
COMPOSITION IN MULTI-PARADIGM
SPECIFICATION TECHNIQUES

Lynne Blair, Gordon Blair1

Introduction

Abstract

This paper addresses the issue of composition in a multi-paradigm
environment. Our workfocuses on the application domain uf
distributed multimedia systems and, in addition to considering
quality of service properties, we also explore dynamic quality of
service management functions based on the concepts of monitors and
controllers. We advocate the use of a multi-paradigm specification
technique which, to suit our chosen application domain, consists of
LOTOS, real-time temporal logic and timed automata specifications.
We illustrate our approach by giving an example of a simple phone
system, extended with dynamic QoS management capabilities.

Multi-paradigm specification techniques are not a particularly new concept, but are
referred to under different names depending on the audience. For example, Kiczales'
aspects [17], Zave and Jackson's multi-paradigm approach [24], ODP's viewpoints
[21][8], Finkelstein and Spanoudakis' perspectives [13] and our earlier work based on
a separation of concerns [4] are all, at heart, addressing the same issue: the structuring
of large and complex software systems. A key advantage of such an approach is that
the overall system behaviour can be subdivided into different aspects (or viewpoints,
perspectives, etc.), each of which is specified separately. Furthermore, different
aspects may use different specification languages. As a result, a language particularly
suited to the needs of a given aspect can be selected, rather than being forced to use
the same language throughout the entire system specification.

However, although there are clear advantages to a mUlti-paradigm approach, there
are also problems that do not arise in a more traditional single-language approach. In
particular, the two issues of consistency and composition must be carefully addressed.
Checks for consistency across the different aspects are necessary to establish that the

P. Ciancarini et al. (eds.), Formal Methods for Open Object-Based Distributed Systems
© Springer Science+Business Media New York 1999

402

different specifications do not impose contradictory requirements. The mechanisms
needed for this vary depending on the languages used. Many such mechanisms,
particularly those for checking consistency between ODP viewpoint specifications,
have been addressed elsewhere in the literature (e.g. [8], [9] and [11]). Consequently,
in this paper, our focus will be on the problem of composition.

Composition is required in order to analyse the overall specification and perform
any validation and/or performance analysis. There are various possible techniques for
composing specifications. For example, Zave and Jackson's approach considers
conjunction as composition [23]. In their approach, the necessary parts of the (aspect)
specifications are translated into assertions in a first-order predicate logic. By
considering the conjunction of these assertions, proofs of required properties can be
performed. However, in our approach, we propose a different approach to
composition, primarily because of the nature of the languages we intend to use. Each
of our aspect specifications can be translated into a timed automaton, using timed
labelled transition systems as our underlying semantic model. The parallel

. composition of two or more of these automata is then defined, and the resulting
composition can be analysed as required. Note that we have developed a Java-based
tool to support our multi-paradigm approach, including automation of the composition
process, simulation and (simple) model-checking [16].

Background on distributed multimedia systems

Our work focuses on the application domain of distributed multimedia systems. In
such systems, quality of service is a crucial concept. Any non-functional behaviour of
the system is referred to as a quality of service property or constraint. There are many
different categories of quality of service, e.g. timeliness, reliability, security,
efficiency, etc, but it is the first two of these properties, timeliness and reliability, that
we concentrate on in our work. However, simply being able to specify quality of
service properties is not enough; it is also necessary to be able to manage such
properties. Quality of service management ensures that the desired quality of service
constraints are attained and, in the case of continuous media, sustained. Management
policies may either be static (e.g. admission control, QoS negotiation and resource
reservation) or dynamic (e.g. QoS monitoring, re-negotiation, policing and
maintenance). It is the specification of these policies (particularly dynamic QoS
management) which pose a new challenge to formal specification. Whilst most other
work on the formal specification of distributed multimedia systems has addressed
QoS properties, little work has been done on the more complex issues associated with
(dynamic) QoS management. The example that we will present later in this paper
illustrates dynamic QoS management, based on the concepts of monitors and
controllers.

Description of our approach

Aspect-oriented specification

We refer to our multi-paradigm approach as aspect-oriented specification, that is,
maintaining a separation between different aspects of a specification. As in Kiczales'

403

work [l7], there are no absolute definitions of how many aspects should be
considered, nor what they should describe. There are many possible interpretations of
this for different applications. So, for example, whilst security and fault-tolerance may
be crucial for one system, efficiency may be the key aspect of another system. This
freedom is in contrast to ODP viewpoints where five viewpoints are prescribed and
the content of each is (arguably) well-defined. However, our experience has pin­
pointed three aspects which are central to the specification of distributed multimedia
systems, namely the (functional) abstract behaviour, the (non-functional) QoS
parameters and the (non-functional) QoS management policies. Whilst we
acknowledge that other aspects are possible, perhaps even desirable, the chosen three
aspects serve to explain and illustrate our approach. Further descriptions of the three
aspects, along with our motivation for adopting an aspect-oriented approach, can be
found in [5] and [6].

Choice of languages

There are a large number of different specification languages to choose from, many of
which offer similar functionality or support a similar level of abstraction. However,
the choice of which language to use is not crucial to our approach, although it will be
noted later that the semantics will need to be interpreted in a particular form.

Our choice of languages has been guided (but is not exclusively defined) by our
interest in distributed multimedia systems. Consequently, we adopt the use of the
(standardised) formal description technique LOTOS [10] for an abstract specification
of the functional behaviour. For the second aspect, QoS parameters, in previous work
we have developed and evaluated a real-time temporal logic, QTL [4]. In this work,
we were primarily concerned with timeliness properties such as latency, throughput
and jitter. However, the need for another category of QoS, namely reliability
properties, led us to develop a stochastic extension to QTL, called SQTL [18].
Consequently, we propose the use of a temporal logic such as QTL or SQTL for the
specification of timeliness or reliability properties. Finally, for QoS management
policies, our experience has shown that timed automata are a natural language in
which to specify such behaviour. In particular, we adhere (with a few minor
exceptions) to the description of timed automata supported by UPPAAL [3].

We refer the reader to the above-mentioned literature for formal descriptions of
LOTOS and the temporal logics (QTL and SQTL). However, selected features of
these languages will be explained, where necessary, with our example later in this
paper. Timed automata will be discussed in some detail below.

Generating a global model

In the world of specification, the crucial feature which underpins everything else is
the semantics: they must be clear, concise and, above all, unambiguous. For our
aspect-oriented specification technique, we must deal with the semantics of the
composition of two or more aspect specifications. This is an essential step if we are to
perform any validation or performance modelling of the overall system behaviour. In
our approach, the result of composition is a global model (as illustrated in figure O.

404

Figure 1. Generating our global model

Our global model is represented through timed automata using (timed) labelled
transition systems to underpin these as our low-level semantic model. Consequently,
any specification languages with operational semantics that can be associated with a
LTS can be used within our framework. The availability of good LOTOS tools (e.g.
[14], [20)) makes the generation of a labelled transition system relatively
straightforward (assuming some restrictions on LOTOS operators and data type
definitions are obeyed). It is also possible to map a temporal logic formula to timed
automata (also referred to in this context as an event scheduler). Earlier versions of
this work have been presented in [4] for QTL and [18] for SQTL. The third strand in
the above diagram shows the use of timed automata for QoS management policies.
All mappings are formalised in the following section.

Semantic models

Timed labelled transition systems underpin the formal languages we use in our multi­
paradigm specification environment. We start by formalising their untimed
counterpart below.

Labelled transition systems

We define a labelled transition system over a set of (atomic) actions (Act) to have the
following form:

LTS = (S, so,---+)
where S is a finite set of states,

So e S is the initial state, and

---+!;;;;; SxActxS is a transition relation {~I aeAct, 3 s,s'e S, s~ s'}

Timed transition systems

To extend labelled transition systems with time, we permit two sorts of actions:
atomic actions (Act) and delay actions (£\) whose elements are denoted by e(d) e £\
(for de IR+). We will denote the set oflabels L as Act u £\. We also add time and data

405

variables to our labelled transition system. Let C be a finite set of (positive) real­
valued clocks and let D be a finite set of data variables with Var=CuD. With these
modifications, each state in our timed transition system now consists of the pair:

s = (1, u)
where 1 is a node of the transition system, and

u is a variable assignment function s.t. for clocks X!: C, u : X --+ IR+
and for data variables Y!: D, u : Y --+ Z

Our initial state is now defined to be So = (10, 00), where 10 is the initial node of the
transition system, and 00 initialises all clocks [C H 0] and all data variables [D H 0].

The above timed transition system can be thought of as a low-level semantic model
containing an infinite number of node/clock valuation pairs. Consequently, on top of
this we define timed automata.

Timed automata

We use the timed automata of UPPAAL [19] as the basis for this work. We start with
a standard finite state automaton and extend this with a set of clocks C and data
variables D, as defined above, such that Var=CuD. Let the set of constraints (guards)
over Var be represented by G(Var). Note that the values of clocks and variables can
be compared with constants and/or reset on transitions. Also, conditions on clocks or
variables may guard a transition and invariants may be assigned to states (which must
remain true whilst in that state). We define a timed automaton formally as:

TA = (S, So,~, I)
where S is a finite set of states,

So E S is the initial state,
~ is a transition relation,
I: S--+G(Var) is an invariant assignment function for each state

(this must be satisfied by all variables whilst operating in that state).

Our transitions are more complex than for the timed transition systems above:
~ = (1, g, a, r, l')

where 1, l' are nodes of the automaton and
a E L (as above),

but we also have:
g is a constraint (guard) s.t. g::=x-c where xeVar, -::=<1=1>, c is a constant
r is a reset (or reassignment) function s.t. for r!: Var, [r H r']u

i.e. all variables r are updated; other variables are unchanged (still satisfy u)
The transitions should also now satisfy the following rules:

(1, u) ~ (1', u') if g is satisfied by u, and u' = [r H r']u

(1, u) e(d)) (1', u') if (1 = 1'), u' = u + d, and u' satisfies 1(1').
Hence time can pass whilst in a given state.

Semantic model of LOTOS

Derivable processes. The operational semantics of LOTOS define a set of axioms
and inference rules for each possible behaviour description of a specification. From

406

these we can derive a set of transitions that the LOTOS specification may perform,
and subsequently associate a labelled transition system (LTS) with the specification.

Let Act denote the set of atomic LOTOS actions and let L denote Act v {i}. Also,
let Dp denote the (smallest) set of processes derivable from a given process P such
that:

P E Dp, and

ifP' E Dp and 3 a E L, P' --4 P" then P" E Dp
The labelled transition system for the specification P can now be defined as:

where S = Dp,
so=P,and

LTS =(S, so,~ >

~= { --4laE L,3 s,s' E Dp, s--4s'}.

Mapping to timed automata. In order to map an (untimed) LOTOS specification
onto timed automata, we adopt the following terminology:

variables: C={}, D={} :. Var={}
actions:
states:
transitions:

invariants:

a E Act v {i} v L1
Vi, Si = Ii and u is irrelevant since Var={}
-----7 = (1, g, a, r, l' > where Vg, g=true and the set of variables r={}

Also, (1, u) E(d» (1', u') if (1 = 1')

I: S Hrue

Semantic model of QTL

Syntax of QTL. In this section, we restrict our attention to QTL [4], rather than
consider the stochastic extensions of SQTL. We plan to return to stochastic issues in
future work. We formally define the syntax of QTL3 as follows:

$::= false I $) ~ $210 -d $ I $1 U_d $2 I a 11t) - 1t2

where - ::= < I = I >
1t E 'P and 1t ::= x I c I x + c (i.e. propositions with addition by constant only)
dE IR+
a E Act (the set of all possible events)

and ~, 0 and U denote implies, next-state and until respectively.
Note that other operators can be defined from these in the usual way (e.g. see [4]).

Clocks. We now let C be a set of clocks, one for each bounded temporal operator in $,
D be a set of data variables and, as before, Var = C v D. Let u:C~IR+ and u:D~Z!:.
We allocate the set of clocks as follows:

C [false] = {}
C[a] = {}
C[<!»~<I>2] = C[<I»] u C[$2]
C[OQ $] = {CQ} u C[$]
C[<!>IUQ$2] = {CQ} U C[$)] U C[$2]

To handle the resetting of these clocks, let res($) be a function which resets all
clocks r in $ to zero; all other clocks keep their value according to u (i.e. for r~C,

407

[r ~O]u). Now, for any occurrence of the timed operators OQ or UQ in a formula, we
must reset the associated clock:

[Q ~ 0] E res(OQ<I», and

[Q ~ 0] E res(<I>IUQ<I>2)

Derivation Rules. In order to interpret a temporal logic formula as an automaton, we
first define a set of derivation rules, in much the same way as for LOTOS above. The
derivative of formula <I> with respect to action a, denoted Det[<1>], is:

Det[false] = false
Det[a] = true if a=a, otherwise false
Det[<I>t~<I>2] = Det[<I>t] ~ Det [<I>2]
Det,c [0 -d <1>] = <I> where u(C)=d

Det,c' [<1>1 U_d<l>2] = (Det,C' [<1>2] where u(C') = d) v

(Dcx,C' [<1>1] A (<1>1 U=d-u(C,)<I>2) for all u(C') ~ d)
In order to get our nodes "for the labelled transition system, we define the transitive

closure of D, denoted D* inductively as follows:
<I> E D* [<1>], and
if <p E D*[<I>] then for all a E Act, D.[<p] E D*[<I>]

Example. To illustrate this process, we consider the simple untimed formula: <I>=<>p.

Note that <> is a derived operator which is equivalent to TRUE U p; hence we use the
derivation rules for until, as given above. Our formula has the possible actions p, or
something other than p (we denote this by the action *). Consequently, oc in the
derivation rules above can be p or *. Following the rules above, it can easily be shown
that Dp [<>p] = Dp [p]v<>p, and D. [<>p] = D. [p]v<>p. We now evaluate the
nested derivatives to get Dpj[p] = true and D. [p] = false. Hence, we now have:

Dp [<>p] = truevOp = true, and
D. [<>p] = falsev<>p = <>p

This shows that the derivative of <>p yields two formulae: true and <>p. We have
already evaluated D[<>p] hence we need only consider D[true]. The above rules
state D[true]=true with respect to any action. We will return to this example below.

Mapping to timed automata. We are now in a position to associate a formula with a
timed automata. States are composed of nodes and clock assignment functions. The
conditions for the clock assignment functions are embedded in the definition of D*.
Transitions have the form:

~ = (I, g, a, r, I')
where I, l' are nodes ofD*,

g is a constraint (guard),
a E Act, and
r = res(<p) where res is the reset function described above and <pE I

Also (I,u) ~ (1' ,u') if l' = D.,g[<I>], and u' = [r ~ 0]u

(I,u) E(d» (1' ,u') if (1=1'), u'=u+d, and u' satisfies 1(1')
Consequently, we can define our timed transition system for a formula <I> as:

LTS =(S, so,~, I)

408

where S = D*[<I>] and So = <1>,

~ = < I, g, a, r, I'), and
I: S~G(Var)

Example revisited. Returning to our example, D· [<I>]={¢p , true}, i.e. we have two

nodes with So=¢p. By examining the results of the derivation rules with respect to the
actions p and * we can see that the following automaton is obtained.

p pl* ~ ~ true

Figure 2. An automaton representing +=¢p

Composition

Given our multi-paradigm approach, we now have several timed automata that we
must compose together. Let SA be the set of synchronising actions, i.e. those actions
on which the execution of each automaton should synchronise. We will denote the
synchronisation function by f(at.a2)4; this defines that two actions al and a2
synchronise (provided al:;t:i and a2:;t:i). Note that our algorithm applies to intra­
language composition (e.g. composing two automata) as well as inter-language
composition (e.g. composing LOTOS with an automaton).

Let SI=(lt.ul)e SI and S2=(l2,u2)e S2 where SI and S2 are timed automata. Also, for
LOTOS let L=ActLOTOsv{i}, for QTL let L=Ac1QTLva, and for TA, let L=ActTAva.

The composition rules are given in the table below.

Table 1. Rules for the composition 81 liSA 82 (where ae L)

SI~sl"a~SA 1
liS g,a,r 'lis sl A s2~sl A s2

S ~s 'a~SA 2 2' 2

lis g,a,r lis ' sl A s2~sl A s2

sl
gl,al,rl , g2,a2,r2 lS 'aeSA wheref(al,a2)=a, 3 'SI,s2 2'

sl lisA s2 g,a,r)S 'lis s' g = glAg2andr = rlvr2
1 A 2

s~s's~s' 1 1 ' 2 2 wheresj = (lj'Uj) andsj '= (lj',Uj ') ~
lis e(d) 'lis ' sl A s2~sl A s2

andlj'=lj,uj'=Uj +d

The resulting composition can be defined as:
Comp = < S, So,~, I)

where 8 is a finite set of states s.t. Sl liSA S2 E 8 <=> Sl E 81 and S2 E 82,

So E S is the initial state s.t. So = SO,I liSA 80,2'

409

~ = < 1, g, a, r, l') is a transition relation derived from rules 1-4 above,
l(sl liSA S2) = l(SI) A 1(S2)

Validation and performance modelling

Once we have composed our specifications together, a number of validation
techniques can be performed. At this stage, since we have a global model, there is no
difference between our multi-paradigm approach and a sin~le-language (timed)
approach. The following figure (3) illustrates several possible validation strategies.

Reauirements

Telllllorallolric

Event scheduler

Model Cbeckin=

FORMAL ¢:::::::lIlO
specttumof
techniques Olle:::::::> PRACTICAL

Figure 3. Validation and synthesis possibilities from the global model

Firstly, model checking involves considering a set of user requirements, and
proving that these requirements satisfy our (combined) specification. Secondly,
performance analysis techniques such as reachability analysis can be applied to
explore the state space of our global model. Thirdly, ''real-world'' monitors and
controllers can be synthesised from our formal specification and can be used to
manage a real system. A more detailed description of these techniques is beyond the
scope of this paper. Consequently, for model checking techniques we refer the reader
to [1] and [2] and to our previous work in [4] and [18], for details of reachability
analysis strategies see [15], and for details of the synthesis of monitors and controllers
see [6] and [7].

Example: a multi-way phone system

Informal description

The example we present in this paper is that of a simple multi-way phone system.
Although this is not an example of a multimedia system, we feel that it nicely
illustrates our approach and the process of composition. Multimedia examples can be
found in our other work (e.g. [4] and [6]). The LOTOS specification for this multi-

410

way phone system was previously presented as part of a LOTOS tutorial [12]. An
informal description of the system is provided in table 2, and Appendix A contains an
abbreviated listing of the LOTOS specification.

Table 2. An informal description of a multi-way phone system

Basic behaviour:
• When a phone (A) is lifted off-hook, a dial

tone occurs.
• If phone 8 is off-hook, A gets an engaged

tone. In this case, phone A must be
placed on-hook or the dial request
cancelled.

• If B does not answer, either phone A
must be placed on-hook or the dial
request cancelled (both of which cause
phone 8 to stop ringing)

• A phone can be either on or off-hook.
• A may now dial a second phone (8).
• If phone B is on-hook, A gets a ring tone

and phone 8 starts ringing.
• If 8 answers (with an off-hook whilst

ringing), a connection is made
between A and 8 and a conversation
may occur. Either phone may
terminate the conversation by placing
their phone on-hook.

Real-time behaviour

More than 2 connections:
• During a conversation, either party may dial

a third party, e.g. 8 dials C.
• If C is off-hook, 8 gets an engaged tone. 8

must cancel the dial request before
dialling again. A and 8 remain
connected throughout.

• If C Is on-hook, B gets a ring tone and C
starts ringing

• If C does not answer, B must cancel the
dial request before dialling again. Again,
A and 8 remain connected.

• If C answers, a connection is made
between Band C and, since A is
currently connected to B, a connection is
also made between A and C.

• If 3 (or more) phones are connected and
one of them puts their phone on-hook,
the other phones remain connected.

Whilst the LOTOS specification has provided us with a good description of abstract
behaviour, it does not permit the specification of real-time behaviour. Timed
extensions to LOTOS have been developed, but we believe that such languages lead
to a tangling of aspects (c.f. [17]). Our belief is that, by maintaining a separation of
aspects at a specification level, large and complex specifications can be developed
that are simpler to understand and maintain. To illustrate this idea for real-time
behaviour, we consider two constraints over the abstract LOTOS specification, using
the real-time temporal logic, QTL. We assume that our unit of time is seconds.

Constraint 1. If one user dials another user whose phone is on-hook, then the remote
phone starts ringing within 1 second.

4\: 0 (dial !ringtone ?p:id_sort ?to:id_sort ~ <> SI ring Ito)

This formula states that it is always the case that whenever a "dial !ringtone" event
occurs (with parameters p and to) then, in some state in the future bounded by one
second, a ''ring !to" event will occur, i.e. the phone with id "to" will start ringing.
Intuitively the symbol ! represents the output of some data on the occurrence of the
associated action, whilst ? represents the input of some data. It is the job of the
synchronisation function (mentioned earlier) to handle how different input/output
events behave when composed in parallel.

We could similarly place constraints on the time between "on !after_ringtone" and
"stop_ring" events and between "cancel !aftecringtone" and "stop_ring" events.

411

Constraint 2. A phone can ring unanswered for a maximum of 30 seconds before
being automatically cancelled.

11>2: 0 (dial !ringtone ?p:id_sort ?to:id_sort ~ (¢ <30 (on !aftecringtone !p Ito

v connect !p Ito) v ¢ SJo cancel !aftecringtone !p Ito)
With this formula, whenever a "dial !ringtone" occurs then, in some state less than

30 seconds into the future, either an "on !aftecringtone" or a "connect" will occur, or
at a future state :S;30 seconds from now, a "cancel !aftecringtone" will occur.

Monitors and controllers

A third aspect involves the behaviour associated with quality of service management.
Although this is usually associated with multimedia examples, we can illustrate the
principle of monitors and controllers using our phone example. We will consider two
scenarios below and formalise the required behaviour using timed automata. For
convenience, we will assume that the unit of time here is minutes.

Scenario 1. To prevent overloading the exchange, management imposes a temporary
restriction on the number of phones off-hook at a given time (limited to 3) until a
more permanent solution is found.

MONITOR!
off !dialtone ?p:phone_id

~69
on ?p:phone_id v

on !aftecringtone ?p:phone_id
x:=x-l

CONTROLLER!
x<3

on ?p:phone_id v
on !after_ringtone ?p:phone_id

Figure 4. Automata to monitor and control the number of phones off_hook

Figure 4 illustrates two automata, a monitor and a controller, that together achieve
the desired behaviour of scenario 1. The first automaton shows a data variable x being
used as a count for the number of off-hooks at any given time. The variable is
incremented whenever an off-hook occurs and decremented whenever an on-hook
occurs. This variable is then used in the second automaton to implement the policy
that x should always be less than, or equal to, 3. Note that the two automata
synchronise on the LOTOS events "off !dialtone", "on" and "on !aftecringtone". The
values of p:phone_id are instantiated through synchronising with the LOTOS
specification (see Appendix A).

Also note that, although it would be possible to combine the monitor and controller
as one automaton, we choose to keep them separate. Whilst not significant for small
examples, as the behaviour becomes more complex, this separation means that control
policies are immediately identifiable and easily changed.

412

Scenario 2. Management is alerted to the amount of time that the user of phone 1
spends talking on the phone. They decide to monitor the time carefully and set the
user a quota of 20 minutes per day (but, at least initially, without the drastic action of
disconnecting any connection in progress on reaching the 20 minute quota). If the
quota is exceeded, the user receives a quota violation signal and is barred from getting
a dial tone (ofChook event) until the following day when the quota is reset.

MONITOR2

d<i440

Figure 5. Automata to monitor and control the connection time of phone 1

Figure 5 illustrates the monitor and controller aspects of the second scenario. In the
first automaton, a clock variable d is used to count up to 1440 (the number of minutes
in a day) before being reset. In this time, if an off-hook of phone 1 occurs followed by
a connection with another phone, then another clock variable t is initialised. When
phone 1 is returned on-hook, q is incremented by the current value of t. In this way, q
keeps track of the cumulative connection time of phone 1. In the controller automaton,
phone 1 is only allowed to perform an off-hook if the value of q is S 20. Otherwise, a
quota violation is reported and the user of phone 1 must wait for the quota to be reset.

Composition

The above examples have illustrated the principle of our multi-paradigm specification
approach. We now use these examples to illustrate the composition process. Whilst a
shortage of space precludes the presentation of the complete composition process, we
start with the composition of the monitors and controllers for the two scenarios
presented above. Note that a worked example of the complete composition process
can be found in a companion paper currently under development.

To simplify the presentation of this example below, we adopt the following
shorthand: we consider "on" and "on !after_ringtone" events as the same event, we
use "onll2/3" to denote "on !idl von !id2 v on !id3" and "offl/2/3" to denote "off
!dialtone lid! voff !dialtone !id2 v off !dialtone !id3". We note that the monitor and
controller for scenario 1 synchronise on the events "onll2/3" and "offl/2/3"; for
scenario 2, they synchronise on "on1", "off!" and ''reset''. The results of the two
compositions are shown in figure 6.

The next stage is to compose C) and C2 together, synchronising on events "on1"
and "offl". This is presented in appendix B. As can be seen, the composed behaviour
soon becomes quite complex, but can be calculated using the tool reported in [16]. By
combining this automaton with the labelled transition system generated from the

413

LOTOS specification (from Appendix A), we get an even larger automaton (with 143
states). Clearly, this is too large to be (meaningfully) presented in this paper. Finally,
we can impose our real-time constraints over the system by composing formulae <\>1

and <\>2 with the rest of the behaviour.

C! = MONITOR! II CONTROLLER!

x>O
on 11213
x:=x-l

x<3
off1l2l3
x:=x+l

x=3

~ on1l2l3
x:=x-l

Figure 6: Composition of monitors and controllers for scenarios 1 (C1) and 2 (C2)

Conclusions

In the introduction to this paper, we gave a number of advantages for multi-paradigm
specification techniques. However, before such claims can be realised, it is important
to provide tractable solutions to the problems of determining consistency and
achieving composition between partial specifications. Problems of consistency have
been considered in detail by collaborators in our current EPSRC project e.g. [11]. We
therefore focus on composition in multi-paradigm techniques. Our approach to
composition is based on a common global model using timed labelled transition
systems and timed automata. It should be noted that the Kronos tool [22], supports the
composition of automata (to produce a product automaton). However, to our
knowledge, ours is the first piece of work (and tool) to support composition and the
verification of specifications developed in a multi-pari).digm setting. Crucially, such
an approach enables a wide range of specification techniques to be employed. Finally,
our approach also gives us the advantage that we can map to realisable dynamic QoS
management components.

We have illustrated the expressiveness of multi-paradigm specification techniques
through a simple example of a multi-way phone system. The basic behaviour is
written in LOTOS, a language ideally suited to the abstract specification of such
systems. The resultant specification is clean and uncluttered. We then imposed real­
time constraints on the phone system, expressing such constraints in the real-time
temporal logic, QTL. Again, this proved to be a good notation to express the required
properties. Finally, we introduced additional management concerns into the system
using timed automata. Importantly, we have also given an illustration of composition
in this example (focusing on timed automata).

Ongoing research is considering further the specification and verification of
adaptive multimedia behaviour, extending the composition framework (and associated
tool) to enable the expression of probabilistic and stochastic behaviour and

414

incorporating more advanced model checking techniques. We are also currently
extending our work to use branching time temporal logic.

Acknowledgements

We would like to acknowledge the financial support of EPSRC (grant reference
number GRlL28890), and also the contribution of our collaborators on the V -QoS
project, namely Howard Bowman, John Derrick and Jeremy Bryans (University of
Kent at Canterbury). Our thanks also go to Abderrahmane Lakas for his work on
algorithms and tool support for event schedulers (whilst working on an earlier EPSRC
project), and to Anders Andersen for his work on the realisation of QoS management
monitors and controllers. Finally, thanks to Trevor Jones for his recent work on the
development of our tool, and ongoing work relating to branching time temporal logic.

Endnotes

1. Computing Dept., Lancaster University, Lancaster LAl 4YR, e-mail: {lb.gordon}@comp.lancs.ac.uk
2. Note that in [18], we call the labelled transition system derived from the temporal logic formulae an

event scheduler. Intuitively, the aim of this event scheduler is to schedule the functional behaviour
(events) according to the specified QoS properties. To achieve this, every enabled action in the
LOTOS derived labelled transition system is submitted to the eveut scheduler. The event scheduler
then decides, according to the timing constraints (and/or stochastic constraints for the case of SQTL),
if this action is allowed to happen, and, if so, when it will happen.

3. Note that, for simplicity, we have not considered pasttense operators here.
4. Also related to the concept of a synchronisation function are correspondence relations (see [9]).

References

[1] R. Alur, C. Courcoubetis, D.L. Dill, "Model Checking for Real-time Systems",
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, pages 414-425,
IEEE Computer Society Press, 1990.

[2] R. Alur, C. Courcoubetis, D.L. Dill, "Model Checking for Probabilistic Real-time
Systems", In Proceedings of the 18th International Conference on Automata, Languages and
Programming (ICALP'91), LNCS 510, pp 115-136, Berlin: Springer-Verlag, 1991.

[3] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, W. Yi: "UPPAAL: a Tool Suite for
Automatic Verification of Real-time Systems", In Hybrid Systems III (Verification and
Control), Alur, Henzinger, Sontag (eds), LNCS 1066, pp 232-243, Berlin: Springer, 1996.

[4] G.S. Blair, L. Blair, H. Bowman, A. G. Chetwynd, "Formal Specification of Distributed
Multimedia Systems", London: UCLPress, 1998.

[5] L. Blair, G.S. Blair, ''The Impact of Aspect-Oriented Programming on Formal Methods
(Position Paper)", presented at the Aspect-Oriented Programming Workshop at ECOOP'98,
Brussels, July 1998.

[6] L. Blair, G.S. Blair, A. Andersen, "Separating Functional Behaviour and Performance
Constraints: Aspect-Oriented Specification", Internal Report No. MPG-98-07, see link on
http://www.comp.lancs.ac.uk!computing!usersllb/vqos.html. May 1998.

[7] G.S. Blair, G. Coulson, M. Papathomas, P. Robin, "An Architecture for Next Generation
Middleware", To appear in Middleware'98, The Lake District, U.K., September 1998.

[8] E. Boiten, H. Bowman, J. Derrick, M. Steen, "Issues in Multi-paradigm Viewpoint
Specification", Proceedings of Viewpoints'96, SIGSOFT FSE4, 1996.

415

[9] E. Boiten, H. Bowman, J. Derrick, M. Steen, "Viewpoint Consistency in Z and LOTOS:
A Case Study", Proceedings of Formal Methods Europe (FME'97), 1997.

[10] T. Bolognesi, E. Brinksma, "Introduction to the ISO Specification Language WTOS",
Computer Networks and ISDN Systems, Vol. 14, No. I, pp 25-59, North-Holland,
Amsterdam, 1988.

[11] H. Bowman, E.A Boiten, J. Derrick, M.W.A Steen, "Strategies for Consistency
Checking based on Unification", to appear in Science of Computer Programming, Dec 1998.

[12] L. Drayton, AG. Chetwynd, G.S. Blair, "An Introduction to LOTOS through a Worked
Example", Computer Communications (Special Issue on FDTs in Communications and
Distributed Systems), Vol. 15, No.2, pages 70-85, Butterworth-Heinemann, March 1992.

[13] A Finkelstein, G. Spanoudakis (eds), SIGSOFT '96 International Workshop on Multiple
Perspectives in Software Development (Viewpoints '96), ACM Press, 1996.

[14] H. Garavel, "An Overview of the Eucalyptus Toolbox", Proceedings of the International
Workshop on Applied Formal Methods in System Design (Marlbor, Slovenia), pp 76-88,
June 1996, see http://www.inrialpes.fr/vasy/Publications/Garavel-96.html.

[15] GJ. Holzmann, "Design and Validation of Computer Protocols", Englewood Cliffs (NJ):
Prentice-Hall, 1991.

[16] T. Jones, L. Blair, G. Blair, "A Tool Suite for Multi-paradigm Specification", Internal
Report No. MPG-98-Ed**, see hrip://www.comp.lancs.ac.uklcomputinglusersllb/vqos.html.
September 1998.

[17] G. Kiczales, 1. Lamping, A Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J. Irwin,
"Aspect-Oriented Programming", PARC Technical Report, SPL97-008 P9710042, see
http://www.parc.xerox.com!spVprojects/aop/reports.html. February 1997.

[18] A. Lakas, G. S. Blair, A Chetwynd, "Specification and Verification of Real-Time
Properties Using LOTOS and SQTL", Proceedings of the 8th International Workshop on
Software Specification and Design, pp 75-84, Paderborn, Germany, March 1996.

[19] K.G. Larsen, P. Pettersson, W. Yi, "Diagnostic Model-Checking for Real-Time
Systems", Proceedings ofthe 4th DIMACS Workshop on Verification and Control of Hybrid
Systems, New Brunswick, New Jersey, 22-24 October, 1995.

[20] Lite: WTOS Integrated Tool Environment, Tele-Informatics and Open Systems (TlOS)
Group, University of Twente, The Netherlands, http://wwwtios.cs.utwente.nVlotos/lite/

[21] ITU Recommendation X.901-904, ISO/IEC 10746 1-4, "Open Distributed Processing­
Reference Model", Parts 1-4, July 1995.

[22] S.Yovine, "Kronos: A Verification Tool for Real-time Systems", In Springer
International Journal of Software Tools for Technology Transfer, 1(112), October 1997.

[23] P. Zave, M.A Jackson, "Conjunction as Composition", ACM Transactions on Software
Engineering and Methodology", 11(4), pp 379-411, ACM Press, October 1993.

[24] P. Zave, M.A. Jackson, "Where Do Operations Come From? A Multi-paradigm
Specification Technique", IEEE Transactions on Software Engineering, XXII(7), pp 508-
528, IEEE, July 1996.

416

Appendix A. An abbreviated (uncommented) spec. of a multi-way phone system

specification phone_system[off, on, dial,
cancel, ring, stop_ring, connect]: noexit

behaviour
Phones[off, on, dial, cancel, ring,

stop_ring, connect]
II Exchange[off, on, dial, cancel, ring,

stop_ring, connect]
(() of LisUds, {} of ListPairs)

where

process Phones[off, on, dial, cancel, ring,
stop_ring, connect] : noexit :=

Phone[off, on, dial, cancel, ring, stop_ring,
connect](id1)

III Phone[off, on, dial, cancel, ring, stop_ring,
connect](id2)

III Phone[off, on, dial, cancel, ring, stop_ring,
connect](id3)

endproc

process Phone[off, on, dial, cancel, ring,
stop_ring, connect](p:idsort) : noexit :=

(MakeCall[off, on, dial, cancel, ring,
stop_ring, connect](p)

[] ReceiveCall[off, on, dial, cancel, ring,
stop_ring, connect](p))

» Phone[off, on, dial, cancel, ring,
stop_ring, connect](p)

endproc

process MakeCall[off, on, dial, cancel, ring,
stop_ring, connect](p:idsort) : exit :=

off !dialtone !p;
DiaISomeone[off, on, dial, cancel, ring,

stop_ring, connect](p)
endproc

process ReceiveCall[off, on, dial, cancel, ring,
stop_ring, connect](p:idsort) : exit :=

ring !p;
(stop_ring !p; exit
[] off !connect !p;

DiaISomeone[off, on, dial, cancel, ring,
stop_ring, connect](p))

endproc

process DiaISomeone[off, on, dial, cancel,
ring, stop_ring,connect](p:idsort) : exit :=

(dial !ringtone !p ?callee:idsort;
NotEngaged[off, on, dial, cancel, ring,

stop_ring, connect](p, callee))
[] (dial !engagedtone!p ?callee:idsort;

Engaged[off, on, dial, cancel, ring,
stop_ring, connect](p, callee))

[] (on !p; exit)
endproc

(p, callee:idsort) : exit :=
(on !aftecringtone !p !callee; exit)

[] (cancel !afteuingtone!p !callee;
DiaISomeone[off, on, dial, cancel, ring,

stop_ring, connect](p»
[] (connect !p !callee;

DiaISomeone[off, on, dial, cancel, ring,
stop_ring, connect](p))

endproc

process Engaged[off, on, dial, cancel, ring,
stop_ring, connect]
(p, callee:idsort) : exit :=

(cancel !after_engagedtone !p;
DiaISomeone[off, on, dial, cancel, ring,

stop_ring, connect](p))
[] (on !p; exit)

endproc

process Exchange[off, on, dial, cancel, ring,
stop_ring, connect]
(eng:Listlds, conn:ListPairs) : noexit :=

SubExchange[off, on, dial, cancel, ring,
stop_ring, connect](eng, conn)

»accept eng:Listlds, conn:ListPairs in
Exchange[off, on, dial, cancel, ring,

stop_ring,
connect](eng, conn)

endproc

process SubExchange[off, on, dial, cancel, ring,
stop_ring, connect](eng:Listlds,
conn:ListPairs) : exit(Listlds,ListPairs) :=

(off !dialtone ?p:idsort;
exit(lnsert(p,eng),conn»))

[] (on ?p:idsort;
exit(Remove(p, eng), fully_remove(p,

conn»)
[] (on !afteuingtone ?from:idsort ?to:idsort;

stop_ring Ito; exit(Remove(from,eng),
fully_remove(from,conn»)

[] (dial ! ringtone ?p:idsort ?to:idsort
[SystemPhone(to) and (to NoUn eng)];

ring Ito; exit(eng, conn))
[] (dial !engagedtone ?from:idsort ?to:idsort

[SystemPhone(to) and (to Isln eng)];
exit(eng, conn))

[] (cancel !after_ringtone ?from:idsort
?to:idsort;

stop_ring ito; exit(eng, conn))
[] (connect ?from:idsort ?to:idsort;

off !connect Ito; exit(lnsert(to, eng),
fully_connect(from,to, conn»)

[] (cancel !after_engagedtone ?p:idsort;
exit(eng, conn))

endproc
process NotEngaged[off, on, dial, cancel, ring,

stop_ring, connect) endspec

417

Appendix B. Composition of timed automata Cl and C2

Table B1. Labels for the timed automata representing the composition of Cl and C2

These labels serve to simplify the presentation of the graph below. Note that the
composition ofCI and C2 synchronises on events "onl" and "offl". The result
is presented below in figure B 1.

Figure B1: The timed automata representing the composition of C1 and C2

