing military resources.

Security Issues with the Global Command and Control System 409

a Trusted Computing Base (TCB) and specifies the TCB requirements for
increasing levels of security. UNIX systems are evaluated and classified
based on the criteria established in the Orange Book. Ordinary UNIX
systems usually fall into the Cl or C2 class, which is characterized by
discretionary security protection requirements. Operating systems classified
at the B or A level meet increasingly stricter security requirements and are
usually highly specialized operating systems.

The system consisted of 40 Honeywell mainframe computers that
serviced numerous dumb terminals within each major command center and
in isolated locations throughout the world. Initially built during the 1970's,
WWMCCS had become quickly outdated so a modernization program was
initiated during the early 1980's (WWMCCS 1992). Research,
development, test, and evaluation for the modernization program was
budgeted for $773 million, By 1987 the program was behind schedule and
over budget so congress cut the FY 88 budget to $21 million. Technology
rapidly passed the WWMCCS system and users became increasingly
dissatisfied with WWMCCS capabilities. By the mid-nineties most other
command and control systems had far exceeded WWMCCS functionality.
However, none of the newly developed command and control systems could
meet the WWMCCS user's functional requirements.

3. GCCS

The Global Command and Control System, a highly distributed
client/server system, was conceived as the replacement for WWMCCS. The
initial version of GCCS was a conglomeration of existing command and
control applications and new applications that increased and replaced
WWMCCS functionality. GCCS consisted of two parts: the Common
Operating Environment (COE) and the Application Layer. In order to keep
development and fielding costs to a minimum, GCCS consisted of
commercial hardware and software and processed only SECRET
information. Not only did this simplify the security requirements, but this
also meant that GCCS could be fielded on standard commercial UNIX
operating systems instead of more secure, and very expensive B2 operating
systems. I was responsible for mitigating the risks associated with security
weaknesses in the UNIX operating system.

Although most major system development efforts take 5 to 10 years, the
Joint Chiefs of Staff wanted the replacement system within 2-3 years
beginning in 1994. The primary motivation for the rapid development cycle
was the enormous cost of operating WWMCCS, estimated at
$7,000,000/month. The 2-3 year development constraint was thought

410 Shawn A. Butler

attainable for several reasons. First, GCCS was to be built using existing
applications, therefore, GCCS was simply considered an integration
exercise, rather than new development. I believe there is a general
misconception that integration efforts take less time than new development.
Stakeholders assumed that most of the applications selected to be part of
GCCS fulfilled enough of the user's requirements that little or no additional
development needed to be done. Applications were selected from various
Department of Defense agencies and services based on how well they met
user requirements and other factors, the least of which was the ease with
which they could be integrated, maintained, scaled, or extended.

3.1 GCCS architecture

The foundation of GCCS is the Common Operating Environment (COE),
18 abstract functional components that, when implemented, form the
infrastructure services and a set of standard components for all GCCS
applications. All existing or legacy applications had to "migrate" to the
GCCS COE. Migration required applications compliance with engineering
guidance in 4 areas: integration and run-time, user interface, architecture,
and software quality. Software for the COE came from each of the services,
and the Defense Mapping Agency. I was charged with integrating the COE
components and more than 20 legacy applications, all in various stages of
development, into a single command and control system that could be
uniquely configured at each operational site. GCCS was really a set of
command and control applications, which any site could install components
as needed.

COE components fall into 3 categories (figure 1):
1. the kernel
2. infrastructure services
3. common support application components

Kernel components consist of the operating system, window libraries
(X11R5 and Motif), printing service, executive manager, name service, and
a security/system management service. Kernel components are considered
essential system components, i.e. every workstation requires these services
regardless of function. The security service provides tools to allow system
administrators to set up various types of access control accounts. The kernel
configuration is tightly controlled since slight deviations from the
established configuration could cause disastrous system integration
problems. All application developers are expected to develop to the kernel
configuration and each developer receives a copy of the kernel and a set of
tools to ensure that they follow the run-time integration engineering
guidelines.

Security Issues with the Global Command and Control System 411

COE Standard API's

Common Support Applications

Infrastructure Services

Operating System

Figure I. Common Operating Environment

The infrastructure services provide the middleware for the applications.
The middleware consists of the following components: management
services, communication services, distributed computing services,
presentation and web services and data and object management services.
Management services are network and system management tools that system
administrators use to monitor the system. Distributed Computing
Environment (DCE) provided the distributed computing service and the
Common Object Request Broker Architecture (CORBA) served as the data
and object management service, although the initial GCCS fielded system
did not use either service. The communication service provides the interface
to external systems. Most external interfaces consisted of messages sent to
and from GCCS. Netscape and Internet Rely Chat implemented the web
services, but the presentation service was not specified at the time.

The Common Support Layer of the COE consisted of the group of
applications that are common to all command and control systems such as
office automation applications, situation displays, message generation and
management software, etc. At the time, office automation applications, such
as word processors, spreadsheets, and slide presentation software did not
compare to the products used on personnel computers. UNIX based office
automation software had considerably less functionality than PC products.
The biggest drawback to the UNIX software was the incompatibility of file
formats. Users had hundreds of Microsoft PowerPoint files that were not
exportable to the UNIX office automation software and any files created on
the UNIX system were not exportable to the PC system. Although PC
emulators could have provided a temporary fix to the office automation
problem they were too expensive.

412 Shawn A. Butler

3.2 Interoperability issues

The primary drawback of the existing command and control systems was
their lack of interoperability between services. Since joint military
operations nearly always consist of units from the Marine Corps, Navy, Air
Force and Army working together, joint military operations require a
command and control system that is interoperable among the other service's
command and control systems. As an illustration, many of the frustrations
experienced during Desert Storm occurred because systems were not
interoperable. Information was frequently exchanged using floppy disks or
paper printouts which then had to be re-keyed into an electronic form. As a
consequence of the experiences in Desert Storm, interoperability became the
number one command and control system requirement in the Department of
Defense. Although interoperability was a critical requirement in joint
operations, it was not well defined. Interoperability meant different things to
different users and under different circumstances. Ideally, systems should be
able to efficiently exchange data without any loss of meaning or content, but
in practice this is very difficult. The Department of Defense outlines 4
levels of interoperability for command and control systems. The highest
level "is characterized by the ability to globally share integrated information
in a distributed information space."(DISA 1996). Level 4 was the ultimate
goal for GCCS, but each application implemented lower levels of
interoperability.

In some cases, application portability across different hardware platforms
or operating systems was sufficient to meet interoperability requirements.
Data is exchanged because operators from different services are co-located.
Each service purchased their own computer hardware so applications built to
run on Sun Microsystems hardware did not have to be converted to the
Hewlett Packard hardware and vice versa. The lack of portability forced
users of one service to learn the other service's application, or for the
application and hardware system to integrate with the larger system.

Interoperability could also be achieved if systems could interface using
formatted messages, e-mail, or import/export functions. In practice this
method was flawed. Currently, all command and control systems
communicate with other systems using standard message sets.
Unfortunately, the "standard" message sets are not truly standard and not
particularly efficient for transmitting all types of information. Many of the
message standards were developed before multimedia applications became
integrated into command and control systems. Each command and control
system selected from several standard message sets, which meant that each
command and control system used a different set. In addition, many of the
sets were extended with unique messages that were not compatible with the

Security Issues with the Global Command and Control System 413

DoD standard. lnteroperability through messages design limits
interoperability for two reasons:
1. Users are limited by message content
2. The information is only available when it is sent.

A common view of the battlefield is essential to effective military
operations. A higher level of interoperability is required when users shared
information from the same source. A common view is ensured when all
users have access to the same information source. In practice, different
database schemas and data elements made it nearly impossible to share
information from a central location. In my experience, integrating databases
is one of the most difficult engineering tasks, however, it also provides the
greatest interoperability.

3.3 Architectural security issues and interoperability

3.3.1 Interoperability incompatibilities

However interoperability was achieved between two systems, there were
usually security implications. If messages were exchanged then encryption
of the messages as they pass between two systems was usually sufficient to
control access to the information. Encryption incurs maintenance costs
because the DoD relies on special hardware for all encryption. The DoD
builds many types of encryption devices, all of which are incompatible with
each other. No matter which encryption device is chosen, the hardware is
scarce and not compatible with other systems that use different encryption
devices. Incompatible encryption components make interoperability nearly
impossible. This detail is often overlooked when designing command and
control systems.

However, when two systems share a common database, then access
controls to the database become a primary security concern and
incompatibilities between systems can surface. For instance, two
applications required access to classified data in the database. One
application used database access control mechanisms to ensure that
unauthorized personnel did not get unlimited access to the data. Users were
restricted from viewing or writing to particular rows, or restricted from
certain tables in the database. The other application restricted a user's access
to the data by controlling access to the application. Implicit in the latter
design is an assumption that any user with access to the application has
unlimited access to the database. These two fundamentally different, but
valid, points of access control made integration of these applications into a
seamless system difficult.

414 Shawn A. Butler

3.3.2 Additional integration problems

GCCS interoperability requirements, integration of legacy applications
and the user' s demand for configuration flexibility presented significant
challenges to maintaining a consistent level of security with each system.
Some other security integration problems with the GCS architecture were
access control designs and application programming (API) interface
mismatches. Access control designs of two systems created a particularly
difficult problem. Access controls were usually based on an operator's role
or position and the role could change during the operator's shift or an
operator may have several roles during the same shift. Problems arose when
one system required an operator to log out and then log in when he switched
roles, in effect restricting operators from assuming two roles simultaneously.
Although this simplified audit trails in that system, it was an unacceptable
specification in another system. Security administrators needed the
flexibility to accommodate both requirements. Eventually a scheme for
access control was developed that was acceptable to all users .

A third problem arose when we discovered incompatibilities between
security technologies. Specifically, the Fortezza system developed by the
National Security Agency (NSA) was incompatible with Kerberos.
Fortezza, NSA's smart card technology, was the latest security mechanism
that promised improved system security. NSA considered Kerberos
inadequate for GCCS and insisted that GCCS implement the Fortezza
system. Although Kerberos had recognized flaws it was available and used
in commercial systems. Fortezza didn't have Kerberos' flaws but wasn' t
available in production quantities.

Furthermore, NSA had not yet developed a Fortezza card that had been
adequately tested for SECRET systems. The initial GCCS design used
Kerberos and later integrated Fortezza when it became available.
Unfortunately, incompatibilities between the application programming
interfaces (API's) surfaced, and made integration of the two technologies
impossible until the API conflicts were resolved. NSA quickly began to
work with members of the Open Systems Foundation, however, the process
was expected to take at least two years .

3.4 Architectural integration summary

As the GCCS chief engineer, it was obvious to me that the security of a
system does not depend solely on a collection of "silver bullet" technologies
and checklists. I could not integrate two systems and plan to overlay the
security later. The system security must be designed hand in hand with the
system architecture. Interoperability requirements and legacy system

Security Issues with the Global Command and Control System 415

integration concerns are not confined to the Department of Defense. As
commercial organizations expand and grow so do their interoperability
requirements. Companies such as SAP specialize in integrating reusable
components. Common system engineering questions include the following:
- What are the design principles and engineering guidance that system

engineers should follow?
- How does the architecture support system security?
- What security mechanisms are appropriate for a particular architectural

style?
- What are the security weaknesses associated with an architectural style?
- What security conflicts should system engineers look for? What are the

design pitfalls?
- How do interoperability requirements affect security?

The list could go on but answering any of these questions would be
extremely useful to system developers.

4. SECURITY IMPLEMENTATION

In addition to the architectural issues of integration and interoperability, I
was overwhelmed with the myriad security technologies and designs
available at the time. While some security solutions were dictated by
regulations, I retained a great deal of flexibility to select the mechanisms that
constituted the system's security. Frequently, the tension between
performance and maintainability and security, raises such questions as: Since
GCCS is unusable when full auditing is turned on, how much auditing is
enough? What are the alternatives? How does a particular technology fit
with other technologies? Are there overlaps, gaps or conflicts? Is the
technology right for the GCCS architecture? The most important question
for me is "How does a technology affect the overall security of the system?
Without this knowledge I find it difficult to make engineering tradeoffs
when deciding the right mix of security technologies for the system. System
level methodologies or frameworks to analyze security appear to be
nonexistent.

4.1 State of the art

Current security models don't seem to support the idea of the system
level perspective of security. One of the first security models, the trusted
computing base model from the government's Trusted Computer System
Evaluation Criteria (Orange Book), was criticized for not addressing
network issues and relying on the hardware and software within each

416 Shawn A. Butler

workstation to enforce security policies. This model clearly lacks a system
perspective. Network models have an implicit boundary that separates
insiders from outsiders. Network models emphasize protective barriers that
restrict outsiders from penetrating the system, however, there are many
internal threats as well. Also, it may be difficult to determine the boundaries
of the system in a network model. The "How To" books and trade magazines
of security often offer advice along the following lines:
- Identify the system resources that need to be protected.
- Identify the threats to the resources and/or system vulnerabilities.
- Establish security policies.
- Implement cost-effective strategies to minimize the risk threats impose

against the resources.
Approaches may vary slightly, but they generally include these four

steps. Although the books outline the approach, but they don't really
provide any practical strategies. This last step is the kicker. As chief
engineer, I found it relatively easy to identify system resources and threats
for the GCCS. Implementing cost-effective strategies was difficult because I
didn't have a way of comparing alternatives and it was difficult to
understand how each alternative fit in the system context.

There has been extensive cryptanalysis research, attempts to discover
stronger cryptographic algorithms, and theoretical research in intrusion
detection. This type of research is invaluable if we are to rely on these
technologies in our systems, but its place in the overall context must be
understood. For example, encryption export controls present unique
problems when the system must be compatible with foreign military
systems. Trade magazines and security handbooks provide high level
guidance on how to approach security, and some handbooks such as Internet
Security: Professional Reference by New Riders Publishing provide very
detailed information on how to build a firewall or how to set security
sensitive system controls. Threat information taxonomies are easily found in
most security textbooks and journals. The Computer Emergency Response
Team (CERT) at the Software Engineering Institute (SEI) periodically
provides alerts and warnings about security problems and the Internet has a
wealth of information about security. How does the system engineer pull the
information together to see how all the policies, technologies and design
maintain confidentiality, availability and integrity in a system?

5. A FRAMEWORK FOR SECURITY

As Chief Systems Engineer of GCCS, my integration tasks required that I
see how each technology, design, or policy fit into the system. I wanted the

Security Issues with the Global Command and Control System 417

framework to reveal the system security weaknesses and allow me to see
how alternatives compared in the system. I felt such a framework would
allow me to make cost-effective decisions about how to choose among all
the things I could do to maintain a particular level of security within GCCS.
I needed to be able to describe the level of the system security. Such a
framework was not available to me at the time. I am now a Ph.D. student at
Carnegie Mellon University and have the opportunity to work on
constructing such a framework.

Instead of closing this experience with a wish list of questions for
researchers to consider, I will lay out a preliminary sketch of the security
framework that forms the basis of my own research. The framework takes
advantage of the work accomplished by the Networked Systems
Survivability Program and presented in Survivable Network Systems: An
Emerging Discipline (Ellison, Fisher, Linger, Longstaff, and Mead 1997).
The following outlines the components of a security analysis approach.

The System Security Analysis Framework (SSAF) is divided into five
components:
1. the system
2. security technologies, policies, and design techniques
3. known weakness and flaws for each item described in the security

technologies component
4. threats and vulnerabilities
5. the security model.

SSAF provides a way to include both automated and non-automated
security procedures as part of the analysis. The framework accommodates
highly connected information systems and standalone systems. It is not
constrained by the network topology, nor does it ignore the topology. The
security model described in the framework places the system resources at the
center of the model and provides a mechanism for showing how the system
security mitigates the risk to those resources. The security model pulls all
the other pieces together.

1) The system component of the framework describes the system
architecture, relevant designs, and non-functional attributes. A complete
system description that includes how people interact with the system is
necessary so that the system engineer can understand how technologies,
policies and designs are implemented or fit within the planned
implementation. Many of the security technologies adversely impact the
other non-functional attributes such as performance, so it is important to
understand how the other non-functional attributes will be balanced in the
systems. Non-functional requirements such as latency, reliability, and
performance, must be identified here. The system component provides the
context in which the security analysis takes place. Most of the information

418 Shawn A. Butler

for the system component can be obtained from architectural description
documents, design and requirement documents. Unfortunately, none of
these documents were available for GCCS, however, most of the information
could have been gathered from developers and software engineers.

2) The technologies component is a collection of security technologies,
policies and designs that make up the system security. Security technologies
include firewalls, access control lists, auditing mechanisms, intrusion
detection systems, cryptography, etc. Security policies describe how system
privileges are established, processes for reporting violations, password
procedures, and any other policy that contributes to the overall security of
the system. Configuration settings in products such as access control
mechanisms or firewalls enforce many security policies; others are strictly
procedural. Each element requires a detailed description about how it is
implemented in the system described in system section.

3) The weakness and flaws component identifies known weaknesses and
flaws of each of the items listed in the technology component. Security
policies often depend on the integrity of key individuals and systems suffer
catastrophic failures when an individual betrays his trust. Separate analysis
of weaknesses and flaws serves two purposes. First, analysis explicitly raises
the awareness of the weaknesses and flaws associated with each item so that
the system engineer can address these vulnerabilities, if possible. Second, it
identifies areas that might need special attention when the system
configuration changes.

4) The threats and vulnerabilities component addresses the system
threats and vulnerabilities. Almost all security approaches advocate a threat
identification step. None of the many threat assessment documents I have
read provided specific guidance about threats and vulnerabilities.
Documents usually identify a standard set of threats such as vulnerability to
electronic eavesdropping, mal content employees, nuclear EMP, and
hackers. Reports usually stated that hostile and non-hostile foreign countries
might be highly interested in the information the system processed. Some
reports might even identify a few flaws in the UNIX operating system for
which there were known patches. These reports had relatively little value
other than to confirm that I had followed the appropriate procedures and
conducted a threat assessment. The threat and vulnerabilities component
must be much more extensive if it is to be useful.

An initial start at improving threat assessments is a comprehensive
taxonomy of threats. Fred Cohen (Cohen, 97) identifies 94 methods of
attack. Additional detailed attack information is available from the Internet
or from CERT bulletins. Security journal articles offer occasional guidance
such as the recent article in Computer & Security (Hancock, 98), which
identified several attacks in detail. It may be impossible to collect all of the

Security Issues with the Global Command and Control System 419

system threats because there are so many information sources and new
attacks are appearing before the old attacks have countermeasures.
Developing the threat component of the framework will probably be an
ongoing process.

5) The core component of the framework is the security model (figure 2),
which has four layers. The purpose of each of the other components is to
help populate each of the four layers of the security model. System threats
and vulnerabilities are external to the four layers. Each layer is populated
with items from the technologies and policies component. The model is
constructed using four defensive layers:
1. protection
2. detection
3. mitigation
4. recovery

Each layer plays a different role in protecting the system resources.
Consistent with other security models, the first step is to identify the system
resources that must be protected. The system component should be the
source of resource information.

Mitigation
Recovery

Resources j
Figure 2. Security framework

The first layer is the protection layer. For each threat identified, the
security engineer should identify the security technology or policy that stops
the threat from gaining or denying access to a resource. This layer should be
populated with all the security policies, products and designs that prevent an
attack from succeeding. These policies and products have may have flaws,
but they may still be effective against some (e.g. accidental) intrusions.
Items that most likely fall into this layer are firewalls, passwords,
background checks on employees, access control lists, etc. GCCS

420 Shawn A. Butler

implemented all of these and more. Ideally, a system engineer would like a
one for one mapping between threats and prevention mechanisms.

The second layer is the detection layer. Most likely, none of the
mechanisms in the protection layer are 100% attack proof. There may not
even be a protection mechanism for a particular threat. Hancock (Hancock,
98) identified several attacks, some of which did not have known
countermeasures. Without countermeasures, the system engineer needs to
identify mechanisms that may detect an attack so that appropriate procedures
are developed to properly react to an intrusion or denial of service attack.
Intrusion detection systems, virus detection programs, audit trails and logs,
special alerts and triggers are all security mechanisms that the security
engineer should identify for the detection layer. System personnel should be
guided by policy when responding to an attack. For each relevant threat, the
system engineer should consider ways to detect an attack.

The third layer is the mitigation layer. Here the system engineer
considers technologies and mechanisms that minimize the damage an attack
may do if it is not detected or contained. System partitioning and system
redundancy might be two techniques a system engineer could design into the
system to minimize the damage from an attack. The purpose of this layer is
to consider techniques and policies that help minimize the damage done
from an intrusion that might go unnoticed for some time. Some of the
attacks may not cause much damage because they are not particularly
destructive attacks, so the system engineer may decide that a particular
attack is more a nuisance that doesn't warrant any attention.

Recovery is the fourth layer. The system engineer must be able to
recover from an attack. An attack may penetrate the preceding layers so the
system engineer should consider how the system can recover from the
damage. Back up and recovery procedures fall into this layer. Highly
distributed systems like GCCS allow system engineers to design fail over
and redundancy into the system without much trouble.

I have only begun to explore the feasibility and potential of this
framework. Even if it does not immediately provide the quantitative
analysis that most engineers hope for, I think it has potential to compare
alternatives relative to one another. It pulls together the essential pieces of
information in a uniform, structured way and gives the system engineer a
system level perspective.

If this framework had been available to GCCS it would have served us
well. The information was available to populate the framework. The GCCS
security checklist would have been an excellent starting place to gather an
initial list to populate the security technologies component of the framework.
Also, GCCS security specialists developed a GCCS security policy
document that outlined many of the security policies that would be included

Security Issues with the Global Command and Control System 421

in this part of the framework. Although these documents were available,
there were many discrepancies between the policies identified in the
document and those actually implemented. Obviously, it is important to
distinguish between the written from the practiced.

6. CONCLUSION

GCCS presented many challenges. Security was the one area in which I
felt the most helpless. It seems so much effort is put into each technology
and so little effort into the engineering and design principles that need to
guide system developers. Trade magazines don't provide the depth of
advice that is needed to build the system security from the parts. The
research community has not yet produced a model that is of direct, system­
level assistance. If we don't understand how security integrates into system
architectures today then how will know the role security plays in the domain
architectures of the future?

REFERENCES

Cohen F. (1997), Information System Attacks: A Preliminary Classification Scheme,
Computer & Security. 16, p. 29-46

Ellison, R.J., Fisher, D., Linger, R.C., Lipson, H.F., Longstaff, T., Mead, N.R. (1997),
Survivable Network Systems: An Emerging Discipline, Technical Report, CMU/SEI-97-
TR-013, 1997

Hancock, B. (1998), Security Views. Computer & Security 17, p. 99-109
Defense Information Systems Agency (DIS A) (1996), Defense Information Infrastructure

(DII) Common Operating Environment (COE) Integration and Runtime Specification
(I&RTS), Version 3.0 (Draft) December 1996

Russel D. and Gangemi, G.T. Sr. (1992), Computer Security Basics, Sebastopol, CA:
O'Reilly & Associates, July

Modernization of the Worldwide Military Command and Control System (WMCCS), (1992),
National Academy Press

	Security Issues with the Global Command andControl System (GCCS)
	1. INTRODUCTION
	2. BACKGROUND
	3. GCCS
	3.1 GCCS architecture
	3.2 Interoperability issues
	3.3 Architectural security issues and interoperability
	3.4 Architectural integration summary

	4. SECURITY IMPLEMENTATION
	4.1 State of the art

	5. A FRAMEWORK FOR SECURITY
	6. CONCLUSION
	REFERENCES

