
Evolution and Composition of Reusable Assets in 
Product-Line Architectures: A Case Study 

Jan Bosch 
University of Karlskrona/Ronneby 
Department of Computer Science and Business Administration 
S-372 25 Ronneby, Sweden 
e-mail: Jan.Bosch@ide.hk-r.se 
www:http://www.ide.hk-r.sel-bosch 

Key words: Reusable assets, product-line architectures, software composition, software 
evolution, case study 

Abstract: In this paper, a case study investigating the experiences from evolution and 
modification of reusable assets in product-line architectures is presented 
involving two Swedish companies, Axis Communications AB and Securitas 
Larm AB. Key persons in these organisations have been interviewed and 
information has been collected from documents and other sources. The study 
identified problems related to multiple versions of reusable assets, 
dependencies between assets and the use of assets in new contexts. The 
problem causes have been identified and analysed, including the early 
intertwining of functionality, the organizational model , the time to market 
pressure, the lack of economic models and the lack of encapsulation 
boundaries and required interfaces. 

1. INTRODUCTION 

Product-line architectures have received attention in research, but even 
more so in industry. Many companies have moved away from developing 
software from scratch for each product and instead focused on the 
commonalities between the different products, and capturing those in a 
product-line architecture and an associated set of reusable assets. This is, 
especially in the Swedish industry, a logical development since software is 

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999 

http://dx.doi.org/10.1007/978-0-387-35563-4_35


322 Jan Bosch 

an increasingly large part of products and often defines the competitive 
advantage. When moving from a marginal to a major part of products, the 
required effort for software development also becomes a major issue and 
industry searches for ways to increase reuse of existing software to minimize 
product-specific development and to increase the quality of software. 

A number of authors have reported on industrial experiences with 
product-line architectures. In [SEI 97], results from a workshop on product 
line architectures are presented. Also, [Macala et al. 96] and [Dikel et al. 97] 
describe experiences from using product-line architectures in an industrial 
context. The aforementioned work reports primarily from large, American 
software companies, often defense-related, which are not necessarily 
representative of the software industry as a whole, especially European 
small- and medium-sized enterprises. 

We have performed a case study of product-line architectures involving 
two Swedish software development organisations: Axis Communications 
AB and Securitas Larm AB. The former develops and sells network-based 
products, such as printer, scanner, camera, and storage servers, whereas the 
latter company produces security- and safety-related products such as fire­
alarm, intruder-alarm, and passage control systems. Since the beginning of 
the '90s, both organisations have moved towards product-line architecture 
based software development, especially through the use of object-oriented 
frameworks as reusable assets . In an earlier paper [Bosch 98c], we reported 
on the technological, process, organizational and business problems and 
issues related to product-line architectures. In this paper, we focus on the 
use, evolution, composition and reuse of assets that are part of a product-line 
architecture. Since the involved organisations have considerable experience 
using this approach, we report on their way of organising software 
development, the obtained experiences and the identified problems. 

The contribution of this paper is, we believe, its provision of exemplars 
of industrial organisations in software industry that can be used for 
comparison or as inspiration. In addition, the experiences and problems 
surrounding reusable assets provide, at least partly, a research agenda for the 
software architecture and software reuse communities. 

The remainder of the paper is organised as follows. In the next section, 
the research method used for the case study is briefly described. The two 
companies forming the focus of the case study are described in section 3. 
Section 4 discusses the differences in perception of product-line 
architectures and reusable assets in academia and industry. The problems 
identified during data collection are discussed in section 5 and their causes 
are analysed in section 6. Section 7 discusses related work and the paper 
concludes in section 8. 



Evolution and Composition of Assets in Product-Line Architectures 323 

2. CASE STUDY METHOD 

The goal of the study was twofold: first, our intention was to get an 
understanding of the problems and issues surrounding reusable assets part 
that are part of a product-line architecture in "normal" software development 
organisations, i.e ., organisations of small to average size, i.e., tens or a few 
hundred employees, and unrelated to the defense industry. Second, our goal 
was to identify those research issues that are most relevant to software 
industry with respect to reusable assets in product-line software 
architectures. 

The most appropriate method to achieve these goals, we concluded, was 
interviews with the system architects and technical managers at software 
development organisations. Since this study marks the start of a three year 
government-sponsored research project on software architectures involving 
our university and three industrial organisations, i.e ., Axis Communications, 
Securitas Larrn, and Ericsson Mobile Communications, the interviewed 
parties were taken from this project. The third organisation, a business unit 
within Ericsson Mobile Communications, is a recent start-up and has not yet 
produced product-line architectures or products. A second reason for 
selecting these companies was that we believe them to be representative of a 
larger category of software development organisations. These organisations 
develop software that is to be embedded in products also involving hardware 
and mechanics, are of average size (e.g., development departments of 10 to 
60 engineers), and develop products sold to industry or consumers. 

The interviews were open and rather unstructured, although a 
questionnaire was used to guide the process. The interviews were video­
taped for further analysis afterwards and in some cases documentation from 
the company was used to complement the interviews. The interviews often 
started with a group discussion and were later complemented with interviews 
with individuals for deeper discussions on particular topics. 

3. CASE STUDY ORGANISATIONS 

3.1 Case 1: Axis Communications AB 

Axis Communications started its business in 1984 with the development 
of a printer server product that allowed IBM mainframes to print on non­
IBM printers. Up to then, IBM maintained a monopoly on printers for their 
computers, with consequent price settings. The first product was a major 
success that established the base of the company. In 1987, the company 
developed the first version of its proprietary RISC CPU that provided better 



324 Jan Bosch 

performance and cost-efficiency than standard processors for their data­
communication oriented products. Today, the company develops and 
introduces new products on a regular basis. At the beginning of the '90s, 
object-oriented frameworks were introduced into the company and since 
then a base of reusable assets is maintained from which most products are 
developed. 

Axis develops IBM-specific and general printer servers, CD-ROM and 
storage servers, network cameras, and scanner servers. The latter three 
products, in particular, are built using a common product-line architecture 
and reusable assets. In figure 1, an overview of the product-line and product 
architectures is shown. The organisation is more complicated than the 
standard case with one product-line architecture (PLA) and several products 
below this product-line. In the Axis case, there is a hierarchical organisation 
of PLAs, with the product-line architecture at the top and the product-group 
architectures (e.g., the storage-server architecture) at the next lower level. 
The focus of the case study is on the marked area in the figure, although the 
other parts are discussed briefly as well. The primary reusable assets for 
Axis include object-oriented frameworks for file systems and network 
protocols, but several smaller frameworks are used as well. 

Figure 1. Product-line and product software architectures in Axis Communications 

3.2 Case 2: Securitas Larm AB 

Securitas Larm AB (formerly TeleLarm AB) develops, sells, installs and 
maintains safety and security systems such as fire-alarm systems, intruder 
alarm systems, passage-control systems, and video surveillance systems. The 
company's focus is especially on larger buildings and complexes, requiring 
integration between the aforementioned systems. Therefore, Securitas has a 
fifth product unit developing integrated solutions for customers including all 



Evolution and Composition of Assets in Product-Line Architectures 325 

or a subset of these systems. In figure 2, an overview of the products is 
presented. 

system integration 

fire-alarm systems intruder-alarm systems access control systems camera control systems 

Figure 2. Securitas Larm Product Overview 

Securitas uses a product-line architecture only for their fire-alarm 
products, in practice only the EBL 512 product, and traditional approaches in 
the other products. However, due to the success in the fire-alarm domain, the 
intention is to expand the PLA in the near future to include the intruder­
alarm and passage-control products as well. 

4. PRODUCT-LINE ARCHITECTURES AND 
REUSABLE ASSETS 

An important issue we identified during this case study and our other 
cooperative projects with industry is that there exists a considerable 
difference between the academic perception of software architecture and 
reusable assets and the industrial practice. It is important to explicitly discuss 
these differences because the problems described in the next section are 
based on the industrial rather than the academic perspective. It is interesting 
to note that sometimes the problems that are identified as the most important 
and difficult by industry are not identified (or viewed as non-problems) by 
academia. 

Table 1 lists the academic and industrial interpretations of the notion of 
product-line architecture. The main differences are related to the definition 
of architectures, the use of first-class connectors, and the use of specialised 
languages. 



326 Jan Bosch 

Table 1 Academic versus industrial view of software architecture 

Research Industry 
Architecture is explicitly defined. Mostly conceptual understanding of 

architecture. Minimal explicit definition, often 
through notations. 

Architecture consists of components No explicit first-class connectors (sometimes 
and first -class connectors. ad-hoc solutions for run-time binding and glue 

code for adaptation between assets). 

Architectural description languages Programming languages (e.g. , C++) and script 
(ADLs) explicitly describe languages (e.g., Make) used to describe the 
architectures and are used to configuration of the complete system. 
automatically generate applications. 

For reusable assets, one can identify a similar difference between the 
academic and industrial understanding of the concepts. In table 2, an 
overview is presented comparing the two views. The main differences are 
related to, among others, the assumed black-box nature, the component 
interface, and variability. 

Table 2. Academic versus industrial view of reusable assets 

Research Industry 

Reusable assets are black-box Assets are large pieces of software (sometimes more 
components. than 80 KLOC) with a complex internal structure and 

no enforced encapsulation boundary, e.g., object-
oriented frameworks. 

Assets have narrow interface The asset interface is provided through entities, e.g., 
through a single point of access. classes in the asset. These interface entities have no 

explicit differences to non-interface entities. 
Assets have few and explicitly Variation is implemented through configuration and 
defined variation points that are specialisation or replacement of entities in the asset. 
configured during instantiation. Sometimes multiple implementations (versions) of 

assets exist to cover variation requirements 

Assets implement standardized Assets are primarily developed internally. Externally 
interfaces and can be traded on developed assets go through considerable (source 
component markets. code) adaptation to match the product-line 

architecture requirements. 
Focus is on asset functionality Functionality and quality attributes, e.g. , 
and on the formal verification of performance, reliability, code size, reusability and 
functionality. maintainability, have equal importance. 

5. PROBLEMS 

Based on the interviews and other documentation collected at the 
organisations part of this case study, we have identified a number of 
problems related to reusable assets that we believe to have relevance in a 



Evolution and Composition of Assets in Product-Line Architectures 327 

wider context than just these organisations. In the remainder of this section, 
the problems that were identified during the data collection phase of the case 
study are presented. For each problem, a problem description is presented, 
illustrated by an example from one of the case-study companies. The 
problems are categorized into three categories, related to multiple versions of 
assets, dependencies between assets, and the use of assets in new contexts. 

5.1 Multiple versions of assets 

Product-line architectures have associated reusable assets that implement 
the functionality of architectural components. These assets can be very large 
and contain up to a hundred KLOC or more. Consequently, they represent 
considerable investments (multiple man-years in certain cases). Therefore, it 
was surprising to identify that in some cases, the interviewed companies 
maintained multiple versions (implementations) of assets in parallel. One 
can identify at least four situations where multiple versions are introduced. 

5.1.1 Conflicting quality requirements 

The reusable assets are generally optimized for particular quality 
attributes such as performance or code size. Different products in the product 
line, even though they require the same functionality, may have conflicting 
quality requirements . These requirements may have so high a priority that no 
single component can fulfil them all. The reusability of the affected asset is 
then restricted to just one or a few of the products while other products 
require another implementation of the same functionality. 

For example, in Axis, the printer server product was left out of the 
product-line architecture (although it can be considered to be a PLA on its 
own, with more than 20 major variations) because minimizing the binary 
code size is the driving quality attribute for the printer server whereas 
performance and time to market are the driving quality attributes for the 
other network-server products. 

Our impression is that when products in the product-line are at different 
points in their lifecycle, there is a tendency to have multiple versions of 
assets. This is because the driving quality attributes of a product tend to 
change during its lifecycle from feature- and time-to-market driven to cost­
and efficiency-driven (see also [SEI 97]). 

5.1.2 Variability implemented through versions 

Certain types of variability are difficult to implement through 
configuration or compiler switches since the effect of a variation spreads out 



328 Jan Bosch 

throughout the reusable asset. An example is different contexts, such as the 
operating system, for an asset. Although it might be possible to implement 
all variability through, for example, #ifdef statements, often it is decided to 
maintain two different versions. 

The above printer server example can also be used here. The different 
versions of assets actually implement different variability selections. 

5.1.3 High-end versus low-end products 

The reusable asset should contain all functionality required by the 
products in the product-line, including the high-end products. The problem is 
that low-end products, generally requiring a restricted subset of the 
functionality, pay for the unused functionality in terms of code size and 
complex interfaces. Especially for embedded systems where the hardware 
costs play an important role in the product price, the software engineers may 
be forced to create a low-end, scaled-down version of the asset to minimize 
the overhead for low-end products. 

Two versions of the file-system framework have been used in Axis in 
different products. The scanner and camera products used a scaled down 
version of the file system framework, only implementing a memory-based 
pseudo file system, whereas the CD-Rom and Jaz drive products used the 
full-scale file system, implementing a variety of file-system standards. The 
scanner and camera product develpoers had no interest in incorporating the 
complete asset since it required more memory than strictly necessary, 
leading to increased product cost. 

5.1.4 Business unit needs 

Especially in the organizational model used by Axis, where the business 
units are responsible for asset evolution, assets are sometimes extended with 
very product-specific code, or code only tested for one of the products in the 
product-line. The problems caused by this create a tendency within the 
affected business units to create their own copy of the asset and maintain it 
solely for their own product. This minimizes the dependency on the shared 
product-line architecture and solves the problems in the short term, but in the 
long term it generally does not pay off. We have seen several instances of 
cases where business units had to rework considerable parts of their code to 
incorporate a new version of the evolved shared asset that contained 
functionality that needed to be incorporated in their product also. 

The aforementioned file system framework example is also an example 
of a situation where business-unit needs resulted in two versions of an asset. 
At a later stage, the full-scale file system framework had evolved and the 



Evolution and Composition of Assets in Product-Line Architectures 329 

scanner and camera products wanted to incorporate the additional 
functionality. In order to achieve that, the product-specific code of both 
products had to be reworked in order to incorporate the evolved file system 
framework. 

5.2 Dependencies between assets 

Since the reusable assets are all part of a product-line architecture, they 
tend to have dependencies between them. Although dependencies between 
assets are necessary, assets often have dependencies that could have been 
avoided by another modularization of the system or a more careful asset 
design. From the examples at the studied companies, we learned that the 
initial design of assets generally defines a small set of required and explicitly 
defined dependencies. It is often during evolution of assets that unwanted 
dependencies are created. Addition of new functionality may require 
extension of more than one asset; in the process dependencies are often 
created between the assets that implement the functionality. These new 
dependencies could often have been avoided by another decomposition of 
the architecture. They have a tendency to be implicit, in that their 
documentation is often minimal, and the software engineer encounters the 
dependency late in the development process. Dependencies in general, but 
especially implicit dependencies, reduce the reusability of assets in different 
contexts, but also complicate the evolution of assets within the PLA since 
each extension of one asset may affect multiple other assets . Based on our 
research at Axis and Securitas, we have identified three situations where 
new, often implicit, dependencies are introduced: 

5.2.1 Component decomposition 

With the development of the product-line architecture, generally the sizes 
of the reusable assets also increase. Companies often have some optimal size 
for an asset component, so that it can be maintained by a small team of 
engineers (e.g., it captures a logical piece of domain functionality, etc.). 
With the increasing size of asset components, there is a point where a 
component needs to be split into two components. These two components, 
initially, have numerous relations to each other, but even after some redesign 
several dependencies often remain because the initial design did not 
modularize the behaviour of by the two components. One could, obviously, 
redesign the functionality of the components completely to minimize the 
dependencies, but the required effort is generally not feasible in development 
organizations. 



330 Jan Bosch 

To give an example from Axis: at some point, it was decided that the file 
system asset should be extended with functionality for authorisation. To 
implement this, it proved to be necessary to also extend the protocol asset 
with some functionality. This created yet another dependency between the 
file system and the protocol assets, making it harder to reuse them 
separately. Currently, the access functionality has been broken out of the file 
system and protocol assets, and defined as a separate asset, but some 
dependencies between the three assets remain. 

5.2.2 Extensions cover multiple assets 

Extension of the product-line architecture stems from new functional 
requirements that need to be incorporated in the existing functionality. 
Often, the required extension to the product line covers more than one asset. 
During implementation of the extension, it is very natural to add 
dependencies between the affected assets since one is working on 
functionality that is perceived as one piece, even though it is divided over 
multiple assets. 

The authorisation access extension to the Axis PLA provides, again, an 
excellent example. At first, the access functionality was added to the file 
system and protocol assets. However, the protocol framework contained the 
protocol user classes that were needed by the access functionality in the file 
system framework, leading to strong dependencies between the two 
frameworks. At a later stage, the authorisation access was separated from the 
two assets and represented as a single asset, thereby decreasing the 
dependencies. 

5.2.3 Asset extension adds dependency 

As mentioned, the initial design of a PLA generally nunmuzes 
dependencies between its components. Evolution of an asset component may 
cause this component to require information from an earlier unrelated 
component. If this dependency had been known during the initial PLA 
design, then the functionality would have been modularized differently and 
the dependency would have been avoided. 

In the protocol framework in the Axis PLA, most of the implemented 
protocols use a layered organisation in which process packets that are sent 
up and down the protocol layers. These communication packets are nested in 
the sense that each lower-level protocol layer declares a new packet and adds 
the received packet as an argument. At some point, the implementation of 
new functionality required methods of the most encapsulated packet object 
to refer to data in one of the packets higher up in the encapsulation 



Evolution and Composition of Assets in Product-Line Architectures 331 

hierarchy, introducing a very unfortunate dependency between the two 
packets. 

5.3 Assets in new contexts 

Since assets represent considerable investments, the goal is to use assets 
in as many products and domains as possible. However, a new context 
differs in one or more aspects from the old context, causing a need for the 
asset to be changed in order to fit. Two main issues in the use of assets in 
new contexts can be identified. 

5.3.1 Mixed behaviour 

An asset is developed for a particular domain, product category, 
operating context, and set of driving quality requirements. Consequently, it 
often proves to be hard to apply the asset in different domains, products, or 
operating contexts. The design of assets often hard-wires design decisions 
concerning these aspects unless the type of variability is known and required 
at design time. 

The main asset for Securitas is the highly successful fire-alarm system. In 
the near future, Securitas intends to develop a similar asset for the domain of 
intruder-alarm systems. Since the domains have many aspects in common, 
their intention is to reuse the fire-alarm asset and apply it to the intruder 
alarm domain, rather than developing the asset from scratch. However, 
initial investigations show that the domain change for the asset is not a trivial 
endeavour. 

5.3.2 Design for required variability 

It is recommended best practice that reusable assets be designed to 
support only the variability requested in the initial requirement specification, 
e.g., [Jacobson et al. 97]. However, a new context for a reusable asset often 
also requires new variability dimensions. One cannot expect that assets are 
designed to include all foreseeable forms of variability, but they should be 
designed so that the introduction of new variability requires minimal effort. 

The application of the fire-alarm framework in the intruder-alarm domain 
serves as an example here. These systems share, to a large extent, the same 
operating context and quality requirements. However, since the fire-alarm 
domain functionality is hard-wired in the framework design, and the intruder 
alarm domain has different requirements and concepts, one is forced to 
introduce variability for application-domain functionality. 



332 Jan Bosch 

6. CAUSE ANALYSIS 

The problems discussed in the previous section represent an overview of the 
issues surrounding the use of reusable assets in a product-line architecture. 
We have analysed these problems in their industrial context and have 
identified what we believe to be the primary underlying causes of these 
problems. In the remainder of this section, these causes are discussed. 

6.1 Early intertwining of functionality 

The functionality of a reusable asset can be categorized into functionality 
related to the application domain, the quality attributes, the operating 
context, and the product-category. Although these different types of 
functionality are treated separately at design time, both in the design model 
and the implementation they tend to be mixed. Hence it is generally hard to 
change one of the functionality categories without extensive reworking of 
the asset. Both the state-of-practice as well as leading authors on reusable 
software (e.g., [Jacobson et al. 97]), design for required variability only. That 
is, only the variability known at asset-design time is incorporated in the 
asset. Since the requirements evolve constantly, requirement changes related 
to the domain, product category, or context generally appear after design 
time. Consequently, it often proves hard to apply the asset in the new 
environment. 

The early intertwining of functionality is a primary cause of several of 
the problems discussed in the previous section. Multiple versions of assets 
are required because the different categories of functionality cannot be 
separated in the implementation and implemented through variability. Also, 
the use of an asset in a new context is complicated by the mixing of 
functionality. 

Companies try to avoid mixed functionality primarily through design. For 
instance, the use of layers, even in asset design, to separate operating­
context-dependent from context-independent functionality, avoids the 
mixing. Also, several design patterns [Gamma et al. 94, Buschmann et al. 
96] support separation of different types of functionality and support the 
introduction of variability. 

Research issues. The primary research issue is to find approaches that allow 
for late composition of different types of functionality. Examples of this can 
be found in the Draco system [Neighbors 89], [Batory & O'Malley 92] 
approach to hierarchical software systems, parameterized programming 
[Goguen 96], aspect-oriented programming [Kiczales et al. 97] and in the 
layered object model [Bosch 98a] and [Bosch 98b]. In addition, design 



Evolution and Composition of Assets in Product-Line Architectures 333 

solutions, such as design patterns, that successfully separate functionality 
should be a continuing topic of research. 

6.2 Organization 

Both Securitas and Axis have explicitly decided against the use of separate 
domain engineering units. The advantages of separate domain engineering 
units, such as being able to spend considerable time and effort on thorough 
designs of assets, were generally recognised. On the other hand, people felt 
that a domain engineering group could easily get lost in wonderfully high 
abstractions and highly reusable code that did not quite fulfil the 
requirements of the application engineers. In addition, having explicit groups 
for domain and application engineering requires a relatively large software 
development department consisting of at least fifty to a hundred engineers. 

Nevertheless, several of the problems discussed earlier can be related to 
the lack of independent domain engineering. Business units focus on their 
own quality attributes and design for achieving those during asset extension. 
Because of that, multiple versions of assets may be created where a domain 
engineering unit might have found solutions allowing for a single version. In 
addition, asset extension without sufficient focus on the product-line as a 
whole may introduce more dependencies than strictly necessary, 
complicating the use of assets as well as their reuse in new contexts. 

Solutions exist to minimize the negative effects of organizational 
structures. At Axis, so-called asset redesigns are performed when a 
consensus is present that an asset needs to be reorganised. During an asset 
redesign, the software architects from the business units using the asset 
gather to redesign the asset in order to improve its structure. As a 
complement, both Axis and Securitas have responsibility for each asset, and 
evolution of assets has to be approved by them. However, because of time­
to-market pressures, there is sometimes a need to accept less-than-optimal 
solutions. Thirdly, to improve on these issues, management must be willing 
to occasionally relieve some time-to-market pressure, accepting delay of one 
product so that subsequent products can enter the market sooner. 

Research issues. The primary research issue concerns the processes 
surrounding asset evolution. More case studies and experimentation are 
required to gather evidence of working and failing processes, and mandatory 
and optional steps. In addition, one can conclude that it is unclear when an 
organisation should have separate domain engineering units rather than 
performing asset development in the application engineering units. Research 
is required for the collection of evidence on optimal organizational structures 



334 Jan Bosch 

and identification and evaluation of approaches to minimize the negative 
effects of organizational choices. 

6.3 Time to market 

A third important cause for the problems related to reusable assets at the 
interviewed companies is the time-to-market (TIM) pressure. Getting out 
new products and subsequent versions of existing products is very high up 
on the agenda, thereby sacrificing other topics . The problem most companies 
are dealing with is that products appearing late on the market will lead to 
diminished market share or, in the worst case, to no market penetration at all. 
However, this ali-or-nothing mentality leads to an extreme focus on short­
term goals, while ignoring long term goals . Sacrificing some time-to-market 
for one product may lead to considerable improvements for subsequent 
products, but this is generally not appreciated. 

The TIM pressure causes several of the problems discussed earlier. This 
is primarily because software engineers do not have the time to reorganise 
the assets to minimize dependencies or to generalize functionality. Asset 
evolution is often implemented as quick fixes , thereby decreasing the 
usability of the asset in future contexts. 

To address the problems resulting from TIM pressure, it is important for 
software development organizations to regard the development of a product­
line architecture and associated assets as a strategic issue, with decisions 
being made at the appropriate level. The consequences for the time-to­
market of products under development should be balanced against the future 
returns. Finally, taking a time-out for asset redesign is necessary periodically 
to "clean up." 

Research issues. Decisions related to TIM for products are made based on a 
business case and these, rather relevant, research issues are outside the 
software engineering domain. However, two issues can be identified: the 
lack of economic models (described in the next section) and design 
techniques that minimize the effort required for extending assets without 
diminishing their future applicability. 

6.4 Economic models 

As mentioned earlier in the paper, reusable assets may represent 
investments of up to several man-years of implementation effort. For most 
companies, such assets represent a considerable amount of capital, but both 
engineers and management are not always aware of that. For instance, an 
increasing number of dependencies (especially implicit dependencies) 



Evolution and Composition of Assets in Product-Line Architectures 335 

between assets is a sign of accelerated aging of software and, in effect, 
decreases the value of the assets. However, since no economic models are 
available that visualise the effects of quick fixes causing increased 
dependencies, it is hard to establish the economic losses of these 
dependencies. In addition, reorganisation of software assets that have been 
degrading for some while is often not performed because no economic 
models are available to visualize the return on investment. 

The lack of economic models influences several of the identified 
problems. In general, one can recognize a lack of forces against time-to­
market pressure because no business case for sound engineering (versus 
deadline-driven hacking of software) can presented. 

Research issues. One can identify a need for economic models in two 
situations. Firstly, models are needed for calculating the economic value of 
an asset, based on the investment (man hours) but also on the value of the 
asset for future product development and/or for an external market. 
Secondly, models are needed for visualising the effects of various types of 
changes and extensions to the asset value. These models could be used to 
visualise the effects of quick fixes and implicit dependencies on the asset 
value. 

6.5 Encapsulation boundaries and required interfaces 

Although many of the issues surrounding product-line architectures are 
non-technical in nature, there are technical issues as well. The lack of 
encapsulation boundaries that encapsulate reusable assets and enforce 
explicitly defined points of access through a narrow interface is a cause of a 
number of the identified problems. In section 4 we discussed the difference 
between the academic and the industrial view of reusable assets . Some of the 
assets at the interviewed companies are large object-oriented frameworks 
with a complex internal structure. The traditional approach is to distinguish 
between interface classes and internal classes. The problem is that this 
approach lacks support from the programming language, requiring software 
engineers to adhere to conventions and policies. In practice, especially under 
strong time-to-market pressure, software engineers will go beyond the 
defined interface of assets, creating dependencies between assets that may 
easily break when the internal implementation of assets is changed. In 
addition, these dependencies tend to be undocumented or only minimally 
documented. 

A related problem is the lack of required interfaces. Interface models 
generally describe the interface provided by a component, but not the 
interfaces it requires from other components for its correct operation. Since 



336 Jan Bosch 

dependencies between components can be viewed as instances of bindings 
between required and provided interfaces, one can conclude that it is hard to 
visualize dependencies if the necessary elements are missing. 

The lack of encapsulation boundaries and required interfaces primarily 
causes problems related to component dependencies . For instance, 
component decomposition is complicated since the new part-components 
can continue to refer to each other without explicit visibility. 

As mentioned, companies address these issues by establishing 
conventions and policies, but these tend to be broken in practice. 
Documentation of the assets and inspection of design documents, the 
implementation and the documentation of assets helps enforce the 
conventions and policies. 

Research issues. The primary research issue to address this cause is to find 
approaches to encapsulation boundaries that are more open than the black­
box component models, but provide protection for the private entities that 
are part of the assets. Also, more research on the specification and semantics 
of required interfaces is needed. One example of an existing model is 
described in [Batory & O'Malley 92]. A second example is the layered 
object model where an "acquaintance-based" approach is presented that 
allows for specifying required interfaces and binding these interfaces to 
other components [Bosch 98b] . 

7. RELATED WORK 

Tools, techniques, and approaches to the development of families of 
software products have been proposed by a number of authors. LIL [Goguen 
86] is an example of a module interconnection language (MIL) that describes 
component (or module) based systems. In [Neighbors 89], the Draco 
approach is discussed that, although not using the same terminology, 
identifies the basic structures of software development based on reuse of 
domain designs and implementations. [Perry 89] discussed the Inscape 
environment, focusing on software evolution and problems of scale (i.e., 
complexity, programming-in-the-large, and programming-in-the-many) . 
[Goguen 96] discusses parameterized programming to instantiate generic 
descriptions with domain-specific components. [Batory & O'Malley 92, 
Batory & Geraci 97] discuss a hierarchical component-based model that 
facilitates the development of families of systems. [Biggerstaff 94] discusses 
a basic problem in component-based software development, i.e., scaling, and 
identifies some of the problems discussed in this paper. 



Evolution and Composition of Assets in Product-Line Architectures 337 

With respect to product-line architectures, a number of authors have 
studied their industrial use. [Macala et al. 96] discuss a demonstration 
project using product-line development in Boeing in cooperation with the 
US Navy as part of the STARS initiative. The authors identify four elements 
of product-line development, i.e., process-driven, domain-specific, 
technology support, and architecture-centric. The lessons learned during the 
projeci: are discussed and a set of recommendations is presented. [Dike! et al. 
97] discuss lessons learned from using a product-line architecture in Norte! 
and present six principles: focusing on simplification, adapting to future 
needs, establishing architectural rhythm, partnering with stakeholders, 
maintaining vision, and managing risks and opportunities. The report from 
the product-line practice workshop held by the SEI [SEI 97] presents an 
overview of the state-of-practice in a number of large software development 
organisations. Contextual, technology, organizational and business aspects 
are discussed and a number of critical factors are identified, including deep 
domain expertise, well-defined architecture, distinct architect, solid business 
case, management commitment and support and domain engineering unit. 

An interesting difference between the papers mentioned above and the 
results of our study is the perceived necessity of separate domain 
engineering units. The organisations of our case study explicitly decided 
against separate domain engineering units. Also [Simos 97] reacts against 
using domain engineering units and suggests a unified lifecycle model. 

[Jacobson et a!. 97] presents a complete approach to institutionalizing 
software reuse in an organisational context, including technology, process, 
and business aspects. The book is based primarily on experiences from the 
HP and Ericsson context and contains excellent suggestions also applicable 
to the interviewed companies. 

The Taligent frameworks [Taligent 95] provide various interfaces to each 
framework, including a client API and a custornization API. However, no 
approaches to language support for high-level encapsulation boundaries are 
presented. [Szyperski 97] presents an overview of component-oriented 
programming and discusses the necessity of "required interfaces" in addition 
to the "provided interfaces". He recognises the necessity of required 
interfaces, but concludes that current commercial component models focus 
on provided interfaces only. 

8. CONCLUSIONS 

The notion of product-line architectures has received attention especially 
in industry since it provides a means to exploit the commonalities between 
related products and thereby reduce development cost and increase quality. 



338 Jan Bosch 

In this paper, we have presented a case study involving two Swedish 
companies, Axis Communications AB and Securitas Larm AB, that use 
product-line architectures in their product development. Key persons in these 
organisations have been interviewed and information has been collected 
from documents and other sources. The goal of the case study was to 
examine the use, evolution, composition and reuse of assets in a product-line 
architecture. 

In the previous sections, a number of problems and underlying causes are 
described that were identified in the case study organisations and generalised 
to a wider context. We have identified three categories of problems related to 
reusable assets: 
1. the existence of multiple versions of assets 
2. dependencies between assets 
3. the use of assets in new contexts 

In the analysis we focus on the causes that we believe underlie the 
identified problems. The identified causes include 
- the early intertwining of functionality 
- the organizational structure 

the time-to-market pressure 
the lack of economic models 

- the lack of explicit encapsulation boundaries and required interfaces. 
In conclusion, product-line architectures can be, and are being, 

successfully applied in small- and medium-sized enterprises. The studied 
organisations are struggling with a number of difficult problems and 
challenging issues, but the general consensus is that a product-line 
architecture approach is beneficial, if not crucial, for the continued success 
of these organisations. 

ACKNOWLEDGEMENTS 

The author would like to thank the software architects and engineers and 
technical managers at Axis Communications AB and Securitas Larm AB, in 
particular Torbjom Soderberg and Rutger Palsson. Thanks also to the 
anonymous reviewers for their comments. 

REFERENCES 

[Batory & Geraci 97) D. Batory and B.J. Geraci, 'Validating Component Compositions and 
Subjectivity in GenVoca Generators', IEEE Transactions on Software Engineering, 
February 1997, 67-82. 



Evolution and Composition of Assets in Product-Line Architectures 339 

[Batory & O'Malley 92) D. Batory and S. O'Malley, 'The Design and Implementation of 
Hierarchical Software Systems with Reusable Components ' , ACM Transactions on 
Software Engineering and Methodology, October 1992. 

[Biggerstaff 94) T. Biggerstaff, 'The Library Scaling Problem and the Limits of Concrete 
Component Reuse', Third International Conference on Software Reuse, Rio de Janeiro, 
November 1-4, 1994, 102-110. 

[Bosch 98a] J. Bosch, 'Design Patterns as Language Constructs,' Journal of Object-Oriented 
Programming, Vol. 11, No.2, pp. 18-32, May 1998. 

[Bosch 98b] J. Bosch, 'Object Acquaintance Selection and Binding,' accepted for publication 
in Theory and Practice of Object Systems, February 1998. 

[Bosch 98c] J. Bosch, 'Product-Line Architectures in Industry: A Case Study,' submiued, 
June 1998. 

[Buschmann et al. 96] F. Buschmann, C. Jakel , R. Meunier, H. Rohnert, M.Stahl, Pattern­
Oriented Software Architecture -A System of Patterns, John Wiley & Sons, 1996. 

[Dike! et al. 97] D. Dike!, D. Kane, S. Ornburn, W. Loftus, J. Wilson, 'Applying Software 
Product-Line Architecture,' IEEE Computer, pp. 49-55, August 1997. 

[Gamma et al. 94] E. Gamma, R. Helm, R. Johnson, J.O. Vlissides, Design Pal/ems­
Elements of Reusable Object-Oriented Software , Addison-Wesley, 1994. 

[Goguen 86] J. Goguen, 'Reusing and Interconnecting Software Components', IEEE 
Computer, February 1986. 

[Goguen 96] J. Goguen, 'Parameterized Programming and Software Architecture', 4th 
International Conference on Software Reuse, Orlando, Florida, April 1996. 

[Jacobson et al. 97]1. Jacobson, M. Griss, P. Jonsson, Software Reuse -Architecture, Process 
and Organization for Business Success, Addison-Wesley, 1997. 

[Johnson & Foote 88] R. Johnson, B. Foote, 'Designing Reusable Classes,' Journal of Object­
Oriented Programming, Vol. 1 (2), pp. 22-25, 1988. 

[Kiczales et al. 97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. 
Loingtier, J. Irwin, 'Aspect-Oriented Programming,' Proceedings of ECOOP'97 (invited 
paper), pp. 220-242, LNCS 1241, 1997. 

[Kruchten 95] P.B. Kruchten, 'The 4+ 1 View Model of Architecture,' IEEE Software, pp. 42-
50, November 1995. 

[Macala et al. 96] R.R. Macala, L.D. Stuckey, D.C. Gross, 'Managing Domain-Specific 
Product-Line Development,' IEEE Software, pp. 57-67, 1996. 

[Neighbors 89] J. Neighbors, 'Draco: A Method for Engineering Reusable Software 
Components' , in T.J. Biggerstaff and A. Perlis, eds., Software Reusability, Addison­
Wesley/ACM Press, 1989. 

[Perry 89] D. Perry, 'The Inscape Environment' , Proceedings ICSE 1989, 2-12. 
[SEI 97] L. Bass, P. Clements, S. Cohen, L. Northrop, J. Withey, 'Product Line Practice 

Workshop Report,' Technical Report CMU/SEI-97-TR-003, Software Engineering 
Institute, June 1997. 

[Simos 97] M.A. Simos, 'Lateral Domains: Beyond Product-Line Thinking,' Proceedings 
Workshop on Institutionalizing Software Reuse (WISR-8), 1997. 

[Szyperski 97] C. Szypersk.i, Component Software- Beyond Object-Oriented Programming, 
Addison-Wesley, 1997. 

[Tali gent 95] Taligent, The Power of Frameworks, Addison-Wesley, 1995. 


	Evolution and Composition of Reusable Assets inProduct-Line Architectures: A Case Study
	1. INTRODUCTION
	2. CASE STUDY METHOD
	3. CASE STUDY ORGANISATIONS
	3.1 Case 1: Axis Communications AB
	3.2 Case 2: Securitas Larm AB

	4. PRODUCT-LINE ARCHITECTURES ANDREUSABLE ASSETS
	5. PROBLEMS
	5.1 Multiple versions of assets
	5.2 Dependencies between assets
	5.3 Assets in new contexts

	6. CAUSE ANALYSIS
	6.1 Early intertwining of functionality
	6.2 Organization
	6.3 Time to market
	6.4 Economic models
	6.5 Encapsulation boundaries and required interfaces

	7. RELATED WORK
	8. CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES




