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Abstract: We introduce an object-oriented language following a "process algebra" 
style. The idea is to define a formalism that enjoys a clean formal definition allowing 
the reuse of the rich algebraic theory typical of the process algebras in a context where 
an high level object oriented programming style is preserved. We provide an operational 
semantics based on a labelled transition system which allows to discuss, e.g., how different 
notions of equivalence, such as standard and asynchronous bisimulation, can be adapted 
to reason about our language. Finally, we illustrate the framework showing that an explicit 
receive primitive expressing a synchronization constraint or an update operation on the 
state of an object can be implemented in the language preserving a notion of observation 
equivalence among objects. 

INTRODUCTION 

The object-oriented research community developed techniques, tools and environments 
that have been applied to several software development projects in the context of a wide 
range of application domains. In particular, distributed object-oriented programming 
is one of the most promising candidate paradigms to build large scale distributed 
systems. OMG the Object Management Group consortium, CORBA [28] the object­
oriented standard for integrating applications running in heterogeneous distributed 
environments developed by OMG, and Java [30, 12], the internet language developed 
by Sun Microsystems, are all examples of such efforts. 

Objects are the basic entities in an object-oriented system. Objects have a local 
memory, a set of attributes, a behaviour, and a set of procedures and/or functions 
(methods) that defines the meaningful operations. In distributed Object-Oriented sys­
tems objects are autonomous reactive units executing concurrently and interacting by 
message-passing, which is typically asynchronous and unordered. 

On the other hand, most of the theoretical computer science efforts in the theory of 
concurrency are oriented to study process algebras such as CCS [17] or the 1I"~calculus 
[18] which do not provide a direct representation of objects as first class entities. 
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In these formalisms processes are stateless entities (i.e. entities without an explicit 
local memory) which communicate exploiting synchronous message passing and the 
representation of an object involves a large number of processes [29]. 

As a consequence of this situation there is a big gap between theory and practice, 
and whether or not results developed from the theory of concurrent systems, such as 
the theories of equivalence for process algebras, can be successfully applied to real 
object-oriented distributed systems, is still an open issue. 

The aim of this paper is to provide a step in this direction showing that it is possible to 
define a process algebra based on a distributed object oriented model. The main result is 
the development of a formalism that enjoys a clean formal definition and a rich algebraic 
theory, like the lI'-calculus, while preserving a high level object oriented programming 
style. This formalism allows us to reuse standard results of the theory of concurrency 
in a context where object identity, asynchronous message passing, an implicit receive 
mechanism and support for dynamic object creation, are provided. In particular, we 
show that the language can be extended with primitives expressing state updating 
operations and synchronization constraints, preserving observation equivalence. 

Objects as Actors 

Process algebras, like CCS [17] and CSP [14], have been developed as formalisms 
for the study of concurrent systems. Initially, process algebras allowed interprocess 
communication via a static structure of channels between processes. Mobility, one of 
the basic features of modern object oriented systems (where new objects can be created 
at run time and/or moved in different locations), was not easily representable in these 
formalisms. 

The lI'-calculus [20] can be considered the main attempt in order to overcome these 
limitations. In fact, it has been introduced as a calculus for mobile processes, i.e., 
processes witli a dynamically changing linkage structure. The lI'-calculus has been 
developed taking into account a synchronous handshake communication mechanism 
between processes. More recently [15, 8] also an asynchronous fragment of the 11'­

calculus has been studied in order to analyze also the asynchronous communication 
mechaniSm and its similaritiesldifferencies with the synchronous one [22] . 

There have been several attempts to adopt the lI'-calculus and its asynchronous 
version, for modelling interaction in the context of concurrent object oriented pro­
gramming languages [18, 29, 23], but these approaches seem not completely satisfying 
mostly because they do not provide the concept of an object as a first class entity. 

On the other hand, the actor model [13, 2] directly deals with many features of 
object oriented systems, such as object identity, asynchronous message passing, an 
implicit receive mechanism, and support for object creation; an actor has tlie same 
structural and interaction properties as an object. 

The Actor Model 

The actor model was introduced by Carl Hewitt about 20 years ago [13]. Actors are 
self-contained agents with a state and a behaviour which is a function of incoming 
communications. Each actor has a unique name (mail address) determined at the time 
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of its creation. This name is used to specify the recipient of a message supporting 
object identity, a property of an object which distinguishes each object from all others. 
Object identity is a typical feature of object-oriented programming languages and it is 
used as basic dispatching mechanism in message passing. This property is not easily 
embeddable in formalisms such as CCS [17] (or asynchronous tr-calculus [15, 8]), 
where message dispatching is performed by means of channels. In these formalisms the 
association address-process is not unique: a process may have several ports (channels) 
from which it receives messages and the same cbannel can be accessed by different 
processes. 

Actors communicate by asynchronous and reliable message passing, i.e., whenever 
a message is sent it must eventually be received by the target actor. Actors exploit 
an implicit receive mechanism. A receive operation is explicit wben it appears in 
programs, while it is implicit when it does not correspond to an operation in the 
programming language and it is performed implicitly at certain points of the compu­
tation. An implicit receive mechanism is common in object-oriented programming 
where objects can be seen as passive entities which react to messages or to method 
invocation. 

Actors make use of three basic primitives which are asynchronous and non-blocking: 
create, to create new actors; send, to send messages to other actors; and become, to 
change the behaviour of an actor [2]. 

There are four main differences between the asynchronous tr-calculus and the actor 
model: 

• The asynchronous tr-calculus does not support first class object identity, while 
this is a basic feature of the actor model. 

• In the asynchronous tr-calculus processes are stateless entities while actors have 
an associated state. 

• The asynchronous tr-calculus is based on an explicit receive primitive, while ac­
tors exploit an implicit receive mechanism, which does not appears in programs. 

• Finally, the asynchronous tr-calculus does not assume a fair (reliable) message 
delivery mechanism, while the actor model assumes reliability. 

Results 

In the past few years, several advances have been achieved on the semantics of actors, 
dealing with aspects of communication and concurrency [5,4,26,25, 16], but these 
papers do not investigate the relationships of the actor model with traditional process 
algebras, even though recently Robin Milner [19] suggested that it may be worthwhile 
to work in this direction. Thus, the question whether some of the results that have been 
proved in the context of process algebras can be imported in the actor model and in 
general in object-oriented distributed systems is still an open issue. 

The main results presented here concern this issue. In particular, we provide a 
process algebra based on the actor model, we discuss how standard notions of equiva­
lence can be formulated in this context, and we exploit the framework illustrating the 
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encoding of an update operation on the state of an actor and of an explicit receive prim­
itive expressing a synchronization constraint which preserves a notion of observation 
equivalence among actors. Our process algebra captures all the main features of the 
actor model except the reliability assumption. 

AN ALGEBRA OF ACTORS 

Let A be a countable set of actor names: a, b, c, ai, bi , ... will range over A and 
L, L', L", . .. will range over its power set P(A) (i.e., L, L', L" ~ A). Let V be a 
set of values (with A c V) containing, e.g., NfL, true, false. We assume value 
expressions e built from actor names, value constants, value Variables, the expressions 
self, state, and message, and any operator symbol we wish. In the example we will 
present we will use standard operators on sequences: 1st, 2nd, rest, empty. We will 
denote values with v, v', v", ... when they appear as contents of a message and with 
s, s', s", . .. when they represent the state of an actor. [e]: gives the value of e in V 
assuming that a and s are substituted for self and state inside e; e.g. [self]: = a 
and [state]: = s. The special expression message represents the contents of the last 
received message. Whenever a message is received, its contents is substituted for each 
occurrence of the expression message in the receiving actor. 

Let C be a set of actor behaviours: C, D, ... will range over C. We suppose that 

every behaviour D is equipped with a corresponding definition D d~ P where P is a 
program, that is a term defined by the following abstract syntax: 

P ::= become(C, e).P I send(el, e2)'P I create(b, C, e).P I 
el : Pl + ... + en : Pn I J 

Observe that we allow recursive behaviours to be defined, for example we could have 

C d~ become(C, state).';. 
Actor terms are defined by the following abstract syntax: 

A ::= ac. I a[Pj. I (a, v) I AlA I A\a I 0 

An actor can be idle or active. An idle actor ac. (composed by a behaviour C, a 
name a, and a state s) is ready to receive a message. When a message is received 
the actor becomes active. Active actors are denoted by a [P]. where P is the program 
that is executed. The actor a will not receive new messages until it becomes idle (by 
performing a become primitive). Sometimes the state s is omitted when empty (i.e. 
s = 0). A program P is a sequence of actor primitives (become, send and create) and 
guarded choices el : PI + ... + en : Pn terminating in the null program J (which is 
usually omitted). An actor term is the parallel composition of (active and idle) actors 
and messages, each one denoted by a temt (a, v) where v is the contents and a the 
name of the actor the message is sent to. Also a restriction operator A \a is used in 
order to allow the definition of local actor names (A\L is used as a shorthand for 
A\al \ ... \an if L = {at, ... , an}) while 0 is the usual empty term. 

The actor primitives and the guarded choice are described as follows. 

• send: 
The program send(el' e2)'P sends a message with contents e2 to the actor 



Send 

Deliver 

Table 1 Operational semantics. 

a[send(el' e2).P] • ..:..... alP]. I ([el]:, [e2]:) 

(a,v) ~ 0 

Become a[become( C, e ).P'] • ..:..... (d[p' {a/ self}]s)\d I aqe): d fresh 

Create a[create(b,C,e).P']s..:..... (a[p'{d/b}]s Idqe]~)\d dfresh 

Receive ac. ~ a[P{v/message}]s ifCd;J P 

Guard a[el : PI + ... + en : Pn]s ..:..... alP;]. if [ei]: = true 

A~A' 
Res 

A\a ~A'\a 

A~A' 
Open 

A~A' 
Par 

AIB~A'IB 

A~A' B~B' 
Sync 

AlB":"'" (A'IB') \ L 

B == A A ~ A' A' == B' 
Cong 

B~B' 

indicated by el: 
a [send( el, e2)'P]s .2.t alP]. I ([el]~' [e2]~) 

a f/. n(a) 

af:b /\ bEn(v) 

if a = avL then 
a f/. act(B) /\ 
L n fn(B) = 0 

where l' represents an internal invisible step of computation. 

• become: 
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The program become( C, e ).P' changes the state of the actual actor from active 
to idle: 

a[become( C, e ).P'] • .2.t (d[p'{ a/ sel!}]. )\d I aqe]: with d fresh 
The primitive become is the only one that permits to change the state according 
to the expression e; we sometimes omit e if the state is left unchanged (Le. 
e = state). The continuation P' is executed by the new actor d[P'{a/sel!}] •. 
This actor will never receive other messages (Le. it is unreachable) as its name 
d cannot be known to any other actor. Indeed, the expression self, which is the 
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only one that returns the value d, is changed in order to refer to the name a of 
the initial actor. 

• create: 
The program create(b, C, e).P' creates a new idle actor having state s and 
behaviour C: 

a[create(b, C, e).P'l • .2...t (a[p'{d/b}l.1 dqe]~)\d with dfresh 
The new actor receives a fresh name d. This new name is initially known only 
to the creating actor, in fact a restriction on the new name d is introduced. 

• eI: PI + ... + en : Pn: 
In the agentel: PI + ... + en : Pn, the expressions ei are supposed to be 
boolean expressions with value true or false. The branch Pi can be chosen 
only if the value of the corresponding expression ei is true: 

a[el : PI + ... + en : Pnl • .2...t a[Pd. if [ei]~ = true 

The function n returns the set of the actor names appearing in an expression, a program, 
or an actor term. Given the actor term A, the set n(A) is partitioned in fn(A) (the free 
names in A) and bn(A) (the bound names in A) where the bound names are defined 
as those names a appearing in A only under the scope of some restriction on a. We 
use act(A) to denote the set of the names of the actors in A. An actor term is well 
formed if and only if it does not contain two distinct actors with the same name. In the 
following we will consider only well formed agents, and we will use r to denote the 
set of well formed terms (A, B, D, E, F, ... will range only over n. 

We model the operational semantics of our language following the approach of 
Milner [18] which consists in separating the laws which govern the static relation 
among actors (for instance AlB is equivalent to BIA) from the laws which rules 
their interaction. This is achieved defining a static structural equivalence relation over 
syntactic terms and a dynamic relation by means of a labelled transition system [24]. 

Definition 1 - Structural congruence, is the smallest congruence relation over actor 
terms (==) satisfying: 

(i) 
(ii) 
(iii) 
(iv) 

a[v'1. == 0 (v) 
Alo == A (vi) 
AlB == BIA (vii) 
(AIB)ID == AI(B~Dz)ii) 

O\a == 0 
(A\a)\b == (A\b)\a 
(AIB)\a == AI(B\a) 
A\a == A{b/a}\b 

where a ¢ fn(A) 
where b isfresh 

Definition 2 - Computations. A transition system modelling computations in the 
actor algebra is represented by the triple (r, T, { ~ I a E T}). T = {T} U 
{av, avL I a E A, v E V, L ~ A} is a set of labels, where T is the invisible action 
standing for internal autonomous steps of computation; av and avL respectively 
represent the receiving and the emission of the message with receiver a and contents 
v. The set L in the label avL represents the set of actor names in the expression v 
which were initially under the scope of some restriction. ~ is the minimal transition 
relation satisfying the axioms and rules presented in Table 1. 
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The rules Send, Become, Create and Guard have been already discussed. Rule 
Deliver states that the term (a, v) (representing a message v sent to the actor a)isable 
to deliver its contents to the receiver by performing the action i:iV0. The corresponding 
receiving action labeled with. av can be performed by the actor a when it is idle (rule 
Receive). The other rules are simply adaptation to our calculus of the standard laws for 
the 1r-calculus. The most interesting difference is due to the fact that in our calculus, 
more than one restriction can be extended by one single delivering operation. In fact, 
in our case the contents of a message is an expression instead of a unique name. This 
is the reason why we have added the set L to the label av L. Another difference is in 
the rule Par: the actor term AlB can deliver a message inferred by A (i.e., execute an 
emission action avL), only if B does not contain the target actor (i.e., a ¢ act (B). 

Discussion 

There are several differences with respect to the formal semantics of actors in [5, 4] 
and in [26] which is worth to point out. 

• We do not assume a fair message delivery mechanism as in [5, 4] and in [26]. 

• The algebra of actors describes only communication and synchronization prim­
itives, while in the semantics of Agha et al. actor primitives are embedded 
in a functional language. This enables us to focus on concurrency and inter­
agent communication related aspects and not deal with issues concerning the 
sequential execution of programs inside actors. 

• The operational semantics of the algebra of actors is defined by means of a 
labelled transition system instead of a simple reduction system as in [5] or the 
rewriting rules in [26]. This allows to use standard observational equivalences 
of process algebras e.g., bisimulation, testing, failure or trace, without defining 
explicit observers. 

• We have introduced the guarded choice as an alternative to the conditional which 
is present in previous formalization of actors [5]. 

• We provide an explicit representation of the state of an object while in Agha et 
al. the state of an actor is represented as part of its behaviour. 

• We have introduced a mechanism to model termination of actors. Actors are not 
perpetual processes with a default behaviour as usual, but they can terminate: 
an actor terminates whenever it finishes its internal computation. This is not 
a limitation because a perpetual actor can always he obtained performing an 
explicit become operation for each internal computation. 

• In the algebra of actors, actors are created exploiting a single basic primitive, 
while in the semantics of Agha et al. the creation process is composed of two 
basic operations, the creation of an empty actor and the initialization of its 
behaviour. The main advantage of our approach is that we do not need to restrict 
the possible computations to guarantee an atomic create operation. 
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• We introduce a restriction operator similar to the one of the 1r-calculus. This 
operator is more tractable with respect to the approach of [5] based on the specifi­
cation of the sets of receptionists and external actors in actor configurations. On 
the other hand, the calculus presented in [26] uses the inverse operator indicating 
the actors which are reachable from the outside world explicitly. 

• In the operational semantics of Agha et al. a receiving rule that is reminiscent of 
the rule IN of [15] is used. This rule (as discussed in [7]) has the disadvantage to 
give rise to infinite branching: the transition system allows each term (containing 
at least one receptionist) to activate an infinite number of transition, at least one 
for each possible message that can be sent to one of the receptionists. If, for 
example, a receptionist will be no more able to receive a message (e.g., it is 
executing an infinite computation) or external actors never send messages to a 
receptionist, the transition system make possible (infinite) useless transitions. 
One of the most important advantages of the rule IN is that it allows the definition 
of observational semantics (e.g., bisimulation) that capture interesting aspects of 
asynchronous communication. Instead we follow the approach of [7], where it 
is shown that the same observational semantics can be obtained by eliminating 
the problem of infinite branching by slightly modifying the usual (synchronous) 
observational semantics. 

• Finally, here we define only equivalences for actor terms while Agha et al. 
[6] consider equivalences for both actor expressions and actor configurations. 
However, it is not difficult to define equivalences for processes also in our setting. 
For example, we could consider two expressions equivalent whenever they are 
interchangeable in each possible actor term. 

EQUIVALENCE OF ACTOR TERMS 

As already stated, one of the advantages of having introduced a semantics for actors 
based on a labeled transition system is that standard observational semantics for process 
algebras can be used. In this section we investigate two of them based on the notion of 
bisimulation: the weak bisimulation [17] (only bisimulation in the following) and the 
asynchronous weak bisimulation [15, 7] (only asynchronous bisimulation in the fol­
lowing) which is the corresponding equivalence for languages based on asynchronous 
communication. 

Sisimulation 

In order to define equivalences which does not take into account the r steps, we recall 
the notion of weak transition which allows to contract successive r-steps: 

p :::S> pI iff P( ~ )* pI 
P ~ pI iff exists pll and pili S.t. P :::S> pll ~ pili :::S> pI (for a =j:. T) 

Observe that given P ~ pI also the case in which no steps are performed is permitted 
(in this case pI is the same as P). 
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Definition 3 - Bisimulation. A symmetric relation 'R on actor terms ('R ~ r x r) is 
a bisimulation if(A, B) E 'R implies: 

• if A ~ A' then there exists B' such that B ~ B' and (A', B') E 'R. 

1Wo actors A and Bare bisimilar, written A Rl B, if there exists a bisimulation 'R 
such that (A; B) E'R. 

As for the asynchronous 1r-calculus [7], also in our language the bisimulation relation 
is a congruence; in fact, we have that if A Rl B then for every actor term D and actor 
name a, AID Rl BID and A \ a Rl B \ a. 

Example 1 Since for actors there is arrival-order non-determinism in message deliv­
ery, it is expected that the bisimulation equivalence does not depend on the order in 
which send operations are performed. To illustrate that the bisimulation captures this 
notion we consider a simple example of two actor terms: A = a BreakPairl and 
B = a BreakPair2 which receive pairs andforward to the actor b the elements of 
the pair: BreakPairl in the same order they appear in the pair, BreakPair2 in the 
inverse one. 

BreakPairl 

. BreakPair2 

send(b, lst(message)).send(b, 2nd(message)). 
become( BreakPairl) 

send(b, 2nd(message)).send(b, lst(message)) . 
become(BreakPair2) 

We have A Rl B. In fact, the actors A and B cannot be distinguished because the 
sending order cannot be observed (the emission of a message consists of a local T-step). 

Example 2 Consider the actor term A = a Double which receives messages rep­
resented as pairs (b, v) where the first argument is an actor name and the second 
argument is an integer, and sends to the actor b the integer 2 * v. This behaviour is 
definedformally below: 

Double d~ send(lst(message), 2 * 2nd(me"ssage)).become(Double) 

Suppose now that we want to build an interface that receives messages andforwards 
them to an actor which doubles them. This job is performed by the actor term: 

B = a Forward I b Double 

where the behaviour Forward is: 

Forward d~ send(b, message).become(Forward) 

The actor terms A and B are not equivalent because the term B has two addresses 
that can be reached from the outside (the action bv cannot be observed in the term A). 

The intuition of restriction is to make the restricted actors unreachable from the 
outside. Thus, ifwe add a restriction on actor b, the action bv can not be observed and 
the term: 

B' = (a Forward I b Double)\b 
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is equivalent to A. Note that we abstract away from details of internal communication: 
the synchronization of actor b, which receives a message from actor a, is an internal 
action labelled T (rule Sinc in Table 1) which is not observable (hence it does not 
have any effect on bisimulation). 

Example 3 We illustrate here a scenario similar to the previous example where actors 
have a significant internal state. Consider the actor term Al = a Sum. (where s is an 
integer), which receives messages represented as pairs (b, v), where the first argument 
is an actor name and the second argument is an integer, updates the state to s + v and 
sends b the integer s + v. This behaviour is definedformally below: 

del 
Sum = send(lst(message),2nd(message) + state). 

become(Sum,2nd(message) + state) 

The evolution of the state is modelled by the rule Become in Table 1: a become 
operation updates the state of the actor, but the new state can be accessed o"ly after 
the next receive operation. 

Suppose now that we want to compose this actor with the interface actor defined in 
the previous example: we define the actor term: BI = a Forward I b Sum •. As stated 
above actor terms Al and BI are not equivalent because the term BI has two addresses 
that ca:n be reachedfrom the outside. But, ifwe define B~ = (a Forward I b Sum. )\b, 
we can prove the equivalence of the actors Al and Bi abstracting away from details 
of internal communication. 

Example 4 Finally, we also show that the same example holds for actors which include 
create operations. Consider the actor term A2 = a Fact, which computes the factorial 
of a given integer. This actor takes as input messages having the form (a, v) where a 
is an actor name and v is an integer, and returns to the actor a the factorial of v. 

Fact d~ (2nd(message) = 0) : send(lst(message),I).become(Fact)+ 
(2nd(message) > 0) : create(d, Mul, message). 

Muld~ 

send(sel/, (d, (2nd(message) - 1))). 
become(Fact) 

send(lst(state) , 2nd(state) * message) 

This is a standard example for actors showing that recursion can be implemented 
exploiting the create operation [3J. The actor with behaviour Fact creates an actor 
whose behaviour will be to multiply 2nd( message) with an integer it receives, to send 
the reply to Ist(message) and then to terminate. After, it requires itself to evaluate 
the factorial of2nd( message) :- 1 and sends the answer to the new created actor d. 

Again, we can compose the actor term A2 with the actor which forwards messages 
obtaining the actors B2 = a Forward I b Fact and B~ = (a Forward I b Fact)\b. 
Finally, we can prove that actors A2 and B~ are equivalent: the two terms intuitively 
have the same input/output behaviour and the Create rule in Table 1 guarantees that 
all the new actors are restricted and, thus, not reachable from the outside: all the 
internal actions are labelled T thus are not observable. 
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Asynchronous Bisimulation 

For languages based on asynchronous communication a new notion of asynchronous 
bisimulation has been introduced in [15] and formally analyzed in [7]. The basic 
difference between the asynchronous bisimulation and the standard (synchronous) one, 
is that in the asynchronous case, the action of removing a message and immediately 
reintroducing it, is considered as unobservable. In fact, an asynchronous observer, 
is supposed to be able to observe only the messages present in the communication 
medium without knowing if a certain actor is waiting or not for a message. 

Definition 4 - Asynchronous bisimulation. A symmetric relation R on actor terms 
(R ~ r x f) is an asynchronous bisimulation if(A, B) E Rimplies: 

• if A ~ A' where a oj: av then there exists B' such that B ~ B' and 
(A', B') E R. 

• if A ~ A' then there exists B' such that B ~ B' and (A', B') E R or 
B ~ B' and (A', B'I(a, v) E R. 

1Wo actors.A and B are asynchronous bisimilar, written A RJa B, if there exists an 
asynchronous bisimulation R such that (A, B) E R. 

As for the standard bisimulation, also the asynchronous bisimulation is a congruence. 
The asynchronous bisimulation allows us to formally analyze interesting aspects of the 
actor model. 

Example 5 We consider two actors implementing two different communication media: 
a queue and an ether, i.e., an unordered set (mailbox) of messages [17]. The behaviours 
of the two actors are defined asfollows: 

QUEUE~ 
(Ist(message) = get /\ empty(state»: send(selJ, message). 

become( QU EU E)+ 
(Ist(message) = get /\ -.empty(state» : become(QU EU E, rest(state)). 

send(2nd( message), 1 st( state»+ 
(lst(message) = put) : become(QU EU E, inserUast(2nd(message) , state» 

ETHERd;j 
(lst(message) = get /\ empty(state)): send(selJ, message). 

become(ETH ER)+ 
(Ist(message) = get /\ -.empty(state)) : become(ET HER, rest(state». 

send(2nd( message), Ist( state»+ 
(Ist(message) = put) : become(ETH ER, inserLrand(2nd(message) , state» 

The two actor programs are assumed to receive messages with the follow{ng struc­
ture: (put, item) or (get, sender). The two programs differ only for the functions 
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inserUast and inserLrand, the first inserts a message at the end ofa sequence and 
the second in a random position. 

We observe that the two actors a ETH ER and aQU EU E are equivalent under 
asynchronous bisimulation, i.e., a ETHER Rja aQU EU E. This result also follows 
from the property of arrival-order non-determinism in message delivery, which does 
not allow to know in what order the two actors implementing the two different channels 
read the requests sent to them. Jfwe consider the standard bisimulationthe two actors 
are instead distinguished. 

EXPLOITATION 

Synchronization Constraints 

The actor model does not provide an explicit primitive for receiving a certain kind of 
message, in fact an actor can read a message only when it is idle and each available 
message can be read independently from its contents. On the other hand, in real 
applications is often necessary to express synchronization constraints which restrict 
the set of messages that can be received at a certain point of the computation. 

Here we show that itis possible to program in our algebra a new primitive receive( e) 
which forces to receive only a message with contents e. In particular, we present 
an implementation of the new primitive in the initial algebra which preserves the 
asynchronous bisimulation semantics; in other words, we prove that for every actor 
containing such a new primitive, there exists an equivalent term which does not contain 
receive commands. 

Suppose to extend the syntax of the language by allowing also programs of the 
following kind: 

P ::= receive(e).P 

having the following operational semantics: 
. a[e]-

a[rece.ve(e).P]. ~ a[p], 

Our idea for implementing the program receive(e).P in a term [receive(e).P] is to 
define a behaviour which executes the program P only if a message with contents 
expressed by e has been received; otherwise it resends the received message and 
becomeS idle waiting for another one: 

[receive(e).P] d~ become(RECEIV E, state) 

where: 

RECEIV E d~ (message = e) : P + 
(message i= e) : send(selJ, message). 

become(RECEIV E, state) 

The correctness of our mapping is proved by the fact that a[receive(e).P], Rja 

a[[receive(e).P]]. for every a and s. On the other hand, the standard (synchronous) 
bisimulation is not preserved. This is because the implementation uses the technique 
of immediately reintroducing the received messages (when different from e) that, as 
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stated above, is observed by the standard bisimulation and not by the asynchronous 
one. 

One feature of this implementation is that the encoding of a receive command could 
introduces a busy waiting; for example, if only messages different from e are sent to 
the actor the messages are repeatedly received and resent. Even if the encoding could 
introduce this divergent behaviour, asynchronous bisimulation is preserved because it 
is not divergence sensitive. 

Update Operation 

In the actor model the state of an actor can be changed by a become primitive, but 
the updated state is not accessible from the part of the program following the become 
primitive (see rule Become in Table 1). This feature depends from the fact that the 
become primitive transforms an actor from active to idle and the updated state becomes 
active only when the actor receives another message. Thus, the actor model does not 
provide an explicit primitive that changes the state of an actor leaving it active on 
the updated state; however, such a primitive is often useful in programming parallel 
applications. For instance, this is the case if we need to register that a given message 
has been received, and we want to perform the rest of the computation taking this new 
information into account. 

Here we show that anew primitivenewstate( e) which only changes the state can be 
implemented in our language. We first extend the syntax of the language by allowing 
also: 

P ::= newstate(e).P 

and the operational semantics by adding the axiom: 

a[newstate(e).P] • .2.t a[Phe]~ 
The program newstate( e).P first changes the state of the actor, and then executes the 
program P. In order to have the same behaviour in the initial algebra, we first use 
the become primitive in order to change the state. After the execution of become, the 
actor becomes idle and waits for a new message. If the received message is different 
from go, then the message is reintroduced in the communication medium, otherwise 
(if go is received) the remaining program P is performed: 

[newstate( e) .P] d;j become(W A IT, e) .send( sel f, go) 

where: 

WAIT d;j (message = go) : P + 
(message =1= go) : send(self, message).become(W AIT, state) 

This implementation preserves the asynchronous bisimulation semantics: in fact 
a[newstate(e).P]. ~a a[[newstate(e).P]]. holds for every a and s. 

As we do not consider the fairness assumption, it could happen that the encod­
ing introduces divergent behaviours. Indeed, a message different from go could be 
received (and then resent) infinitely many times before the message go is processed. 
As discussed above, asynchronous bisimulation is divergence insensitive; hence, the 
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addition of this particular behaviour does not permit to distinguish one term from its 
encoding. 

CONCLUSION 

The main results presented in this paper concern the study of the relationship between 
the actor model and process algebras. We have defined an algebra of actors where the 
fairness assumption is relaxed. This algebra enjoys a clean formal definition and a nice 
programming style. We have presented several programming examples and discussed 
different notions of equivalence based on standard and asynchronous bisimulation. Fi­
nally, we have presented the encoding of an update operation on the state of an object 
and the encoding of an explicit receive primitive expressing a synchronization con­
straint and we show that these encoding preserve a notion of observation equivalence 
among objects. An extended version of this paper [10] contains more programming 
examples and the encoding of the asynchronous lr-calculus into the algebra of actors. 

We believe that our approach is complementary to previous approaches to the 
semantics of actors, providing a new framework to discuss concurrency related aspects 
in this context. 

We have used our algebra of actors in two different directions: (i) to model interac­
tion in multi-agent systems [9], (ii) as a basis for an object-oriented formalism which 
has been used to specify the hurried philosophers case study [11]. This demonstrates 
that our process algebra can be successfully used to formalize more complex protocols 
and systems. 

Besides the approaches cited in the Introduction, concerning the actor model, several 
approaches have been followed trying to define a semantic framework for modelling 
interaction in concurrent object oriented programming. It is worthwhile to recall here 
some of them. 

The calculus presented in [15] allows the authors to define a notion of observation 
equivalence among processes in an asynchronous framework. This notion of equiva­
lence has been proved to be captured by asynchronous bisimulation in [7]. The main 
limitation of this calculus, as the lr-calculus, is that it does not support object identity. 

In [27] a typed name-passing calculus is introduced. This calculus provides a 
method invocation mechanism based on asynchronous message passing. But, also 
this calculus, as the previous one, does not support object identity: there is no corre­
spondence between objects and names of channels, i.e., there may be more than one 
object sharing the same channel. Finally, as in our approach objects are not persistent, 
i.e., they do not survive the reception and the processing of messages, unless this 
is programmed explicitly. On the other hand, the pure actor model provides persis­
tent objects, which become ready to receive new messages whenever their internal 
computations terminate. 

Finally, a number of additional research items still need to be carried out in our 
algebra. For instance: an encoding of the CORBA [28] operational model, which 
has been recognized a common model for several existing distributed systems and 
languages [21]; a study of how typing and inheritance issues, such as in [1], can be 
addressed; the formulation of algebraic laws that characterize the equivalences of actor 
terms as for example an axiomatization for the asynchronous bisimulation; and the 
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definition of a framework for formal reasoning about programs, e.g., following the 
style of the Hennessy and Milner logic [17]. 
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