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Abstract: Understandability of the current system is a key issue in most reengineering 
processes. An architecture description of the system may increase its 
understandability. This paper presents experiences from architectural design 
recovery in a product family of large distributed, embedded systems. 
Automated recovery tools were hard to apply due to the nature of the source 
code. A qualitative evaluation procedure was applied on the performance of 
the recovery process. The results suggest that producing the necessary 
architectural documentation during the recovery project costs eight to twelve 
times as much as producing the same set of documentation during the original 
development project. By applying a common architectural style for all 
members of the product family , the component reuse made possible decreased 
source code volume by 65%. 

1. INTRODUCTION 

A part of any reengineering project is to create an understanding of the 
architecture of the current system. This understanding can help determine 
which pieces are reusable, and to what extent. Also, the current architecture 
can pose requirements on later developed systems (Abowd et a!., 1997). 
Documentation of the software architecture may also decrease the large 
proportion of time maintainers spent on developing an understanding of the 
entity to modify (Holtzblatt et al., 1997). In this paper we present 
experiences from a project where architectural level design recovery was 
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performed on a product family of five distributed, embedded, software 
systems. 

Design recovery is a phase in reverse engineering where source code and 
external knowledge are used to create abstractions beyond those obtained 
directly by examining the system itself (Chikofsky and Cross II, 1990). 
Biggerstaff (1989) argues that "Design recovery must reproduce all of the 
information required for a person to fully understand what a program does, 
how it does it, why it does it, and so forth." In the project studied, the 
available source models (Murphy and Notkin, 1995) were the source code 
for a product family and a few pages of documentation. The access to orig­
inal system experts was very limited. It was not known what quality 
attributes the architecture of the software possessed, except that it executed 
well. It was not known whether the members of the product family shared 
any common software architecture. The hardware was however well 
described and identical for all members of the product family. The source 
code was spread over 90 to 150 files for each member of the product family. 

An incremental approach to recovering information from the source code 
was adopted. To simplify future maintenance the architectural style "Layers" 
(Shaw and Garlan, 1996) was imposed, due to its known quality properties 
(maintainability aspects). Imposing an architecture was believed to be 
feasible as a recovered architecture can be considered an interpretation of a 
less abstract entity. Different tools for architectural design recovery were 
investigated, but due to performance constraints only tools that operated on 
static code could be used. Automated analysis has been discussed by several 
authors e.g., Chase et a!. ( 1998), Harris et al. (1996) and Holtzblatt et a!. 
(1997). Due to certain constructs frequently used in the source code 
examined, the value of these methods was considered limited. 

The software architecture was recovered largely by hand using simple 
tools like grep and emacs. SDL (ITU-T, 1996a) was used as architecture 
description language. Once the architecture of one member of the product 
family had been recovered, this . architecture was reused when attempting 
architectural recovery on other members of the product family. With some 
restructuring and minimal reengineering (Chikofsky and Cross II, 1990), 
both component reuse and architecture reuse (Karlsson, 1995) were used, 
resulting in a common architecture for all members of the product family as 
well as a reduction of the total code volume by 65%. 

2. CONTEXT 

The studied system was contracted to Ericsson Microwave Systems AB 
who develops complex systems. One of their product areas is 



Architecture Design Recovery of Embedded Software Systems 5 

telecommunications. The studied project aimed at designing a family of 
switches. The switches shared the same set of hardware components, except 
for different special-purpose printed circuits. One family of subsystems 
within the switches was studied. 

For various reasons the software was not documented according to 
existing quality standards; the only existing source models available to 
maintainers were 300 000 lines of C source code, some assembler, and a 
few pages of documentation, the latter giving little clue regarding the 
architecture. This rendered any kind of maintenance difficult, as long time 
had to be allocated just to understand code. Future architectural erosion 
(Perry and Wolf, 1992) was feared, as there was no known rationale for the 
architectural design decisions taken. 

In order to solve these problems, an architectural design recovery project 
was launched. 

3. OVERVIEW OF THE ARCHITECTURAL 
DESIGN RECOVERY PROJECT 

Biggerstaff (1989) describes a general design recovery process with 
maintenance and the population of a reuse library as objectives. In this 
paper, the focus is on practical experiences gained in applying this process. 

Biggerstaff's process has three steps: 
1. Supporting program understanding, 
2. Supporting population of reuse and recovery libraries, and 
3. Applying the outcomes of design recovery for refining the recovery. 

These steps are applied iteratively. 

3.1 Step 1 - Program understanding for maintenance 

An architecture recovery team needs some initial knowledge. It includes: 
- Details of the available source models 
- Available design recovery tools 
- Knowledge of what code to allocate to different components. 

These issues were addressed initially. 

3.1.1 Details of the available source models 

Examining the make files showed that some of the files were never used. 
Examining the filenames showed similarity in the filenames between 
different members of the product family, and usually the contents of files 
with the same filename were similar to some extent. Closer examination 
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indicated that what had originated as identical files had eroded to slightly 
different files. The analysis also showed that identical C functions 
sometimes were allocated to different files, without any obvious rationale. 

3.1.2 Investigation of design recovery tools 

A number of tools believed to be beneficial in design recovery were 
investigated. Results indicated that a semi-manual approach was needed. 

Making a call graph did not help very much, since the subsystems were 
based on concurrent software processes, communicating mainly using the 
real-time operating system built-in signals. The call graph showed intra­
process communication fairly well, but inter-process communication was not 
described well. 

Identification of a signal being sent could be automated; simple grep 
commands can look for operating system keywords used to create and send 
signals. Identification of the receiving software process for signals was 
difficult; we could not rely on pure lexical analysis, since the receiver of a 
signal usually was determined at run time. Dynamic analysis by executing 
the system on the target-system could possibly have provided input to event 
trace analysis (Jerding and Rugaber, 1997), but we were unable to 
automatically create event traces due to certain constructs frequently used: 
- Other mechanisms than signals were sometimes used, especially direct 

read/write to memory. This communication could not be traced without 
impeding the function of the system due to performance violations. 

- Communication to other subsystems was handled using signals wrapped 
into special-purpose packets. The operating system debugger could not 
symbolically show the contents of these packets. 
Further tool support was not investigated. Dynamic analysis conflicted 

with performance requirements, while automatic static recovery tools would 
have trouble handling the distributed nature, the special-purpose packets, the 
usage of direct memory read/ write, and the dynamic determination of 
receiving software processes. Thus, we in many cases had to identify the 
receiver of signals by manually walking through scenarios (well defined 
dynamic sequences). 

3.1.3 Code to allocate to components 

Some source files belonged to only one software process, while some 
files needed restructuring as parts of the code in one file belonged to more 
than one software process. There were also two COTS (Commercial Off­
The-Shelf) products involved (the operating system and a TCPIIP stack), 
each spread across a set of files. 
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The design artefacts to recover were a static architectural description, 
interwork descriptions, and different dynamic models. 

3.2 Step 2 - Populating reuse and recovery libraries 

Based on the input from step 1, a set of hypotheses was decided on. 
- Manual work during step 2 and step 3 would be necessary, since a 

recovered software architecture is an interpretation, not entirely visible in 
code (Holtzblatt et al., 1997). 

- Software processes would be the initial abstraction level of the software 
components. Thus we used a variant of Harris et al.' s ( 1996) approach, 
that equated components with software processes. After looking at code, 
it was found that trying to divide software processes into smaller 
components, e.g., concurrent state machines, would be difficult as we 
could not distinguish the individual state machines in the software 
processes. Therefore we choose software processes as the initial 
abstraction level. 

- Component connectors were to be represented by inter-process 
signalling. The contents of inter-subsystem communication packets were 
to be tracked rather than the special-purpose packet itself. Function calls 
inside a software process would not be described, since we estimated that 
recovering this information would be too much work related to the use a 
maintainer would have. 

- Describing the architecture of a member of the product family by 
showing all software processes and their data/control connectors would 
show too much detail in some situations. Aggregated as well as non­
aggregated components should be provided. The smallest component 
would consist of code related to a single software process. 

- Simple tools like grep and emacs would be the main tools for analysis. 
SDL would be used to represent the static architecture description. 
Message Sequence Charts (ITU-T, 1996b) would be used to represent the 
control and data flow between components. 

- For project reasons, an incremental approach allowing the premature 
termination and later continuation of the architectural recovery was 
needed. 

This led to the workflow described in table 1. On the horizontal axis, 
activities performed are shown. On the vertical axis, levels of increased 
value of the recovered artefacts are shown. Components are created at 
increasing abstraction levels, named C2 and C3. Level Cn components are 
aggregated from level C0 • 1 components. 
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Table 1. Goals versus performed activities 
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3.2.1 Creation of first order components (level C1) - activities A-D 

All source files belonging to a software process were assigned to one C1 

component. All assembler files were allocated to one C1 component. Each 
set of COTS files was allocated to one C1 component each. 

Some files could not be associated with a single software process despite 
restructuring. These functions were assigned to a library component. The 
types of level C1 components created were Single Software Process 
components, Library components, Assembler components and COTS 
components. 

Level C1 components were fairly easy to identify; simple tools allowed 
partly automated analysis. As the source code was not very interleaved 
(Rugaber et al. , 1995) only little restructuring was needed. 
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3.2.2 Creation of second order components (level C2) - activities E-G 

In order to raise the component abstraction level from each component 
containing only one software process, to components containing several such 
components an iterative approach was used. A graphical representation of 
inter-C1 control and data communication was drawn using SDL. The inter­
process communication constructs prior identified in the source were 
represented by SDL signals or SDL remote procedure calls. By analysing the 
communication routes, the type and amount of communication, level C2 

components were decided on. If a set of level C1 components solved one 
easily delimited task, they were to be clustered into a level C2 component. 

Identifying level C2 components was more difficult than identifying level 
C1 components. Exact rules for clustering could never be devised, since 
some level C1 components participated in solving more than one task. 

3.2.3 Creation of third order components (level C3) - activities H-J 

The source code indicated that there were similarities between the 
members of the product family. We attempted to impose a layered 
architectural style (Shaw and Garlan, 1996), by clarifying service 
provider/requester relationships between components. Some restructuring of 
the original C2 components was required. 

Grouping of level C2 components into C3 layer components was done by 
looking at 'distance from hardware' . All hardware-close level C2 

components were assigned to a level C3 layer component 'Hardware 
Abstraction Layer'. Other level C3 layer components, with decreasing 
knowledge of hardware specifics, were 'Subsystem Controller', 'Main 
Controller' and 'Supervision and Test'. 

There were several reasons for attempting the layered architectural style: 
- The layered architectural style is well known for its good maintainability 

properties. 
- By dividing hardware-close functionality from control, we expected 

greater chances of component reuse in other members of the product 
family . 
We expected to be able to decrease the difference between different 

members of the product family by using a common architectural style for all 
of them. 

This multiple-level component architecture was represented in SDL. SDL 
was chosen, as it allows the direct representation of architectural features 
(Harris et a!. , 1996) such as software processes, components consisting of 
one or more processes, aggregated components, components without any 
software process, inter-process signalling and remote procedure calls. Thus, 
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many issues related to the representation problem (Rugaber and Clayton 
1993) were avoided. However, there was some semantic distance between C 
and SDL that had to be mapped: Direct memory reads/writes, interrupts, and 
the special-purpose packet used to convey signals between different 
subsystems. These constructs were mapped to SDL signals and SDL remote 
procedure calls. We used naming conventions to distinguish these constructs 
from the direct mapping between C source signals and these other 
communication constructs. 

3.3 Step 3 - Applying the outcomes of the design 
recovery 

The above steps were applied for one member of the product family . In 
doing design recovery for the other members of the product family, the 
already defined components and the architectural style were reused. By 
restructuring components by merging files if possible, the number of new 
components was held down. 

Design recovery for the other products in the family was much quicker 
than for the first member. A large part of the improvement came from 
having to document few new components. Also, knowing the expected 
architectural style, less work had to be done in choosing how to restructure 
the software to fit the architecture. 

The degree of reusability of components was proportional to the distance 
from hardware. The closer to hardware, the more easily could components 
be reused. By having several component abstraction levels (C3, C2, C1), we 
could reuse parts or whole of components: 
- Most level C1 hardware-close components could be reused at least once. 
- Some members of the product family could share level C2 components. 
- Some members of the product family could share level C3 components. 

A few new level C3 components had to be created, usually by replacing 
only a few level C1 components inside a level C3 component. 
The layered architectural style could be reused for all members of the 

product family. 

4. RESULTS AND EXPERIENCES GAINED 

The project resulted in a common architectural style for all members of 
the product family . This enabled component reuse, that decreased the total 
code volume (lines of source code) by 65%. The volume of architectural 
descriptions and component descriptions were reduced by approximately 
30%, relatively what would have been needed if no reuse had been applied. 
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A number of faults were discovered in the process of comparing components 
from different members of the product family. 

The set of hypothesis described in section 3.2 remained unmodified 
through-out the project. However, they would probably have changed if the 
first step in Biggerstaffs process had not been. This first step helped in 
deciding on the set of work hypotheses. 

It is a daunting task to do architectural recovery when tools can provide 
only limited aid. Subjective estimation indicates that the effort of our 
recovery/reuse project amounted to eight to twelve times the effort to 
accomplish the same results (architectural description, common architectural 
style, component-based architecture) during the original development 
project. The estimation is based on accurate figures for the 
recovery/restructure project and subjective estimations regarding how to 
handle the problem during original development. Future maintenance is 
expected to be much simpler and faster than would be possible without the 
architectural descriptions and component design. Without the design 
recovery project any maintenance would be extremely difficult. 

Experiences have been collected by conducting interviews with the 
designers involved in the architecture recovery project, as well as future 
maintainers and some involved managers. Experiences reported are related 
to tools, people and the recovery process used. 

4.1 Tool support 

Tools have been used for recovery as well as representation of the 
recovered architecture. During recovery, UNIX grep and the colour marking 
functions of emacs were helpful, especially combined into small scripts. 
Grep allowed the searching of common features across several members of 
the product family . Emacs helped in performing manual slicing, as well as it 
helped in comparing several versions of files automatically. 

SDL has shown to be suitable for describing the component architecture 
down to the software process level. It was possible to unambiguously 
describe the constructs believed usable for our purposes. Some semantic 
distance demanded mapping rules between C and SDL. We believe SDL to 
be a possible architecture description language for systems, where 
components are mainly based on software processes and connectors are 
mainly inter-process communication. 

A future challenge to solve is that there is no automatic correspondence 
between the source code and the architectural abstractions. For example, 
lack of intense communication between two components is not necessarily a 
sign of that the two components should not be aggregated into a larger 
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component. In the system studied, this was apparent when we decided to 
group hardware-close components into an aggregated component. 

4.2 People 

Experiences related to people concern previous knowledge and other 
intellectual instruments for design recovery. As the rationale for architectural 
decisions is not seen in C, having even limited access to original designers 
have been extremely beneficial. They have been able to provide information 
that has not been available in other source models. 

Having knowledge of architectural styles helped in choosing to use a 
layered architecture, as well as trying to establish the service 
provider/requester divisions, which is a client/server architectural style 
(Shaw and Garlan, 1996). It is believed that any recovery team can benefit 
from having access to original design knowledge, domain architecture 
knowledge and knowledge of architectural styles. Manual design recovery is 
error prone. This emphasises the need for automated design recovery, or 
better yet, do it right during the original development. 

4.3 The recovery process 

Dynamic analysis was difficult due to performance issues. For the 
purpose of maintenance, dynamic models are considered necessary. Better 
original descriptions would have been preferred, or, an elaborate debugging 
component should have been available. For example, being able to run the 
software on the target platform with relaxed timing requirements would have 
aided in analysing the software dynamically. 

The interleaving problem was rarely encountered, as we never split 
software processes into more than one component. Content coupling, in 
terms of several processes sharing a library of functions, was handled by 
either restructuring those files (by splitting them and allocating them to 
separate components) or allocating the library functions to a separate library 
component. By dividing the recovery process into discrete steps, 
management gained visibility into the project and could decide on project 
alterations and resource allocation. The incremental approach was thus 
perceived as beneficial. 

5. CONCLUSIONS AND THE FUTURE 

From the studied architecture recovery project, we conclude that the 
design recovery process described by Biggerstaff (1989) works, but 
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undertaking a design recovery project with limited access to system experts 
and other source models than the source code, is a daunting task. Especially, 
understanding hardware-close software is difficult, as it requires detailed 
hardware understanding. Knowledge of architectural styles and their 
properties help in choosing a suitable architecture to represent the code, as 
one knows what quality attributes a particular architecture possesses. An 
incremental approach to recovering the software architecture is beneficial 
since it increases visibility into the recovery process. 

The recovery project would have benefited from a larger set of well­
defined component connectors. Full semantics for the mapping between 
source code and an architecture description language would allow the 
automatic creation and simultaneous maintenance of code and architectural 
views. 

Tool support for architectural recovery is important. In industrial projects 
like this, where the product is supposed to have a life-span of at least 15 
years, any description of the architecture should be represented using 
commercially available tools. We agree with researchers, e.g., Kazman and 
Carriere (1998), claiming that several methods are necessary in a design 
recovery project, thus concluding that a workbench with open interfaces is a 
suitable architecture for design recovery tools. 
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