
AN ALGEBRA OF ACTORS
Mauro Gaspari Gianluigi Zavattaro

Department of Computer Science, University of Bologna,

Mura Anteo Zamboni 7, 40127 Bologna, Italy.

gaspari,zavattar@cs.unibo.it

Abstract: We introduce an object-oriented language following a "process algebra"
style. The idea is to define a formalism that enjoys a clean formal definition allowing
the reuse of the rich algebraic theory typical of the process algebras in a context where
an high level object oriented programming style is preserved. We provide an operational
semantics based on a labelled transition system which allows to discuss, e.g., how different
notions of equivalence, such as standard and asynchronous bisimulation, can be adapted
to reason about our language. Finally, we illustrate the framework showing that an explicit
receive primitive expressing a synchronization constraint or an update operation on the
state of an object can be implemented in the language preserving a notion of observation
equivalence among objects.

INTRODUCTION

The object-oriented research community developed techniques, tools and environments
that have been applied to several software development projects in the context of a wide
range of application domains. In particular, distributed object-oriented programming
is one of the most promising candidate paradigms to build large scale distributed
systems. OMG the Object Management Group consortium, CORBA [28] the object­
oriented standard for integrating applications running in heterogeneous distributed
environments developed by OMG, and Java [30, 12], the internet language developed
by Sun Microsystems, are all examples of such efforts.

Objects are the basic entities in an object-oriented system. Objects have a local
memory, a set of attributes, a behaviour, and a set of procedures and/or functions
(methods) that defines the meaningful operations. In distributed Object-Oriented sys­
tems objects are autonomous reactive units executing concurrently and interacting by
message-passing, which is typically asynchronous and unordered.

On the other hand, most of the theoretical computer science efforts in the theory of
concurrency are oriented to study process algebras such as CCS [17] or the 1I"~calculus
[18] which do not provide a direct representation of objects as first class entities.

P. Ciancarini et al. (eds.), Formal Methods for Open Object-Based Distributed Systems
© Springer Science+Business Media New York 1999

4

In these formalisms processes are stateless entities (i.e. entities without an explicit
local memory) which communicate exploiting synchronous message passing and the
representation of an object involves a large number of processes [29].

As a consequence of this situation there is a big gap between theory and practice,
and whether or not results developed from the theory of concurrent systems, such as
the theories of equivalence for process algebras, can be successfully applied to real
object-oriented distributed systems, is still an open issue.

The aim of this paper is to provide a step in this direction showing that it is possible to
define a process algebra based on a distributed object oriented model. The main result is
the development of a formalism that enjoys a clean formal definition and a rich algebraic
theory, like the lI'-calculus, while preserving a high level object oriented programming
style. This formalism allows us to reuse standard results of the theory of concurrency
in a context where object identity, asynchronous message passing, an implicit receive
mechanism and support for dynamic object creation, are provided. In particular, we
show that the language can be extended with primitives expressing state updating
operations and synchronization constraints, preserving observation equivalence.

Objects as Actors

Process algebras, like CCS [17] and CSP [14], have been developed as formalisms
for the study of concurrent systems. Initially, process algebras allowed interprocess
communication via a static structure of channels between processes. Mobility, one of
the basic features of modern object oriented systems (where new objects can be created
at run time and/or moved in different locations), was not easily representable in these
formalisms.

The lI'-calculus [20] can be considered the main attempt in order to overcome these
limitations. In fact, it has been introduced as a calculus for mobile processes, i.e.,
processes witli a dynamically changing linkage structure. The lI'-calculus has been
developed taking into account a synchronous handshake communication mechanism
between processes. More recently [15, 8] also an asynchronous fragment of the 11'­

calculus has been studied in order to analyze also the asynchronous communication
mechaniSm and its similaritiesldifferencies with the synchronous one [22] .

There have been several attempts to adopt the lI'-calculus and its asynchronous
version, for modelling interaction in the context of concurrent object oriented pro­
gramming languages [18, 29, 23], but these approaches seem not completely satisfying
mostly because they do not provide the concept of an object as a first class entity.

On the other hand, the actor model [13, 2] directly deals with many features of
object oriented systems, such as object identity, asynchronous message passing, an
implicit receive mechanism, and support for object creation; an actor has tlie same
structural and interaction properties as an object.

The Actor Model

The actor model was introduced by Carl Hewitt about 20 years ago [13]. Actors are
self-contained agents with a state and a behaviour which is a function of incoming
communications. Each actor has a unique name (mail address) determined at the time

5

of its creation. This name is used to specify the recipient of a message supporting
object identity, a property of an object which distinguishes each object from all others.
Object identity is a typical feature of object-oriented programming languages and it is
used as basic dispatching mechanism in message passing. This property is not easily
embeddable in formalisms such as CCS [17] (or asynchronous tr-calculus [15, 8]),
where message dispatching is performed by means of channels. In these formalisms the
association address-process is not unique: a process may have several ports (channels)
from which it receives messages and the same cbannel can be accessed by different
processes.

Actors communicate by asynchronous and reliable message passing, i.e., whenever
a message is sent it must eventually be received by the target actor. Actors exploit
an implicit receive mechanism. A receive operation is explicit wben it appears in
programs, while it is implicit when it does not correspond to an operation in the
programming language and it is performed implicitly at certain points of the compu­
tation. An implicit receive mechanism is common in object-oriented programming
where objects can be seen as passive entities which react to messages or to method
invocation.

Actors make use of three basic primitives which are asynchronous and non-blocking:
create, to create new actors; send, to send messages to other actors; and become, to
change the behaviour of an actor [2].

There are four main differences between the asynchronous tr-calculus and the actor
model:

• The asynchronous tr-calculus does not support first class object identity, while
this is a basic feature of the actor model.

• In the asynchronous tr-calculus processes are stateless entities while actors have
an associated state.

• The asynchronous tr-calculus is based on an explicit receive primitive, while ac­
tors exploit an implicit receive mechanism, which does not appears in programs.

• Finally, the asynchronous tr-calculus does not assume a fair (reliable) message
delivery mechanism, while the actor model assumes reliability.

Results

In the past few years, several advances have been achieved on the semantics of actors,
dealing with aspects of communication and concurrency [5,4,26,25, 16], but these
papers do not investigate the relationships of the actor model with traditional process
algebras, even though recently Robin Milner [19] suggested that it may be worthwhile
to work in this direction. Thus, the question whether some of the results that have been
proved in the context of process algebras can be imported in the actor model and in
general in object-oriented distributed systems is still an open issue.

The main results presented here concern this issue. In particular, we provide a
process algebra based on the actor model, we discuss how standard notions of equiva­
lence can be formulated in this context, and we exploit the framework illustrating the

6

encoding of an update operation on the state of an actor and of an explicit receive prim­
itive expressing a synchronization constraint which preserves a notion of observation
equivalence among actors. Our process algebra captures all the main features of the
actor model except the reliability assumption.

AN ALGEBRA OF ACTORS

Let A be a countable set of actor names: a, b, c, ai, bi , ... will range over A and
L, L', L", . .. will range over its power set P(A) (i.e., L, L', L" ~ A). Let V be a
set of values (with A c V) containing, e.g., NfL, true, false. We assume value
expressions e built from actor names, value constants, value Variables, the expressions
self, state, and message, and any operator symbol we wish. In the example we will
present we will use standard operators on sequences: 1st, 2nd, rest, empty. We will
denote values with v, v', v", ... when they appear as contents of a message and with
s, s', s", . .. when they represent the state of an actor. [e]: gives the value of e in V
assuming that a and s are substituted for self and state inside e; e.g. [self]: = a
and [state]: = s. The special expression message represents the contents of the last
received message. Whenever a message is received, its contents is substituted for each
occurrence of the expression message in the receiving actor.

Let C be a set of actor behaviours: C, D, ... will range over C. We suppose that

every behaviour D is equipped with a corresponding definition D d~ P where P is a
program, that is a term defined by the following abstract syntax:

P ::= become(C, e).P I send(el, e2)'P I create(b, C, e).P I
el : Pl + ... + en : Pn I J

Observe that we allow recursive behaviours to be defined, for example we could have

C d~ become(C, state).';.
Actor terms are defined by the following abstract syntax:

A ::= ac. I a[Pj. I (a, v) I AlA I A\a I 0

An actor can be idle or active. An idle actor ac. (composed by a behaviour C, a
name a, and a state s) is ready to receive a message. When a message is received
the actor becomes active. Active actors are denoted by a [P]. where P is the program
that is executed. The actor a will not receive new messages until it becomes idle (by
performing a become primitive). Sometimes the state s is omitted when empty (i.e.
s = 0). A program P is a sequence of actor primitives (become, send and create) and
guarded choices el : PI + ... + en : Pn terminating in the null program J (which is
usually omitted). An actor term is the parallel composition of (active and idle) actors
and messages, each one denoted by a temt (a, v) where v is the contents and a the
name of the actor the message is sent to. Also a restriction operator A \a is used in
order to allow the definition of local actor names (A\L is used as a shorthand for
A\al \ ... \an if L = {at, ... , an}) while 0 is the usual empty term.

The actor primitives and the guarded choice are described as follows.

• send:
The program send(el' e2)'P sends a message with contents e2 to the actor

Send

Deliver

Table 1 Operational semantics.

a[send(el' e2).P] • ..:..... alP]. I ([el]:, [e2]:)

(a,v) ~ 0

Become a[become(C, e).P'] • ..:..... (d[p' {a/ self}]s)\d I aqe): d fresh

Create a[create(b,C,e).P']s..:..... (a[p'{d/b}]s Idqe]~)\d dfresh

Receive ac. ~ a[P{v/message}]s ifCd;J P

Guard a[el : PI + ... + en : Pn]s ..:..... alP;]. if [ei]: = true

A~A'
Res

A\a ~A'\a

A~A'
Open

A~A'
Par

AIB~A'IB

A~A' B~B'
Sync

AlB":"'" (A'IB') \ L

B == A A ~ A' A' == B'
Cong

B~B'

indicated by el:
a [send(el, e2)'P]s .2.t alP]. I ([el]~' [e2]~)

a f/. n(a)

af:b /\ bEn(v)

if a = avL then
a f/. act(B) /\
L n fn(B) = 0

where l' represents an internal invisible step of computation.

• become:

7

The program become(C, e).P' changes the state of the actual actor from active
to idle:

a[become(C, e).P'] • .2.t (d[p'{ a/ sel!}].)\d I aqe]: with d fresh
The primitive become is the only one that permits to change the state according
to the expression e; we sometimes omit e if the state is left unchanged (Le.
e = state). The continuation P' is executed by the new actor d[P'{a/sel!}] •.
This actor will never receive other messages (Le. it is unreachable) as its name
d cannot be known to any other actor. Indeed, the expression self, which is the

8

only one that returns the value d, is changed in order to refer to the name a of
the initial actor.

• create:
The program create(b, C, e).P' creates a new idle actor having state s and
behaviour C:

a[create(b, C, e).P'l • .2...t (a[p'{d/b}l.1 dqe]~)\d with dfresh
The new actor receives a fresh name d. This new name is initially known only
to the creating actor, in fact a restriction on the new name d is introduced.

• eI: PI + ... + en : Pn:
In the agentel: PI + ... + en : Pn, the expressions ei are supposed to be
boolean expressions with value true or false. The branch Pi can be chosen
only if the value of the corresponding expression ei is true:

a[el : PI + ... + en : Pnl • .2...t a[Pd. if [ei]~ = true

The function n returns the set of the actor names appearing in an expression, a program,
or an actor term. Given the actor term A, the set n(A) is partitioned in fn(A) (the free
names in A) and bn(A) (the bound names in A) where the bound names are defined
as those names a appearing in A only under the scope of some restriction on a. We
use act(A) to denote the set of the names of the actors in A. An actor term is well
formed if and only if it does not contain two distinct actors with the same name. In the
following we will consider only well formed agents, and we will use r to denote the
set of well formed terms (A, B, D, E, F, ... will range only over n.

We model the operational semantics of our language following the approach of
Milner [18] which consists in separating the laws which govern the static relation
among actors (for instance AlB is equivalent to BIA) from the laws which rules
their interaction. This is achieved defining a static structural equivalence relation over
syntactic terms and a dynamic relation by means of a labelled transition system [24].

Definition 1 - Structural congruence, is the smallest congruence relation over actor
terms (==) satisfying:

(i)
(ii)
(iii)
(iv)

a[v'1. == 0 (v)
Alo == A (vi)
AlB == BIA (vii)
(AIB)ID == AI(B~Dz)ii)

O\a == 0
(A\a)\b == (A\b)\a
(AIB)\a == AI(B\a)
A\a == A{b/a}\b

where a ¢ fn(A)
where b isfresh

Definition 2 - Computations. A transition system modelling computations in the
actor algebra is represented by the triple (r, T, { ~ I a E T}). T = {T} U
{av, avL I a E A, v E V, L ~ A} is a set of labels, where T is the invisible action
standing for internal autonomous steps of computation; av and avL respectively
represent the receiving and the emission of the message with receiver a and contents
v. The set L in the label avL represents the set of actor names in the expression v
which were initially under the scope of some restriction. ~ is the minimal transition
relation satisfying the axioms and rules presented in Table 1.

9

The rules Send, Become, Create and Guard have been already discussed. Rule
Deliver states that the term (a, v) (representing a message v sent to the actor a)isable
to deliver its contents to the receiver by performing the action i:iV0. The corresponding
receiving action labeled with. av can be performed by the actor a when it is idle (rule
Receive). The other rules are simply adaptation to our calculus of the standard laws for
the 1r-calculus. The most interesting difference is due to the fact that in our calculus,
more than one restriction can be extended by one single delivering operation. In fact,
in our case the contents of a message is an expression instead of a unique name. This
is the reason why we have added the set L to the label av L. Another difference is in
the rule Par: the actor term AlB can deliver a message inferred by A (i.e., execute an
emission action avL), only if B does not contain the target actor (i.e., a ¢ act (B).

Discussion

There are several differences with respect to the formal semantics of actors in [5, 4]
and in [26] which is worth to point out.

• We do not assume a fair message delivery mechanism as in [5, 4] and in [26].

• The algebra of actors describes only communication and synchronization prim­
itives, while in the semantics of Agha et al. actor primitives are embedded
in a functional language. This enables us to focus on concurrency and inter­
agent communication related aspects and not deal with issues concerning the
sequential execution of programs inside actors.

• The operational semantics of the algebra of actors is defined by means of a
labelled transition system instead of a simple reduction system as in [5] or the
rewriting rules in [26]. This allows to use standard observational equivalences
of process algebras e.g., bisimulation, testing, failure or trace, without defining
explicit observers.

• We have introduced the guarded choice as an alternative to the conditional which
is present in previous formalization of actors [5].

• We provide an explicit representation of the state of an object while in Agha et
al. the state of an actor is represented as part of its behaviour.

• We have introduced a mechanism to model termination of actors. Actors are not
perpetual processes with a default behaviour as usual, but they can terminate:
an actor terminates whenever it finishes its internal computation. This is not
a limitation because a perpetual actor can always he obtained performing an
explicit become operation for each internal computation.

• In the algebra of actors, actors are created exploiting a single basic primitive,
while in the semantics of Agha et al. the creation process is composed of two
basic operations, the creation of an empty actor and the initialization of its
behaviour. The main advantage of our approach is that we do not need to restrict
the possible computations to guarantee an atomic create operation.

10

• We introduce a restriction operator similar to the one of the 1r-calculus. This
operator is more tractable with respect to the approach of [5] based on the specifi­
cation of the sets of receptionists and external actors in actor configurations. On
the other hand, the calculus presented in [26] uses the inverse operator indicating
the actors which are reachable from the outside world explicitly.

• In the operational semantics of Agha et al. a receiving rule that is reminiscent of
the rule IN of [15] is used. This rule (as discussed in [7]) has the disadvantage to
give rise to infinite branching: the transition system allows each term (containing
at least one receptionist) to activate an infinite number of transition, at least one
for each possible message that can be sent to one of the receptionists. If, for
example, a receptionist will be no more able to receive a message (e.g., it is
executing an infinite computation) or external actors never send messages to a
receptionist, the transition system make possible (infinite) useless transitions.
One of the most important advantages of the rule IN is that it allows the definition
of observational semantics (e.g., bisimulation) that capture interesting aspects of
asynchronous communication. Instead we follow the approach of [7], where it
is shown that the same observational semantics can be obtained by eliminating
the problem of infinite branching by slightly modifying the usual (synchronous)
observational semantics.

• Finally, here we define only equivalences for actor terms while Agha et al.
[6] consider equivalences for both actor expressions and actor configurations.
However, it is not difficult to define equivalences for processes also in our setting.
For example, we could consider two expressions equivalent whenever they are
interchangeable in each possible actor term.

EQUIVALENCE OF ACTOR TERMS

As already stated, one of the advantages of having introduced a semantics for actors
based on a labeled transition system is that standard observational semantics for process
algebras can be used. In this section we investigate two of them based on the notion of
bisimulation: the weak bisimulation [17] (only bisimulation in the following) and the
asynchronous weak bisimulation [15, 7] (only asynchronous bisimulation in the fol­
lowing) which is the corresponding equivalence for languages based on asynchronous
communication.

Sisimulation

In order to define equivalences which does not take into account the r steps, we recall
the notion of weak transition which allows to contract successive r-steps:

p :::S> pI iff P(~)* pI
P ~ pI iff exists pll and pili S.t. P :::S> pll ~ pili :::S> pI (for a =j:. T)

Observe that given P ~ pI also the case in which no steps are performed is permitted
(in this case pI is the same as P).

11

Definition 3 - Bisimulation. A symmetric relation 'R on actor terms ('R ~ r x r) is
a bisimulation if(A, B) E 'R implies:

• if A ~ A' then there exists B' such that B ~ B' and (A', B') E 'R.

1Wo actors A and Bare bisimilar, written A Rl B, if there exists a bisimulation 'R
such that (A; B) E'R.

As for the asynchronous 1r-calculus [7], also in our language the bisimulation relation
is a congruence; in fact, we have that if A Rl B then for every actor term D and actor
name a, AID Rl BID and A \ a Rl B \ a.

Example 1 Since for actors there is arrival-order non-determinism in message deliv­
ery, it is expected that the bisimulation equivalence does not depend on the order in
which send operations are performed. To illustrate that the bisimulation captures this
notion we consider a simple example of two actor terms: A = a BreakPairl and
B = a BreakPair2 which receive pairs andforward to the actor b the elements of
the pair: BreakPairl in the same order they appear in the pair, BreakPair2 in the
inverse one.

BreakPairl

. BreakPair2

send(b, lst(message)).send(b, 2nd(message)).
become(BreakPairl)

send(b, 2nd(message)).send(b, lst(message)) .
become(BreakPair2)

We have A Rl B. In fact, the actors A and B cannot be distinguished because the
sending order cannot be observed (the emission of a message consists of a local T-step).

Example 2 Consider the actor term A = a Double which receives messages rep­
resented as pairs (b, v) where the first argument is an actor name and the second
argument is an integer, and sends to the actor b the integer 2 * v. This behaviour is
definedformally below:

Double d~ send(lst(message), 2 * 2nd(me"ssage)).become(Double)

Suppose now that we want to build an interface that receives messages andforwards
them to an actor which doubles them. This job is performed by the actor term:

B = a Forward I b Double

where the behaviour Forward is:

Forward d~ send(b, message).become(Forward)

The actor terms A and B are not equivalent because the term B has two addresses
that can be reached from the outside (the action bv cannot be observed in the term A).

The intuition of restriction is to make the restricted actors unreachable from the
outside. Thus, ifwe add a restriction on actor b, the action bv can not be observed and
the term:

B' = (a Forward I b Double)\b

12

is equivalent to A. Note that we abstract away from details of internal communication:
the synchronization of actor b, which receives a message from actor a, is an internal
action labelled T (rule Sinc in Table 1) which is not observable (hence it does not
have any effect on bisimulation).

Example 3 We illustrate here a scenario similar to the previous example where actors
have a significant internal state. Consider the actor term Al = a Sum. (where s is an
integer), which receives messages represented as pairs (b, v), where the first argument
is an actor name and the second argument is an integer, updates the state to s + v and
sends b the integer s + v. This behaviour is definedformally below:

del
Sum = send(lst(message),2nd(message) + state).

become(Sum,2nd(message) + state)

The evolution of the state is modelled by the rule Become in Table 1: a become
operation updates the state of the actor, but the new state can be accessed o"ly after
the next receive operation.

Suppose now that we want to compose this actor with the interface actor defined in
the previous example: we define the actor term: BI = a Forward I b Sum •. As stated
above actor terms Al and BI are not equivalent because the term BI has two addresses
that ca:n be reachedfrom the outside. But, ifwe define B~ = (a Forward I b Sum.)\b,
we can prove the equivalence of the actors Al and Bi abstracting away from details
of internal communication.

Example 4 Finally, we also show that the same example holds for actors which include
create operations. Consider the actor term A2 = a Fact, which computes the factorial
of a given integer. This actor takes as input messages having the form (a, v) where a
is an actor name and v is an integer, and returns to the actor a the factorial of v.

Fact d~ (2nd(message) = 0) : send(lst(message),I).become(Fact)+
(2nd(message) > 0) : create(d, Mul, message).

Muld~

send(sel/, (d, (2nd(message) - 1))).
become(Fact)

send(lst(state) , 2nd(state) * message)

This is a standard example for actors showing that recursion can be implemented
exploiting the create operation [3J. The actor with behaviour Fact creates an actor
whose behaviour will be to multiply 2nd(message) with an integer it receives, to send
the reply to Ist(message) and then to terminate. After, it requires itself to evaluate
the factorial of2nd(message) :- 1 and sends the answer to the new created actor d.

Again, we can compose the actor term A2 with the actor which forwards messages
obtaining the actors B2 = a Forward I b Fact and B~ = (a Forward I b Fact)\b.
Finally, we can prove that actors A2 and B~ are equivalent: the two terms intuitively
have the same input/output behaviour and the Create rule in Table 1 guarantees that
all the new actors are restricted and, thus, not reachable from the outside: all the
internal actions are labelled T thus are not observable.

13

Asynchronous Bisimulation

For languages based on asynchronous communication a new notion of asynchronous
bisimulation has been introduced in [15] and formally analyzed in [7]. The basic
difference between the asynchronous bisimulation and the standard (synchronous) one,
is that in the asynchronous case, the action of removing a message and immediately
reintroducing it, is considered as unobservable. In fact, an asynchronous observer,
is supposed to be able to observe only the messages present in the communication
medium without knowing if a certain actor is waiting or not for a message.

Definition 4 - Asynchronous bisimulation. A symmetric relation R on actor terms
(R ~ r x f) is an asynchronous bisimulation if(A, B) E Rimplies:

• if A ~ A' where a oj: av then there exists B' such that B ~ B' and
(A', B') E R.

• if A ~ A' then there exists B' such that B ~ B' and (A', B') E R or
B ~ B' and (A', B'I(a, v) E R.

1Wo actors.A and B are asynchronous bisimilar, written A RJa B, if there exists an
asynchronous bisimulation R such that (A, B) E R.

As for the standard bisimulation, also the asynchronous bisimulation is a congruence.
The asynchronous bisimulation allows us to formally analyze interesting aspects of the
actor model.

Example 5 We consider two actors implementing two different communication media:
a queue and an ether, i.e., an unordered set (mailbox) of messages [17]. The behaviours
of the two actors are defined asfollows:

QUEUE~
(Ist(message) = get /\ empty(state»: send(selJ, message).

become(QU EU E)+
(Ist(message) = get /\ -.empty(state» : become(QU EU E, rest(state)).

send(2nd(message), 1 st(state»+
(lst(message) = put) : become(QU EU E, inserUast(2nd(message) , state»

ETHERd;j
(lst(message) = get /\ empty(state)): send(selJ, message).

become(ETH ER)+
(Ist(message) = get /\ -.empty(state)) : become(ET HER, rest(state».

send(2nd(message), Ist(state»+
(Ist(message) = put) : become(ETH ER, inserLrand(2nd(message) , state»

The two actor programs are assumed to receive messages with the follow{ng struc­
ture: (put, item) or (get, sender). The two programs differ only for the functions

14

inserUast and inserLrand, the first inserts a message at the end ofa sequence and
the second in a random position.

We observe that the two actors a ETH ER and aQU EU E are equivalent under
asynchronous bisimulation, i.e., a ETHER Rja aQU EU E. This result also follows
from the property of arrival-order non-determinism in message delivery, which does
not allow to know in what order the two actors implementing the two different channels
read the requests sent to them. Jfwe consider the standard bisimulationthe two actors
are instead distinguished.

EXPLOITATION

Synchronization Constraints

The actor model does not provide an explicit primitive for receiving a certain kind of
message, in fact an actor can read a message only when it is idle and each available
message can be read independently from its contents. On the other hand, in real
applications is often necessary to express synchronization constraints which restrict
the set of messages that can be received at a certain point of the computation.

Here we show that itis possible to program in our algebra a new primitive receive(e)
which forces to receive only a message with contents e. In particular, we present
an implementation of the new primitive in the initial algebra which preserves the
asynchronous bisimulation semantics; in other words, we prove that for every actor
containing such a new primitive, there exists an equivalent term which does not contain
receive commands.

Suppose to extend the syntax of the language by allowing also programs of the
following kind:

P ::= receive(e).P

having the following operational semantics:
. a[e]-

a[rece.ve(e).P]. ~ a[p],

Our idea for implementing the program receive(e).P in a term [receive(e).P] is to
define a behaviour which executes the program P only if a message with contents
expressed by e has been received; otherwise it resends the received message and
becomeS idle waiting for another one:

[receive(e).P] d~ become(RECEIV E, state)

where:

RECEIV E d~ (message = e) : P +
(message i= e) : send(selJ, message).

become(RECEIV E, state)

The correctness of our mapping is proved by the fact that a[receive(e).P], Rja

a[[receive(e).P]]. for every a and s. On the other hand, the standard (synchronous)
bisimulation is not preserved. This is because the implementation uses the technique
of immediately reintroducing the received messages (when different from e) that, as

15

stated above, is observed by the standard bisimulation and not by the asynchronous
one.

One feature of this implementation is that the encoding of a receive command could
introduces a busy waiting; for example, if only messages different from e are sent to
the actor the messages are repeatedly received and resent. Even if the encoding could
introduce this divergent behaviour, asynchronous bisimulation is preserved because it
is not divergence sensitive.

Update Operation

In the actor model the state of an actor can be changed by a become primitive, but
the updated state is not accessible from the part of the program following the become
primitive (see rule Become in Table 1). This feature depends from the fact that the
become primitive transforms an actor from active to idle and the updated state becomes
active only when the actor receives another message. Thus, the actor model does not
provide an explicit primitive that changes the state of an actor leaving it active on
the updated state; however, such a primitive is often useful in programming parallel
applications. For instance, this is the case if we need to register that a given message
has been received, and we want to perform the rest of the computation taking this new
information into account.

Here we show that anew primitivenewstate(e) which only changes the state can be
implemented in our language. We first extend the syntax of the language by allowing
also:

P ::= newstate(e).P

and the operational semantics by adding the axiom:

a[newstate(e).P] • .2.t a[Phe]~
The program newstate(e).P first changes the state of the actor, and then executes the
program P. In order to have the same behaviour in the initial algebra, we first use
the become primitive in order to change the state. After the execution of become, the
actor becomes idle and waits for a new message. If the received message is different
from go, then the message is reintroduced in the communication medium, otherwise
(if go is received) the remaining program P is performed:

[newstate(e) .P] d;j become(W A IT, e) .send(sel f, go)

where:

WAIT d;j (message = go) : P +
(message =1= go) : send(self, message).become(W AIT, state)

This implementation preserves the asynchronous bisimulation semantics: in fact
a[newstate(e).P]. ~a a[[newstate(e).P]]. holds for every a and s.

As we do not consider the fairness assumption, it could happen that the encod­
ing introduces divergent behaviours. Indeed, a message different from go could be
received (and then resent) infinitely many times before the message go is processed.
As discussed above, asynchronous bisimulation is divergence insensitive; hence, the

16

addition of this particular behaviour does not permit to distinguish one term from its
encoding.

CONCLUSION

The main results presented in this paper concern the study of the relationship between
the actor model and process algebras. We have defined an algebra of actors where the
fairness assumption is relaxed. This algebra enjoys a clean formal definition and a nice
programming style. We have presented several programming examples and discussed
different notions of equivalence based on standard and asynchronous bisimulation. Fi­
nally, we have presented the encoding of an update operation on the state of an object
and the encoding of an explicit receive primitive expressing a synchronization con­
straint and we show that these encoding preserve a notion of observation equivalence
among objects. An extended version of this paper [10] contains more programming
examples and the encoding of the asynchronous lr-calculus into the algebra of actors.

We believe that our approach is complementary to previous approaches to the
semantics of actors, providing a new framework to discuss concurrency related aspects
in this context.

We have used our algebra of actors in two different directions: (i) to model interac­
tion in multi-agent systems [9], (ii) as a basis for an object-oriented formalism which
has been used to specify the hurried philosophers case study [11]. This demonstrates
that our process algebra can be successfully used to formalize more complex protocols
and systems.

Besides the approaches cited in the Introduction, concerning the actor model, several
approaches have been followed trying to define a semantic framework for modelling
interaction in concurrent object oriented programming. It is worthwhile to recall here
some of them.

The calculus presented in [15] allows the authors to define a notion of observation
equivalence among processes in an asynchronous framework. This notion of equiva­
lence has been proved to be captured by asynchronous bisimulation in [7]. The main
limitation of this calculus, as the lr-calculus, is that it does not support object identity.

In [27] a typed name-passing calculus is introduced. This calculus provides a
method invocation mechanism based on asynchronous message passing. But, also
this calculus, as the previous one, does not support object identity: there is no corre­
spondence between objects and names of channels, i.e., there may be more than one
object sharing the same channel. Finally, as in our approach objects are not persistent,
i.e., they do not survive the reception and the processing of messages, unless this
is programmed explicitly. On the other hand, the pure actor model provides persis­
tent objects, which become ready to receive new messages whenever their internal
computations terminate.

Finally, a number of additional research items still need to be carried out in our
algebra. For instance: an encoding of the CORBA [28] operational model, which
has been recognized a common model for several existing distributed systems and
languages [21]; a study of how typing and inheritance issues, such as in [1], can be
addressed; the formulation of algebraic laws that characterize the equivalences of actor
terms as for example an axiomatization for the asynchronous bisimulation; and the

17

definition of a framework for formal reasoning about programs, e.g., following the
style of the Hennessy and Milner logic [17].

Acknowledgments

This research was partially supported by the Italian Ministry of Universities (MURST). We are
also grateful to the anonymous referee for their helpful suggestions.

References

[1] M. Abadi and L. Cardelli. An Imperative Object Calculus. Theory and Practice
of Object Systems, 1(3):151-166,1995.

[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA, 1986.

[3] G. Agha. Concurrent Object-Oriented Programming. Communications of the
ACM, 33(9):125-141, September 1990.

[4] G. Agha. L Mason, S. F. Smith, and C. Talcott. A Foundation for Actor Compu­
tation. Journal of Functional Programming, 7(1):1-69, January 1997.

[5] G. Agha. LA. Mason, S. Smith, and C. Talcott. Towards a Theory of Actor
Computation. In Proc. ofCONCUR'92, volume 630 of Lecture Notes in Computer
Science, pages 564-579. Springer Verlag, 1992.

[6] G. Agha. LA. Mason, S. Smith, and C. Talcott. A Foundation of Actor Compu­
tation. Technical report, University of Illinois, 1993.

[7] R. Amadio, L Castellani, and D. Sangiorgi. On Bisimulations for the Asyn­
chronous 7r-Calculus. Theoretical Computer Science, 195(2):291-324,1998.

[8] G. Boudol. Asynchrony and the 7r-calculus. Technical Report INRIA-92-1702,
INRIA Sophia-Antipolis., 1992.

[9] M. Gaspari. Concurrency and knowledge-level communication in agent lan­
guages. Artificial Intelligence, 1998. To appear.

[10] M. Gaspari and G. Zavattaro. An algebra of actors. Technical Report VBLCS-
97-4, Compo Science Laboratory, UniversitA di Bologna. Italy, May 1997.

[11] M. Gaspari and G. Zavattaro. An actor algebra for specifying distributed systems:
the hurried philosophers case study. InG. Agha and F. Decindio, editors, Concur­
rent Object-Oriented Programming and Petri Nets, Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1998. To appear.

[12] M. Hamilton. Java and the Shift to Net-Centric Computing. IEEE Computer,
29(8):31-39,1996.

[13] C. Hewitt. Viewing control structures as patterns of passing messages. Artificial
Intelligence, 8(3):323-364, 1977.

[14] CAR. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[15] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.
In The Fifth European Conference on Object-Oriented Programming, volume 512

18

of Lecture Notes in Computer Science, pages 141-162. Springer-Verlag, Berlin,
1991.

[16] I.A. Mason and C. Talcott. A Semantically sound Actor Translation. In Proc. of
ICALP'97, volume 1256 of Lecture Notes in Computer Science, pages 369-378.
Springer Verlag, 1997.

[17] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[18] R. Milner. Functions as processes. MathematicalStructures in Computer Science,
2(2):119-141,1992.

[19] R. Milner. Elements of interaction. Communications of the ACM, 36(1):79-89,
January 1993.

[20] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes I and II.
Information and Computation, 100(1): 1-40- 41-77, 1992.

[21] E. Najm and JB. Stefani. Computational Models for Open Distributed Systems.
In H. Bowman and J. Derrick, editors, Proc. 2nd IFIP Conj. on Formal Meth­
ods for Open Object-Based Distributed Systems (FMOODS), pages 157-176,
Canterbury, UK, 1997. Chapmann & Hall.

[22] C. Palamidessi. Comparing the expressive power of the Synchronous and the
Asynchronous pi-calculus. In Proc. ACM Symposium on Principles of Program­
ming Languages (POPL), pages 256-265,1997.

[23] B. C. Pierce and D. N. Turner. Concurrent Objects in a Process Calculus. In
invited lecture at Theory and Practice of Parallel Programming (TPPP), volume
907 of Lecture Notes in Computer Science, pages 187-215, Sendai, Japan, nov
1994. Springer-Verlag, Berlin.

[24] G. Plotkin. A structural approach to operational semantics. Technical Report
DAlMI FN-19, Department of Computer Science, Aarhus University, Denmark,
1981.

[25] C. Talcott. An actor rewriting theory. In Workshop on Rewriting Logic, number 4
in Electronic Notes in Theoretical Computer Science. Elsevier, 1996.

[26] C. Talcott. Interaction Semantics for Components of Distributed Systems. In
Proc. of Formal Methods for Open Object-Based Distributed Systems, pages
154-169. Chapman & Hall, 1996.

[27] V.T. Vasconcelos. Typed Concurrent Objects. In 8th European Conference
on Object Oriented Programming, volume 821 of Lecture Notes in Computer
Science, pages 1()()....117. Springer-Verlag, Berlin, 1994.

[28] S. Vinoski. CORBA: Integrating Diverse Applications Within Distributed Het­
erogeneous Environments. IEEE Communications Magazines, 14(2), February
1997.

[29] D. Walker. 1T-calculus Semantics of Object-Oriented Programming Languages.
Information and Computation, 116(2):253-271, 1995.

[30] E. Yourdon. Java, the Web, and Software Development. IEEE Computer,
29(8):25-30,1996.

