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Introduction 

Abstract 

This paper addresses the issue of composition in a multi-paradigm 
environment. Our workfocuses on the application domain uf 
distributed multimedia systems and, in addition to considering 
quality of service properties, we also explore dynamic quality of 
service management functions based on the concepts of monitors and 
controllers. We advocate the use of a multi-paradigm specification 
technique which, to suit our chosen application domain, consists of 
LOTOS, real-time temporal logic and timed automata specifications. 
We illustrate our approach by giving an example of a simple phone 
system, extended with dynamic QoS management capabilities. 

Multi-paradigm specification techniques are not a particularly new concept, but are 
referred to under different names depending on the audience. For example, Kiczales' 
aspects [17], Zave and Jackson's multi-paradigm approach [24], ODP's viewpoints 
[21][8], Finkelstein and Spanoudakis' perspectives [13] and our earlier work based on 
a separation of concerns [4] are all, at heart, addressing the same issue: the structuring 
of large and complex software systems. A key advantage of such an approach is that 
the overall system behaviour can be subdivided into different aspects (or viewpoints, 
perspectives, etc.), each of which is specified separately. Furthermore, different 
aspects may use different specification languages. As a result, a language particularly 
suited to the needs of a given aspect can be selected, rather than being forced to use 
the same language throughout the entire system specification. 

However, although there are clear advantages to a mUlti-paradigm approach, there 
are also problems that do not arise in a more traditional single-language approach. In 
particular, the two issues of consistency and composition must be carefully addressed. 
Checks for consistency across the different aspects are necessary to establish that the 
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different specifications do not impose contradictory requirements. The mechanisms 
needed for this vary depending on the languages used. Many such mechanisms, 
particularly those for checking consistency between ODP viewpoint specifications, 
have been addressed elsewhere in the literature (e.g. [8], [9] and [11]). Consequently, 
in this paper, our focus will be on the problem of composition. 

Composition is required in order to analyse the overall specification and perform 
any validation and/or performance analysis. There are various possible techniques for 
composing specifications. For example, Zave and Jackson's approach considers 
conjunction as composition [23]. In their approach, the necessary parts of the (aspect) 
specifications are translated into assertions in a first-order predicate logic. By 
considering the conjunction of these assertions, proofs of required properties can be 
performed. However, in our approach, we propose a different approach to 
composition, primarily because of the nature of the languages we intend to use. Each 
of our aspect specifications can be translated into a timed automaton, using timed 
labelled transition systems as our underlying semantic model. The parallel 

. composition of two or more of these automata is then defined, and the resulting 
composition can be analysed as required. Note that we have developed a Java-based 
tool to support our multi-paradigm approach, including automation of the composition 
process, simulation and (simple) model-checking [16]. 

Background on distributed multimedia systems 

Our work focuses on the application domain of distributed multimedia systems. In 
such systems, quality of service is a crucial concept. Any non-functional behaviour of 
the system is referred to as a quality of service property or constraint. There are many 
different categories of quality of service, e.g. timeliness, reliability, security, 
efficiency, etc, but it is the first two of these properties, timeliness and reliability, that 
we concentrate on in our work. However, simply being able to specify quality of 
service properties is not enough; it is also necessary to be able to manage such 
properties. Quality of service management ensures that the desired quality of service 
constraints are attained and, in the case of continuous media, sustained. Management 
policies may either be static (e.g. admission control, QoS negotiation and resource 
reservation) or dynamic (e.g. QoS monitoring, re-negotiation, policing and 
maintenance). It is the specification of these policies (particularly dynamic QoS 
management) which pose a new challenge to formal specification. Whilst most other 
work on the formal specification of distributed multimedia systems has addressed 
QoS properties, little work has been done on the more complex issues associated with 
(dynamic) QoS management. The example that we will present later in this paper 
illustrates dynamic QoS management, based on the concepts of monitors and 
controllers. 

Description of our approach 

Aspect-oriented specification 

We refer to our multi-paradigm approach as aspect-oriented specification, that is, 
maintaining a separation between different aspects of a specification. As in Kiczales' 
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work [l7], there are no absolute definitions of how many aspects should be 
considered, nor what they should describe. There are many possible interpretations of 
this for different applications. So, for example, whilst security and fault-tolerance may 
be crucial for one system, efficiency may be the key aspect of another system. This 
freedom is in contrast to ODP viewpoints where five viewpoints are prescribed and 
the content of each is (arguably) well-defined. However, our experience has pin­
pointed three aspects which are central to the specification of distributed multimedia 
systems, namely the (functional) abstract behaviour, the (non-functional) QoS 
parameters and the (non-functional) QoS management policies. Whilst we 
acknowledge that other aspects are possible, perhaps even desirable, the chosen three 
aspects serve to explain and illustrate our approach. Further descriptions of the three 
aspects, along with our motivation for adopting an aspect-oriented approach, can be 
found in [5] and [6]. 

Choice of languages 

There are a large number of different specification languages to choose from, many of 
which offer similar functionality or support a similar level of abstraction. However, 
the choice of which language to use is not crucial to our approach, although it will be 
noted later that the semantics will need to be interpreted in a particular form. 

Our choice of languages has been guided (but is not exclusively defined) by our 
interest in distributed multimedia systems. Consequently, we adopt the use of the 
(standardised) formal description technique LOTOS [10] for an abstract specification 
of the functional behaviour. For the second aspect, QoS parameters, in previous work 
we have developed and evaluated a real-time temporal logic, QTL [4]. In this work, 
we were primarily concerned with timeliness properties such as latency, throughput 
and jitter. However, the need for another category of QoS, namely reliability 
properties, led us to develop a stochastic extension to QTL, called SQTL [18]. 
Consequently, we propose the use of a temporal logic such as QTL or SQTL for the 
specification of timeliness or reliability properties. Finally, for QoS management 
policies, our experience has shown that timed automata are a natural language in 
which to specify such behaviour. In particular, we adhere (with a few minor 
exceptions) to the description of timed automata supported by UPPAAL [3]. 

We refer the reader to the above-mentioned literature for formal descriptions of 
LOTOS and the temporal logics (QTL and SQTL). However, selected features of 
these languages will be explained, where necessary, with our example later in this 
paper. Timed automata will be discussed in some detail below. 

Generating a global model 

In the world of specification, the crucial feature which underpins everything else is 
the semantics: they must be clear, concise and, above all, unambiguous. For our 
aspect-oriented specification technique, we must deal with the semantics of the 
composition of two or more aspect specifications. This is an essential step if we are to 
perform any validation or performance modelling of the overall system behaviour. In 
our approach, the result of composition is a global model (as illustrated in figure O. 
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Figure 1. Generating our global model 

Our global model is represented through timed automata using (timed) labelled 
transition systems to underpin these as our low-level semantic model. Consequently, 
any specification languages with operational semantics that can be associated with a 
LTS can be used within our framework. The availability of good LOTOS tools (e.g. 
[14], [20)) makes the generation of a labelled transition system relatively 
straightforward (assuming some restrictions on LOTOS operators and data type 
definitions are obeyed). It is also possible to map a temporal logic formula to timed 
automata (also referred to in this context as an event scheduler). Earlier versions of 
this work have been presented in [4] for QTL and [18] for SQTL. The third strand in 
the above diagram shows the use of timed automata for QoS management policies. 
All mappings are formalised in the following section. 

Semantic models 

Timed labelled transition systems underpin the formal languages we use in our multi­
paradigm specification environment. We start by formalising their untimed 
counterpart below. 

Labelled transition systems 

We define a labelled transition system over a set of (atomic) actions (Act) to have the 
following form: 

LTS = (S, so,---+) 
where S is a finite set of states, 

So e S is the initial state, and 

---+!;;;;; SxActxS is a transition relation {~I aeAct, 3 s,s'e S, s~ s'} 

Timed transition systems 

To extend labelled transition systems with time, we permit two sorts of actions: 
atomic actions (Act) and delay actions (£\) whose elements are denoted by e(d) e £\ 
(for de IR+). We will denote the set oflabels L as Act u £\. We also add time and data 
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variables to our labelled transition system. Let C be a finite set of (positive) real­
valued clocks and let D be a finite set of data variables with Var=CuD. With these 
modifications, each state in our timed transition system now consists of the pair: 

s = (1, u) 
where 1 is a node of the transition system, and 

u is a variable assignment function s.t. for clocks X!: C, u : X --+ IR+ 
and for data variables Y!: D, u : Y --+ Z 

Our initial state is now defined to be So = (10, 00), where 10 is the initial node of the 
transition system, and 00 initialises all clocks [C H 0] and all data variables [D H 0]. 

The above timed transition system can be thought of as a low-level semantic model 
containing an infinite number of node/clock valuation pairs. Consequently, on top of 
this we define timed automata. 

Timed automata 

We use the timed automata of UPPAAL [19] as the basis for this work. We start with 
a standard finite state automaton and extend this with a set of clocks C and data 
variables D, as defined above, such that Var=CuD. Let the set of constraints (guards) 
over Var be represented by G(Var). Note that the values of clocks and variables can 
be compared with constants and/or reset on transitions. Also, conditions on clocks or 
variables may guard a transition and invariants may be assigned to states (which must 
remain true whilst in that state). We define a timed automaton formally as: 

TA = ( S, So,~, I) 
where S is a finite set of states, 

So E S is the initial state, 
~ is a transition relation, 
I: S--+G(Var) is an invariant assignment function for each state 

(this must be satisfied by all variables whilst operating in that state). 

Our transitions are more complex than for the timed transition systems above: 
~ = ( 1, g, a, r, l' ) 

where 1, l' are nodes of the automaton and 
a E L (as above), 

but we also have: 
g is a constraint (guard) s.t. g::=x-c where xeVar, -::=<1=1>, c is a constant 
r is a reset (or reassignment) function s.t. for r!: Var, [r H r']u 

i.e. all variables r are updated; other variables are unchanged (still satisfy u) 
The transitions should also now satisfy the following rules: 

(1, u) ~ (1', u') if g is satisfied by u, and u' = [r H r']u 

(1, u) e(d)) (1', u') if (1 = 1'), u' = u + d, and u' satisfies 1(1'). 
Hence time can pass whilst in a given state. 

Semantic model of LOTOS 

Derivable processes. The operational semantics of LOTOS define a set of axioms 
and inference rules for each possible behaviour description of a specification. From 
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these we can derive a set of transitions that the LOTOS specification may perform, 
and subsequently associate a labelled transition system (LTS) with the specification. 

Let Act denote the set of atomic LOTOS actions and let L denote Act v {i}. Also, 
let Dp denote the (smallest) set of processes derivable from a given process P such 
that: 

P E Dp, and 

ifP' E Dp and 3 a E L, P' --4 P" then P" E Dp 
The labelled transition system for the specification P can now be defined as: 

where S = Dp, 
so=P,and 

LTS =( S, so,~ > 

~= { --4laE L,3 s,s' E Dp, s--4s'}. 

Mapping to timed automata. In order to map an (untimed) LOTOS specification 
onto timed automata, we adopt the following terminology: 

variables: C={}, D={} :. Var={} 
actions: 
states: 
transitions: 

invariants: 

a E Act v {i} v L1 
Vi, Si = Ii and u is irrelevant since Var={} 
-----7 = (1, g, a, r, l' > where Vg, g=true and the set of variables r={} 

Also, (1, u) E(d» (1', u') if (1 = 1') 

I: S ..... Hrue 

Semantic model of QTL 

Syntax of QTL. In this section, we restrict our attention to QTL [4], rather than 
consider the stochastic extensions of SQTL. We plan to return to stochastic issues in 
future work. We formally define the syntax of QTL3 as follows: 

$ ::= false I $) ~ $210 -d $ I $1 U_d $2 I a 11t) - 1t2 

where - ::= < I = I > 
1t E 'P and 1t ::= x I c I x + c (i.e. propositions with addition by constant only) 
dE IR+ 
a E Act (the set of all possible events) 

and ~, 0 and U denote implies, next-state and until respectively. 
Note that other operators can be defined from these in the usual way (e.g. see [4]). 

Clocks. We now let C be a set of clocks, one for each bounded temporal operator in $, 
D be a set of data variables and, as before, Var = C v D. Let u:C~IR+ and u:D~Z!:. 
We allocate the set of clocks as follows: 

C [false] = {} 
C[a] = {} 
C[<!»~<I>2] = C[<I»] u C[$2] 
C[OQ $] = {CQ} u C[$] 
C[<!>IUQ$2] = {CQ} U C[$)] U C[$2] 

To handle the resetting of these clocks, let res($) be a function which resets all 
clocks r in $ to zero; all other clocks keep their value according to u (i.e. for r~C, 
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[r ~O]u). Now, for any occurrence of the timed operators OQ or UQ in a formula, we 
must reset the associated clock: 

[Q ~ 0] E res(OQ<I», and 

[Q ~ 0] E res(<I>IUQ<I>2) 

Derivation Rules. In order to interpret a temporal logic formula as an automaton, we 
first define a set of derivation rules, in much the same way as for LOTOS above. The 
derivative of formula <I> with respect to action a, denoted Det[ <1>], is: 

Det[false] = false 
Det[a] = true if a=a, otherwise false 
Det[<I>t~<I>2] = Det[<I>t] ~ Det [<I>2] 
Det,c [0 -d <1>] = <I> where u(C)=d 

Det,c' [<1>1 U_d<l>2] = (Det,C' [<1>2] where u(C') = d) v 

( Dcx,C' [<1>1] A (<1>1 U=d-u(C,)<I>2) for all u(C') ~ d) 
In order to get our nodes "for the labelled transition system, we define the transitive 

closure of D, denoted D* inductively as follows: 
<I> E D* [<1>], and 
if <p E D*[<I>] then for all a E Act, D.[<p] E D*[<I>] 

Example. To illustrate this process, we consider the simple untimed formula: <I>=<>p. 

Note that <> is a derived operator which is equivalent to TRUE U p; hence we use the 
derivation rules for until, as given above. Our formula has the possible actions p, or 
something other than p (we denote this by the action *). Consequently, oc in the 
derivation rules above can be p or *. Following the rules above, it can easily be shown 
that Dp [<>p] = Dp [p]v<>p, and D. [<>p] = D. [p]v<>p. We now evaluate the 
nested derivatives to get Dpj[p] = true and D. [p] = false. Hence, we now have: 

Dp [<>p] = truevOp = true, and 
D. [<>p] = falsev<>p = <>p 

This shows that the derivative of <>p yields two formulae: true and <>p. We have 
already evaluated D[<>p] hence we need only consider D[true]. The above rules 
state D[true]=true with respect to any action. We will return to this example below. 

Mapping to timed automata. We are now in a position to associate a formula with a 
timed automata. States are composed of nodes and clock assignment functions. The 
conditions for the clock assignment functions are embedded in the definition of D*. 
Transitions have the form: 

~ = (I, g, a, r, I' ) 
where I, l' are nodes ofD*, 

g is a constraint (guard), 
a E Act, and 
r = res( <p) where res is the reset function described above and <pE I 

Also (I,u) ~ (1' ,u') if l' = D.,g[<I>], and u' = [ r ~ 0 ]u 

(I,u) E(d» (1' ,u') if (1=1'), u'=u+d, and u' satisfies 1(1') 
Consequently, we can define our timed transition system for a formula <I> as: 

LTS =( S, so,~, I) 
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where S = D*[<I>] and So = <1>, 

~ = < I, g, a, r, I' ), and 
I: S~G(Var) 

Example revisited. Returning to our example, D· [<I>]={¢p , true}, i.e. we have two 

nodes with So=¢p. By examining the results of the derivation rules with respect to the 
actions p and * we can see that the following automaton is obtained. 

p pl* ~ ~ true 

Figure 2. An automaton representing +=¢p 

Composition 

Given our multi-paradigm approach, we now have several timed automata that we 
must compose together. Let SA be the set of synchronising actions, i.e. those actions 
on which the execution of each automaton should synchronise. We will denote the 
synchronisation function by f(at.a2)4; this defines that two actions al and a2 
synchronise (provided al:;t:i and a2:;t:i). Note that our algorithm applies to intra­
language composition (e.g. composing two automata) as well as inter-language 
composition (e.g. composing LOTOS with an automaton). 

Let SI=(lt.ul)e SI and S2=(l2,u2)e S2 where SI and S2 are timed automata. Also, for 
LOTOS let L=ActLOTOsv{i}, for QTL let L=Ac1QTLva, and for TA, let L=ActTAva. 

The composition rules are given in the table below. 

Table 1. Rules for the composition 81 liSA 82 (where ae L) 

SI~sl"a~SA 1 
liS g,a,r 'lis sl A s2~sl A s2 

S ~s 'a~SA 2 2' 2 

lis g,a,r lis ' sl A s2~sl A s2 

sl 
gl,al,rl , g2,a2,r2 lS 'aeSA wheref(al,a2)=a, 3 'SI,s2 2' 

sl lisA s2 g,a,r )S 'lis s' g = glAg2andr = rlvr2 
1 A 2 

s~s's~s' 1 1 ' 2 2 wheresj = (lj'Uj) andsj '= (lj',Uj ') ~ 
lis e(d) 'lis ' sl A s2~sl A s2 

andlj'=lj,uj'=Uj +d 

The resulting composition can be defined as: 
Comp = < S, So,~, I) 



where 8 is a finite set of states s.t. Sl liSA S2 E 8 <=> Sl E 81 and S2 E 82, 

So E S is the initial state s.t. So = SO,I liSA 80,2' 
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~ = < 1, g, a, r, l' ) is a transition relation derived from rules 1-4 above, 
l(sl liSA S2) = l(SI) A 1(S2) 

Validation and performance modelling 

Once we have composed our specifications together, a number of validation 
techniques can be performed. At this stage, since we have a global model, there is no 
difference between our multi-paradigm approach and a sin~le-language (timed) 
approach. The following figure (3) illustrates several possible validation strategies. 

Reauirements 

Telllllorallolric 

Event scheduler 

Model Cbeckin= 

FORMAL ¢:::::::lIlO 
specttumof 
techniques Olle:::::::> PRACTICAL 

Figure 3. Validation and synthesis possibilities from the global model 

Firstly, model checking involves considering a set of user requirements, and 
proving that these requirements satisfy our (combined) specification. Secondly, 
performance analysis techniques such as reachability analysis can be applied to 
explore the state space of our global model. Thirdly, ''real-world'' monitors and 
controllers can be synthesised from our formal specification and can be used to 
manage a real system. A more detailed description of these techniques is beyond the 
scope of this paper. Consequently, for model checking techniques we refer the reader 
to [1] and [2] and to our previous work in [4] and [18], for details of reachability 
analysis strategies see [15], and for details of the synthesis of monitors and controllers 
see [6] and [7]. 

Example: a multi-way phone system 

Informal description 

The example we present in this paper is that of a simple multi-way phone system. 
Although this is not an example of a multimedia system, we feel that it nicely 
illustrates our approach and the process of composition. Multimedia examples can be 
found in our other work (e.g. [4] and [6]). The LOTOS specification for this multi-
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way phone system was previously presented as part of a LOTOS tutorial [12]. An 
informal description of the system is provided in table 2, and Appendix A contains an 
abbreviated listing of the LOTOS specification. 

Table 2. An informal description of a multi-way phone system 

Basic behaviour: 
• When a phone (A) is lifted off-hook, a dial 

tone occurs. 
• If phone 8 is off-hook, A gets an engaged 

tone. In this case, phone A must be 
placed on-hook or the dial request 
cancelled. 

• If B does not answer, either phone A 
must be placed on-hook or the dial 
request cancelled (both of which cause 
phone 8 to stop ringing) 

• A phone can be either on or off-hook. 
• A may now dial a second phone (8). 
• If phone B is on-hook, A gets a ring tone 

and phone 8 starts ringing. 
• If 8 answers (with an off-hook whilst 

ringing), a connection is made 
between A and 8 and a conversation 
may occur. Either phone may 
terminate the conversation by placing 
their phone on-hook. 

Real-time behaviour 

More than 2 connections: 
• During a conversation, either party may dial 

a third party, e.g. 8 dials C. 
• If C is off-hook, 8 gets an engaged tone. 8 

must cancel the dial request before 
dialling again. A and 8 remain 
connected throughout. 

• If C Is on-hook, B gets a ring tone and C 
starts ringing 

• If C does not answer, B must cancel the 
dial request before dialling again. Again, 
A and 8 remain connected. 

• If C answers, a connection is made 
between Band C and, since A is 
currently connected to B, a connection is 
also made between A and C. 

• If 3 (or more) phones are connected and 
one of them puts their phone on-hook, 
the other phones remain connected. 

Whilst the LOTOS specification has provided us with a good description of abstract 
behaviour, it does not permit the specification of real-time behaviour. Timed 
extensions to LOTOS have been developed, but we believe that such languages lead 
to a tangling of aspects (c.f. [17]). Our belief is that, by maintaining a separation of 
aspects at a specification level, large and complex specifications can be developed 
that are simpler to understand and maintain. To illustrate this idea for real-time 
behaviour, we consider two constraints over the abstract LOTOS specification, using 
the real-time temporal logic, QTL. We assume that our unit of time is seconds. 

Constraint 1. If one user dials another user whose phone is on-hook, then the remote 
phone starts ringing within 1 second. 

4\: 0 ( dial !ringtone ?p:id_sort ?to:id_sort ~ <> SI ring Ito ) 

This formula states that it is always the case that whenever a "dial !ringtone" event 
occurs (with parameters p and to) then, in some state in the future bounded by one 
second, a ''ring !to" event will occur, i.e. the phone with id "to" will start ringing. 
Intuitively the symbol ! represents the output of some data on the occurrence of the 
associated action, whilst ? represents the input of some data. It is the job of the 
synchronisation function (mentioned earlier) to handle how different input/output 
events behave when composed in parallel. 

We could similarly place constraints on the time between "on !after_ringtone" and 
"stop_ring" events and between "cancel !aftecringtone" and "stop_ring" events. 
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Constraint 2. A phone can ring unanswered for a maximum of 30 seconds before 
being automatically cancelled. 

11>2: 0 ( dial !ringtone ?p:id_sort ?to:id_sort ~ (¢ <30 ( on !aftecringtone !p Ito 

v connect !p Ito ) v ¢ SJo cancel !aftecringtone !p Ito ) 
With this formula, whenever a "dial !ringtone" occurs then, in some state less than 

30 seconds into the future, either an "on !aftecringtone" or a "connect" will occur, or 
at a future state :S;30 seconds from now, a "cancel !aftecringtone" will occur. 

Monitors and controllers 

A third aspect involves the behaviour associated with quality of service management. 
Although this is usually associated with multimedia examples, we can illustrate the 
principle of monitors and controllers using our phone example. We will consider two 
scenarios below and formalise the required behaviour using timed automata. For 
convenience, we will assume that the unit of time here is minutes. 

Scenario 1. To prevent overloading the exchange, management imposes a temporary 
restriction on the number of phones off-hook at a given time (limited to 3) until a 
more permanent solution is found. 

MONITOR! 
off !dialtone ?p:phone_id 

~69 
on ?p:phone_id v 

on !aftecringtone ?p:phone_id 
x:=x-l 

CONTROLLER! 
x<3 

on ?p:phone_id v 
on !after_ringtone ?p:phone_id 

Figure 4. Automata to monitor and control the number of phones off_hook 

Figure 4 illustrates two automata, a monitor and a controller, that together achieve 
the desired behaviour of scenario 1. The first automaton shows a data variable x being 
used as a count for the number of off-hooks at any given time. The variable is 
incremented whenever an off-hook occurs and decremented whenever an on-hook 
occurs. This variable is then used in the second automaton to implement the policy 
that x should always be less than, or equal to, 3. Note that the two automata 
synchronise on the LOTOS events "off !dialtone", "on" and "on !aftecringtone". The 
values of p:phone_id are instantiated through synchronising with the LOTOS 
specification (see Appendix A). 

Also note that, although it would be possible to combine the monitor and controller 
as one automaton, we choose to keep them separate. Whilst not significant for small 
examples, as the behaviour becomes more complex, this separation means that control 
policies are immediately identifiable and easily changed. 
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Scenario 2. Management is alerted to the amount of time that the user of phone 1 
spends talking on the phone. They decide to monitor the time carefully and set the 
user a quota of 20 minutes per day (but, at least initially, without the drastic action of 
disconnecting any connection in progress on reaching the 20 minute quota). If the 
quota is exceeded, the user receives a quota violation signal and is barred from getting 
a dial tone (ofChook event) until the following day when the quota is reset. 

MONITOR2 

d<i440 

Figure 5. Automata to monitor and control the connection time of phone 1 

Figure 5 illustrates the monitor and controller aspects of the second scenario. In the 
first automaton, a clock variable d is used to count up to 1440 (the number of minutes 
in a day) before being reset. In this time, if an off-hook of phone 1 occurs followed by 
a connection with another phone, then another clock variable t is initialised. When 
phone 1 is returned on-hook, q is incremented by the current value of t. In this way, q 
keeps track of the cumulative connection time of phone 1. In the controller automaton, 
phone 1 is only allowed to perform an off-hook if the value of q is S 20. Otherwise, a 
quota violation is reported and the user of phone 1 must wait for the quota to be reset. 

Composition 

The above examples have illustrated the principle of our multi-paradigm specification 
approach. We now use these examples to illustrate the composition process. Whilst a 
shortage of space precludes the presentation of the complete composition process, we 
start with the composition of the monitors and controllers for the two scenarios 
presented above. Note that a worked example of the complete composition process 
can be found in a companion paper currently under development. 

To simplify the presentation of this example below, we adopt the following 
shorthand: we consider "on" and "on !after_ringtone" events as the same event, we 
use "onll2/3" to denote "on !idl von !id2 v on !id3" and "offl/2/3" to denote "off 
!dialtone lid! voff !dialtone !id2 v off !dialtone !id3". We note that the monitor and 
controller for scenario 1 synchronise on the events "onll2/3" and "offl/2/3"; for 
scenario 2, they synchronise on "on1", "off!" and ''reset''. The results of the two 
compositions are shown in figure 6. 

The next stage is to compose C) and C2 together, synchronising on events "on1" 
and "offl". This is presented in appendix B. As can be seen, the composed behaviour 
soon becomes quite complex, but can be calculated using the tool reported in [16]. By 
combining this automaton with the labelled transition system generated from the 
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LOTOS specification (from Appendix A), we get an even larger automaton (with 143 
states). Clearly, this is too large to be (meaningfully) presented in this paper. Finally, 
we can impose our real-time constraints over the system by composing formulae <\>1 

and <\>2 with the rest of the behaviour. 

C! = MONITOR! II CONTROLLER! 

x>O 
on 11213 
x:=x-l 

x<3 
off1l2l3 
x:=x+l 

x=3 

~ on1l2l3 
x:=x-l 

Figure 6: Composition of monitors and controllers for scenarios 1 (C1) and 2 (C2) 

Conclusions 

In the introduction to this paper, we gave a number of advantages for multi-paradigm 
specification techniques. However, before such claims can be realised, it is important 
to provide tractable solutions to the problems of determining consistency and 
achieving composition between partial specifications. Problems of consistency have 
been considered in detail by collaborators in our current EPSRC project e.g. [11]. We 
therefore focus on composition in multi-paradigm techniques. Our approach to 
composition is based on a common global model using timed labelled transition 
systems and timed automata. It should be noted that the Kronos tool [22], supports the 
composition of automata (to produce a product automaton). However, to our 
knowledge, ours is the first piece of work (and tool) to support composition and the 
verification of specifications developed in a multi-pari).digm setting. Crucially, such 
an approach enables a wide range of specification techniques to be employed. Finally, 
our approach also gives us the advantage that we can map to realisable dynamic QoS 
management components. 

We have illustrated the expressiveness of multi-paradigm specification techniques 
through a simple example of a multi-way phone system. The basic behaviour is 
written in LOTOS, a language ideally suited to the abstract specification of such 
systems. The resultant specification is clean and uncluttered. We then imposed real­
time constraints on the phone system, expressing such constraints in the real-time 
temporal logic, QTL. Again, this proved to be a good notation to express the required 
properties. Finally, we introduced additional management concerns into the system 
using timed automata. Importantly, we have also given an illustration of composition 
in this example (focusing on timed automata). 

Ongoing research is considering further the specification and verification of 
adaptive multimedia behaviour, extending the composition framework (and associated 
tool) to enable the expression of probabilistic and stochastic behaviour and 
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incorporating more advanced model checking techniques. We are also currently 
extending our work to use branching time temporal logic. 

Acknowledgements 

We would like to acknowledge the financial support of EPSRC (grant reference 
number GRlL28890), and also the contribution of our collaborators on the V -QoS 
project, namely Howard Bowman, John Derrick and Jeremy Bryans (University of 
Kent at Canterbury). Our thanks also go to Abderrahmane Lakas for his work on 
algorithms and tool support for event schedulers (whilst working on an earlier EPSRC 
project), and to Anders Andersen for his work on the realisation of QoS management 
monitors and controllers. Finally, thanks to Trevor Jones for his recent work on the 
development of our tool, and ongoing work relating to branching time temporal logic. 

Endnotes 

1. Computing Dept., Lancaster University, Lancaster LAl 4YR, e-mail: {lb.gordon}@comp.lancs.ac.uk 
2. Note that in [18], we call the labelled transition system derived from the temporal logic formulae an 

event scheduler. Intuitively, the aim of this event scheduler is to schedule the functional behaviour 
(events) according to the specified QoS properties. To achieve this, every enabled action in the 
LOTOS derived labelled transition system is submitted to the eveut scheduler. The event scheduler 
then decides, according to the timing constraints (and/or stochastic constraints for the case of SQTL), 
if this action is allowed to happen, and, if so, when it will happen. 

3. Note that, for simplicity, we have not considered pasttense operators here. 
4. Also related to the concept of a synchronisation function are correspondence relations (see [9]). 
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Appendix A. An abbreviated (uncommented) spec. of a multi-way phone system 

specification phone_system[off, on, dial, 
cancel, ring, stop_ring, connect]: noexit 

behaviour 
Phones[off, on, dial, cancel, ring, 

stop_ring, connect] 
II Exchange[off, on, dial, cancel, ring, 

stop_ring, connect] 
(() of LisUds, {} of ListPairs) 

where 

process Phones[off, on, dial, cancel, ring, 
stop_ring, connect] : noexit := 

Phone[off, on, dial, cancel, ring, stop_ring, 
connect](id1 ) 

III Phone[off, on, dial, cancel, ring, stop_ring, 
connect](id2) 

III Phone[off, on, dial, cancel, ring, stop_ring, 
connect](id3) 

endproc 

process Phone[off, on, dial, cancel, ring, 
stop_ring, connect](p:idsort) : noexit := 

( MakeCall[off, on, dial, cancel, ring, 
stop_ring, connect](p) 

[] ReceiveCall[off, on, dial, cancel, ring, 
stop_ring, connect](p) ) 

» Phone[off, on, dial, cancel, ring, 
stop_ring, connect](p) 

endproc 

process MakeCall[off, on, dial, cancel, ring, 
stop_ring, connect](p:idsort) : exit := 

off !dialtone !p; 
DiaISomeone[off, on, dial, cancel, ring, 

stop_ring, connect](p) 
endproc 

process ReceiveCall[off, on, dial, cancel, ring, 
stop_ring, connect](p:idsort) : exit := 

ring !p; 
( stop_ring !p; exit 
[] off !connect !p; 

DiaISomeone[off, on, dial, cancel, ring, 
stop_ring, connect](p) ) 

endproc 

process DiaISomeone[off, on, dial, cancel, 
ring, stop_ring,connect](p:idsort) : exit := 

(dial !ringtone !p ?callee:idsort; 
NotEngaged[off, on, dial, cancel, ring, 

stop_ring, connect](p, callee) ) 
[] (dial !engagedtone!p ?callee:idsort; 

Engaged[off, on, dial, cancel, ring, 
stop_ring, connect](p, callee) ) 

[] ( on !p; exit) 
endproc 

(p, callee:idsort) : exit := 
( on !aftecringtone !p !callee; exit) 

[] (cancel !afteuingtone!p !callee; 
DiaISomeone[off, on, dial, cancel, ring, 

stop_ring, connect](p» 
[] ( connect !p !callee; 

DiaISomeone[off, on, dial, cancel, ring, 
stop_ring, connect](p) ) 

endproc 

process Engaged[off, on, dial, cancel, ring, 
stop_ring, connect] 
(p, callee:idsort) : exit := 

(cancel !after_engagedtone !p; 
DiaISomeone[off, on, dial, cancel, ring, 

stop_ring, connect](p) ) 
[] ( on !p; exit) 

endproc 

process Exchange[off, on, dial, cancel, ring, 
stop_ring, connect] 
(eng:Listlds, conn:ListPairs) : noexit := 

SubExchange[off, on, dial, cancel, ring, 
stop_ring, connect](eng, conn) 

»accept eng:Listlds, conn:ListPairs in 
Exchange[off, on, dial, cancel, ring, 

stop_ring, 
connect](eng, conn) 

endproc 

process SubExchange[off, on, dial, cancel, ring, 
stop_ring, connect](eng:Listlds, 
conn:ListPairs) : exit(Listlds,ListPairs) := 

( off !dialtone ?p:idsort; 
exit(lnsert(p,eng),conn»)) 

[] ( on ?p:idsort; 
exit(Remove(p, eng), fully_remove(p, 

conn» ) 
[] ( on !afteuingtone ?from:idsort ?to:idsort; 

stop_ring Ito; exit(Remove(from,eng), 
fully_remove(from,conn») 

[] ( dial ! ringtone ?p:idsort ?to:idsort 
[SystemPhone(to) and (to NoUn eng)]; 

ring Ito; exit(eng, conn) ) 
[] (dial !engagedtone ?from:idsort ?to:idsort 

[SystemPhone(to) and (to Isln eng)]; 
exit(eng, conn) ) 

[] ( cancel !after_ringtone ?from:idsort 
?to:idsort; 

stop_ring ito; exit(eng, conn) ) 
[] ( connect ?from:idsort ?to:idsort; 

off !connect Ito; exit(lnsert(to, eng), 
fully_connect(from,to, conn») 

[] ( cancel !after_engagedtone ?p:idsort; 
exit(eng, conn) ) 

endproc 
process NotEngaged[off, on, dial, cancel, ring, 

stop_ring, connect) endspec 
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Appendix B. Composition of timed automata Cl and C2 

Table B1. Labels for the timed automata representing the composition of Cl and C2 

These labels serve to simplify the presentation of the graph below. Note that the 
composition ofCI and C2 synchronises on events "onl" and "offl". The result 
is presented below in figure B 1. 

Figure B1: The timed automata representing the composition of C1 and C2 


