
Architecture Design Recovery of a Family of
Embedded Software Systems
An Experience Report

Lars Bratthall and Per Runeson
Dept. of Communication Systems, Lund University, Sweden.
P.O. Box 118, S-221 00 Lund, Sweden.
Phone: +46-462229668., Fax +46-46145823. Email {lars.bratthalllper.runeson}@tts.lth.se.

Key words: Architectural design recovery, experience report, qualitative evaluation

Abstract: Understandability of the current system is a key issue in most reengineering
processes. An architecture description of the system may increase its
understandability. This paper presents experiences from architectural design
recovery in a product family of large distributed, embedded systems.
Automated recovery tools were hard to apply due to the nature of the source
code. A qualitative evaluation procedure was applied on the performance of
the recovery process. The results suggest that producing the necessary
architectural documentation during the recovery project costs eight to twelve
times as much as producing the same set of documentation during the original
development project. By applying a common architectural style for all
members of the product family , the component reuse made possible decreased
source code volume by 65%.

1. INTRODUCTION

A part of any reengineering project is to create an understanding of the
architecture of the current system. This understanding can help determine
which pieces are reusable, and to what extent. Also, the current architecture
can pose requirements on later developed systems (Abowd et a!., 1997).
Documentation of the software architecture may also decrease the large
proportion of time maintainers spent on developing an understanding of the
entity to modify (Holtzblatt et al., 1997). In this paper we present
experiences from a project where architectural level design recovery was

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35563-4 35

P. Donohoe (ed.), Software Architecture
© IFIP International Federation for Information Processing 1999

http://dx.doi.org/10.1007/978-0-387-35563-4_35

4 Lars Bratthall and Per Runeson

performed on a product family of five distributed, embedded, software
systems.

Design recovery is a phase in reverse engineering where source code and
external knowledge are used to create abstractions beyond those obtained
directly by examining the system itself (Chikofsky and Cross II, 1990).
Biggerstaff (1989) argues that "Design recovery must reproduce all of the
information required for a person to fully understand what a program does,
how it does it, why it does it, and so forth." In the project studied, the
available source models (Murphy and Notkin, 1995) were the source code
for a product family and a few pages of documentation. The access to orig­
inal system experts was very limited. It was not known what quality
attributes the architecture of the software possessed, except that it executed
well. It was not known whether the members of the product family shared
any common software architecture. The hardware was however well
described and identical for all members of the product family. The source
code was spread over 90 to 150 files for each member of the product family.

An incremental approach to recovering information from the source code
was adopted. To simplify future maintenance the architectural style "Layers"
(Shaw and Garlan, 1996) was imposed, due to its known quality properties
(maintainability aspects). Imposing an architecture was believed to be
feasible as a recovered architecture can be considered an interpretation of a
less abstract entity. Different tools for architectural design recovery were
investigated, but due to performance constraints only tools that operated on
static code could be used. Automated analysis has been discussed by several
authors e.g., Chase et a!. (1998), Harris et al. (1996) and Holtzblatt et a!.
(1997). Due to certain constructs frequently used in the source code
examined, the value of these methods was considered limited.

The software architecture was recovered largely by hand using simple
tools like grep and emacs. SDL (ITU-T, 1996a) was used as architecture
description language. Once the architecture of one member of the product
family had been recovered, this . architecture was reused when attempting
architectural recovery on other members of the product family. With some
restructuring and minimal reengineering (Chikofsky and Cross II, 1990),
both component reuse and architecture reuse (Karlsson, 1995) were used,
resulting in a common architecture for all members of the product family as
well as a reduction of the total code volume by 65%.

2. CONTEXT

The studied system was contracted to Ericsson Microwave Systems AB
who develops complex systems. One of their product areas is

Architecture Design Recovery of Embedded Software Systems 5

telecommunications. The studied project aimed at designing a family of
switches. The switches shared the same set of hardware components, except
for different special-purpose printed circuits. One family of subsystems
within the switches was studied.

For various reasons the software was not documented according to
existing quality standards; the only existing source models available to
maintainers were 300 000 lines of C source code, some assembler, and a
few pages of documentation, the latter giving little clue regarding the
architecture. This rendered any kind of maintenance difficult, as long time
had to be allocated just to understand code. Future architectural erosion
(Perry and Wolf, 1992) was feared, as there was no known rationale for the
architectural design decisions taken.

In order to solve these problems, an architectural design recovery project
was launched.

3. OVERVIEW OF THE ARCHITECTURAL
DESIGN RECOVERY PROJECT

Biggerstaff (1989) describes a general design recovery process with
maintenance and the population of a reuse library as objectives. In this
paper, the focus is on practical experiences gained in applying this process.

Biggerstaff's process has three steps:
1. Supporting program understanding,
2. Supporting population of reuse and recovery libraries, and
3. Applying the outcomes of design recovery for refining the recovery.

These steps are applied iteratively.

3.1 Step 1 - Program understanding for maintenance

An architecture recovery team needs some initial knowledge. It includes:
- Details of the available source models
- Available design recovery tools
- Knowledge of what code to allocate to different components.

These issues were addressed initially.

3.1.1 Details of the available source models

Examining the make files showed that some of the files were never used.
Examining the filenames showed similarity in the filenames between
different members of the product family, and usually the contents of files
with the same filename were similar to some extent. Closer examination

6 Lars Bratthall and Per Runeson

indicated that what had originated as identical files had eroded to slightly
different files. The analysis also showed that identical C functions
sometimes were allocated to different files, without any obvious rationale.

3.1.2 Investigation of design recovery tools

A number of tools believed to be beneficial in design recovery were
investigated. Results indicated that a semi-manual approach was needed.

Making a call graph did not help very much, since the subsystems were
based on concurrent software processes, communicating mainly using the
real-time operating system built-in signals. The call graph showed intra­
process communication fairly well, but inter-process communication was not
described well.

Identification of a signal being sent could be automated; simple grep
commands can look for operating system keywords used to create and send
signals. Identification of the receiving software process for signals was
difficult; we could not rely on pure lexical analysis, since the receiver of a
signal usually was determined at run time. Dynamic analysis by executing
the system on the target-system could possibly have provided input to event
trace analysis (Jerding and Rugaber, 1997), but we were unable to
automatically create event traces due to certain constructs frequently used:
- Other mechanisms than signals were sometimes used, especially direct

read/write to memory. This communication could not be traced without
impeding the function of the system due to performance violations.

- Communication to other subsystems was handled using signals wrapped
into special-purpose packets. The operating system debugger could not
symbolically show the contents of these packets.
Further tool support was not investigated. Dynamic analysis conflicted

with performance requirements, while automatic static recovery tools would
have trouble handling the distributed nature, the special-purpose packets, the
usage of direct memory read/ write, and the dynamic determination of
receiving software processes. Thus, we in many cases had to identify the
receiver of signals by manually walking through scenarios (well defined
dynamic sequences).

3.1.3 Code to allocate to components

Some source files belonged to only one software process, while some
files needed restructuring as parts of the code in one file belonged to more
than one software process. There were also two COTS (Commercial Off­
The-Shelf) products involved (the operating system and a TCPIIP stack),
each spread across a set of files.

Architecture Design Recovery of Embedded Software Systems 7

The design artefacts to recover were a static architectural description,
interwork descriptions, and different dynamic models.

3.2 Step 2 - Populating reuse and recovery libraries

Based on the input from step 1, a set of hypotheses was decided on.
- Manual work during step 2 and step 3 would be necessary, since a

recovered software architecture is an interpretation, not entirely visible in
code (Holtzblatt et al., 1997).

- Software processes would be the initial abstraction level of the software
components. Thus we used a variant of Harris et al.' s (1996) approach,
that equated components with software processes. After looking at code,
it was found that trying to divide software processes into smaller
components, e.g., concurrent state machines, would be difficult as we
could not distinguish the individual state machines in the software
processes. Therefore we choose software processes as the initial
abstraction level.

- Component connectors were to be represented by inter-process
signalling. The contents of inter-subsystem communication packets were
to be tracked rather than the special-purpose packet itself. Function calls
inside a software process would not be described, since we estimated that
recovering this information would be too much work related to the use a
maintainer would have.

- Describing the architecture of a member of the product family by
showing all software processes and their data/control connectors would
show too much detail in some situations. Aggregated as well as non­
aggregated components should be provided. The smallest component
would consist of code related to a single software process.

- Simple tools like grep and emacs would be the main tools for analysis.
SDL would be used to represent the static architecture description.
Message Sequence Charts (ITU-T, 1996b) would be used to represent the
control and data flow between components.

- For project reasons, an incremental approach allowing the premature
termination and later continuation of the architectural recovery was
needed.

This led to the workflow described in table 1. On the horizontal axis,
activities performed are shown. On the vertical axis, levels of increased
value of the recovered artefacts are shown. Components are created at
increasing abstraction levels, named C2 and C3. Level Cn components are
aggregated from level C0 • 1 components.

8

Table 1. Goals versus performed activities

Baseline A
established
Source code
allocated to level
cl components
COTS
components
handled
Level c2
components
defined
Level c3
components
defined
Architecture
graphically
described

B c

D

Lars Bratthall and Per Runeson

"' 5
=
E =
0 " () §
- c.. u E

- 0
()

" "' -u
i;-- " "' >
:::> " oc;
ui .s

E F G

H

3.2.1 Creation of first order components (level C1) - activities A-D

All source files belonging to a software process were assigned to one C1

component. All assembler files were allocated to one C1 component. Each
set of COTS files was allocated to one C1 component each.

Some files could not be associated with a single software process despite
restructuring. These functions were assigned to a library component. The
types of level C1 components created were Single Software Process
components, Library components, Assembler components and COTS
components.

Level C1 components were fairly easy to identify; simple tools allowed
partly automated analysis. As the source code was not very interleaved
(Rugaber et al. , 1995) only little restructuring was needed.

Architecture Design Recovery of Embedded Software Systems 9

3.2.2 Creation of second order components (level C2) - activities E-G

In order to raise the component abstraction level from each component
containing only one software process, to components containing several such
components an iterative approach was used. A graphical representation of
inter-C1 control and data communication was drawn using SDL. The inter­
process communication constructs prior identified in the source were
represented by SDL signals or SDL remote procedure calls. By analysing the
communication routes, the type and amount of communication, level C2

components were decided on. If a set of level C1 components solved one
easily delimited task, they were to be clustered into a level C2 component.

Identifying level C2 components was more difficult than identifying level
C1 components. Exact rules for clustering could never be devised, since
some level C1 components participated in solving more than one task.

3.2.3 Creation of third order components (level C3) - activities H-J

The source code indicated that there were similarities between the
members of the product family. We attempted to impose a layered
architectural style (Shaw and Garlan, 1996), by clarifying service
provider/requester relationships between components. Some restructuring of
the original C2 components was required.

Grouping of level C2 components into C3 layer components was done by
looking at 'distance from hardware' . All hardware-close level C2

components were assigned to a level C3 layer component 'Hardware
Abstraction Layer'. Other level C3 layer components, with decreasing
knowledge of hardware specifics, were 'Subsystem Controller', 'Main
Controller' and 'Supervision and Test'.

There were several reasons for attempting the layered architectural style:
- The layered architectural style is well known for its good maintainability

properties.
- By dividing hardware-close functionality from control, we expected

greater chances of component reuse in other members of the product
family .
We expected to be able to decrease the difference between different

members of the product family by using a common architectural style for all
of them.

This multiple-level component architecture was represented in SDL. SDL
was chosen, as it allows the direct representation of architectural features
(Harris et a!. , 1996) such as software processes, components consisting of
one or more processes, aggregated components, components without any
software process, inter-process signalling and remote procedure calls. Thus,

10 Lars Bratthall and Per Runeson

many issues related to the representation problem (Rugaber and Clayton
1993) were avoided. However, there was some semantic distance between C
and SDL that had to be mapped: Direct memory reads/writes, interrupts, and
the special-purpose packet used to convey signals between different
subsystems. These constructs were mapped to SDL signals and SDL remote
procedure calls. We used naming conventions to distinguish these constructs
from the direct mapping between C source signals and these other
communication constructs.

3.3 Step 3 - Applying the outcomes of the design
recovery

The above steps were applied for one member of the product family . In
doing design recovery for the other members of the product family, the
already defined components and the architectural style were reused. By
restructuring components by merging files if possible, the number of new
components was held down.

Design recovery for the other products in the family was much quicker
than for the first member. A large part of the improvement came from
having to document few new components. Also, knowing the expected
architectural style, less work had to be done in choosing how to restructure
the software to fit the architecture.

The degree of reusability of components was proportional to the distance
from hardware. The closer to hardware, the more easily could components
be reused. By having several component abstraction levels (C3, C2, C1), we
could reuse parts or whole of components:
- Most level C1 hardware-close components could be reused at least once.
- Some members of the product family could share level C2 components.
- Some members of the product family could share level C3 components.

A few new level C3 components had to be created, usually by replacing
only a few level C1 components inside a level C3 component.
The layered architectural style could be reused for all members of the

product family.

4. RESULTS AND EXPERIENCES GAINED

The project resulted in a common architectural style for all members of
the product family . This enabled component reuse, that decreased the total
code volume (lines of source code) by 65%. The volume of architectural
descriptions and component descriptions were reduced by approximately
30%, relatively what would have been needed if no reuse had been applied.

Architecture Design Recovery of Embedded Software Systems 11

A number of faults were discovered in the process of comparing components
from different members of the product family.

The set of hypothesis described in section 3.2 remained unmodified
through-out the project. However, they would probably have changed if the
first step in Biggerstaffs process had not been. This first step helped in
deciding on the set of work hypotheses.

It is a daunting task to do architectural recovery when tools can provide
only limited aid. Subjective estimation indicates that the effort of our
recovery/reuse project amounted to eight to twelve times the effort to
accomplish the same results (architectural description, common architectural
style, component-based architecture) during the original development
project. The estimation is based on accurate figures for the
recovery/restructure project and subjective estimations regarding how to
handle the problem during original development. Future maintenance is
expected to be much simpler and faster than would be possible without the
architectural descriptions and component design. Without the design
recovery project any maintenance would be extremely difficult.

Experiences have been collected by conducting interviews with the
designers involved in the architecture recovery project, as well as future
maintainers and some involved managers. Experiences reported are related
to tools, people and the recovery process used.

4.1 Tool support

Tools have been used for recovery as well as representation of the
recovered architecture. During recovery, UNIX grep and the colour marking
functions of emacs were helpful, especially combined into small scripts.
Grep allowed the searching of common features across several members of
the product family . Emacs helped in performing manual slicing, as well as it
helped in comparing several versions of files automatically.

SDL has shown to be suitable for describing the component architecture
down to the software process level. It was possible to unambiguously
describe the constructs believed usable for our purposes. Some semantic
distance demanded mapping rules between C and SDL. We believe SDL to
be a possible architecture description language for systems, where
components are mainly based on software processes and connectors are
mainly inter-process communication.

A future challenge to solve is that there is no automatic correspondence
between the source code and the architectural abstractions. For example,
lack of intense communication between two components is not necessarily a
sign of that the two components should not be aggregated into a larger

12 Lars Bratthall and Per Runeson

component. In the system studied, this was apparent when we decided to
group hardware-close components into an aggregated component.

4.2 People

Experiences related to people concern previous knowledge and other
intellectual instruments for design recovery. As the rationale for architectural
decisions is not seen in C, having even limited access to original designers
have been extremely beneficial. They have been able to provide information
that has not been available in other source models.

Having knowledge of architectural styles helped in choosing to use a
layered architecture, as well as trying to establish the service
provider/requester divisions, which is a client/server architectural style
(Shaw and Garlan, 1996). It is believed that any recovery team can benefit
from having access to original design knowledge, domain architecture
knowledge and knowledge of architectural styles. Manual design recovery is
error prone. This emphasises the need for automated design recovery, or
better yet, do it right during the original development.

4.3 The recovery process

Dynamic analysis was difficult due to performance issues. For the
purpose of maintenance, dynamic models are considered necessary. Better
original descriptions would have been preferred, or, an elaborate debugging
component should have been available. For example, being able to run the
software on the target platform with relaxed timing requirements would have
aided in analysing the software dynamically.

The interleaving problem was rarely encountered, as we never split
software processes into more than one component. Content coupling, in
terms of several processes sharing a library of functions, was handled by
either restructuring those files (by splitting them and allocating them to
separate components) or allocating the library functions to a separate library
component. By dividing the recovery process into discrete steps,
management gained visibility into the project and could decide on project
alterations and resource allocation. The incremental approach was thus
perceived as beneficial.

5. CONCLUSIONS AND THE FUTURE

From the studied architecture recovery project, we conclude that the
design recovery process described by Biggerstaff (1989) works, but

Architecture Design Recovery of Embedded Software Systems 13

undertaking a design recovery project with limited access to system experts
and other source models than the source code, is a daunting task. Especially,
understanding hardware-close software is difficult, as it requires detailed
hardware understanding. Knowledge of architectural styles and their
properties help in choosing a suitable architecture to represent the code, as
one knows what quality attributes a particular architecture possesses. An
incremental approach to recovering the software architecture is beneficial
since it increases visibility into the recovery process.

The recovery project would have benefited from a larger set of well­
defined component connectors. Full semantics for the mapping between
source code and an architecture description language would allow the
automatic creation and simultaneous maintenance of code and architectural
views.

Tool support for architectural recovery is important. In industrial projects
like this, where the product is supposed to have a life-span of at least 15
years, any description of the architecture should be represented using
commercially available tools. We agree with researchers, e.g., Kazman and
Carriere (1998), claiming that several methods are necessary in a design
recovery project, thus concluding that a workbench with open interfaces is a
suitable architecture for design recovery tools.

ACKNOWLEDGEMENTS

This work was partly funded by The Swedish National Board for
Industrial and Technical Development (NUTEK), grant lKlP-97-09690.
The project was conducted while employed at the Q-Labs Group. Employees
at Ericsson Microwave Systems AB and members of the Software
Engineering Research Group at the Department of Communication Systems,
Lund University, have provided insightful input.

REFERENCES

Abowd, G. , Goel, A. , Jerding, D.F., McCracken, M., Moore, M., Murdock, J.W., Potts, C.,
Rugaber, S., Wills, L. (1997) MORALE. Mission ORiented Architectural Legacy
Evolution, in Proceedings International Conference on Software Maintenance, IEEE
Computer Society, Los Alamitos, USA, 150-9.

Biggerstaff, T.J. (1989) Design Recovery for Maintenance and Reuse. IEEE Computer, 22(7),
36-49.

Chase, M.P., Christey, S.M., Harris, D.R., Yeh, A. S. (1998) Recovering Software
Architecture from Multiple Source Code Analyses, in Proceedings of the ACM S/GPI.AN
Workshop on Program Analysis for Software Tools and Engineering.

14 Lars Bratthall and Per Runeson

Chikofsky, E.J., Cross II, J.H. (1990) Reverse Engineering and Design Recovery: A
Taxonomy. IEEE Software, 7(1), 13-7.

Harris, D.R., Yeh, A.S., Reubenstein, H.B. (1996) Extracting Architectural Features from
Source Code. Auto11Ulted Software Engineering, 3(112), 109-38.

Holtzblatt , L.J., Piazza, R.L., Reubenstein, H.B., Roberts, S.N., Harris, D.R. (1997) Design
Recovery for Distributed Systems. IEEE Transactions on Software Engineering, 23(7),
461-72.

ITU-T (1996a) Recommendation Z.JOO. Specification and Description Language, SDL,
International Telecommunication Union.

ITU-T (1996b) Recommendation Z.120. Message Sequence Charts, International Tele­
communication Union.

Jerding, D., Rugaber, S. (1997) Using Visualization for Architectural Localization and
Extraction, in Proceedings of the Fourth Working Conference on Reverse Engineering,
IEEE Computer Society, Los Alamitos, USA, 56-65.

Karlsson, E.A. (1995) Software Reuse- A Holistic Approach. John Wiley, Chichester, Great
Britain.

Kazman, R. , Carriere, S.J. (1998) View Extraction and View Fusion in Architectural
Understanding, in Proceedings of the Fifth International Conference on Software Reuse,
IEEE Computer Society, Los Alamitos, USA, 290-9.

Murphy, G.C., Notkin, D. (1995) Lightweight Source Model Extraction. SIGSOFT Software
Engineering Notes, 20(4), 116-27.

Perry, D.E., Wolf, A.L. (1992) Foundations for the Study of Software Architecture. ACM
S!GSOFT Software Engineering Notes, 17(4), 40-52.

Rugaber, S., Clayton, R. (1993) The Representation Problem in Reverse Engineering, in
Proceedings of Working Conference on Reverse Engineering, IEEE Computer Society,
Los Alamitos, USA, 8-16.

Rugaber, S. , Stirewalt, K., Wills, L.M. (1995) The Interleaving Problem in Program
Understanding, in Proceedings of the Second Working Conference on Reverse
Engineering, IEEE Computer Society, Los Alamitos, USA, 166-75.

Shaw, M. and Garlan, D. (1996) Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, Upper Saddle River, New Jersey, USA.

	Architecture Design Recovery of a Family ofEmbedded Software Systems
	1. INTRODUCTION
	2. CONTEXT
	3. OVERVIEW OF THE ARCHITECTURALDESIGN RECOVERY PROJECT
	3.1 Step 1 - Program understanding for maintenance
	3.2 Step 2 - Populating reuse and recovery libraries
	3.3 Step 3 - Applying the outcomes of the designrecovery

	4. RESULTS AND EXPERIENCES GAINED
	4.1 Tool support
	4.2 People
	4.3 The recovery process

	5. CONCLUSIONS AND THE FUTURE
	ACKNOWLEDGEMENTS
	REFERENCES

