
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35533-7_26

IMPLEMENTING CCS IN MAUDE

Alberto Verdejo and Narciso Marti-Oliet
Depto. de Sistemas Informatiws y Programacion

Universidad Complutense de Madrid, Spain

{alberto,narciso}lllsip.ucm.es

Abstract We explore the features of rewriting logic and the language Maude as
a logical and semantic framework for representing both the semantics
of CCS, and a modal logic for describing local capabilities of CCS pro­
cesses. Although a rewriting logic representation of the CCS semantics
was given previously, it cannot be directly executed in the default in­
terpreter of Maude. Moreover, it cannot be used to answer questions
such as which are the successors of a process after performing an action,
which is used to define the semantics of the modal logic. Basically, the
problems are the existence of new variables in the righthand side of the
rewrite rules and the nondeterministic application of the semantic rules,
inherent to CCS. We show how these problems can be solved by exploit­
ing the reflective properties of rewriting logic, which allow controlling
the rewriting process. This executable specification plus the reflective
control of the rewriting process can be used to analyze CCS processes.

1. INTRODUCTION
Rewriting logic was introduced by Meseguer [8] as a unified model of

concurrency in which several well-known models of concurrent systems
can be represented in a common framework. This goal was further ex­
tended by Marti-Oliet and Meseguer [7] to the idea of rewriting logic as
a logical and semantic framework. It was shown that many other logics,
widely different in nature, can be represented inside rewriting logic in a
natural and direct way. The general way in which such representations
are achieved is by:

• Representing formulas or proof-theoretic structures such as se­
quents, as terms in an order-sorted equational data type whose
equations express structural axioms natural to the logic in question.

• Representing the rules of deduction of a logic as rewrite rules that
transform certain patterns of formulas into other patterns modulo
the given structural axioms.

Tonunaso Bolognesi and Diego Latella (Eds.), Formal Methods for Distributed System Develqnnent.
e 2000 IFIP International Federation for Information Processing.
Published by Kluwer Academic Publishers. All rights reserved.

http://dx.doi.org/10.1007/978-0-387-35533-7_26

352 A. Verdejo and N. Marti-Dliet

Similar techniques can be used to naturally specify and prototype
many languages and systems in rewriting logic. In particular, the sim­
ilarities between rewriting logic and structural operational semantics
were noted by Meseguer [8J and further explored by Marti-Oliet and
Meseguer [7J. As an illustrative example, Marti-Oliet and Meseguer [7J
completely developed a representation of Milner's CCS [9J in rewriting
logic. However, this representation cannot be directly executed in the
default interpreter of Maude [3], a high-performance language and sys­
tem supporting both equational and rewriting logic computation.

Basically, the problems are the existence of new variables in the right­
hand side of the rewrite rules and the nondeterministic application of
the semantic rules, inherent to CCS. We show how these problems can
be solved by exploiting the reflective capabilities of rewriting logic and
of Maude, that allow representing rewriting logic inside itself [2], and in
particular controlling the rewriting process. This executable specifica­
tion plus the reflective control of the rewriting process can be used to
analyze CCS processes and to answer different questions such as which
are the successors of a process after performing an action. In summary,
we have managed to make the representation of CCS executable by us­
ing reflective techniques in such a way that it can be used to define in
Maude the semantics of Hennessy-Milner modal logic [6J.

In the rest of this section we review the representation of the CCS
semantics in Maude, in order to see in detail how the problems we men­
tioned above arise.! First, we show the representation of the CCS syntax
in two functional modules defining actions and processes.

(fmod ACTION is protecting QID .
sorts Label Act. subsorts Qid < Label < Act .
op tau : -) Act. *** silent action
op -_ Label -) Label.
var N : Label. eq - - N = N .

endfm}
(fmod PROCESS is protecting ACTION

sorts ProcessId Process. subsort Qid < ProcessId < Process .
op 0 : -) Process . *** inaction
op Act Process -) Process [prec 25] *** prefix
op _+_ : Process Process -) Process [prec 35] *** summation
op _1_ : Process Process -) Process [prec 30] *** composition
op _'[_1_'] : Process Label Label -) Process [prec 20] .

*** relabelling: [b/a] relabels "a" to "b"
op __ : Process Label -) Process [prec 20]. *** restriction

endfm}

1 For lack of space, the reader is assumed to be familiar with the Maude syntax [3], as well
as CCS and its operational semantics [9].

Implementing CCS in Maude 353

Full CCS is represented, including (possibly recursive) process defini­
tions by means of contexts.

(fmod CCS-CONTEIT is protecting PROCESS .
sorts BadProcess Context BadContext .
subsort Process < BadProcess. subsort Context < BadContext .
op _=def_ : Processld Process -> Context .
op nil : -> Context .
op _t_ : BadContext BadContext -> BadContext [assoc comm id: nil] .
op _definedln_ : Processld Context -> Bool
op def : Processld Context -> BadProcess
op not-defined : -> BadProcess
op context : -> Context .
vars I I' : Processld. var P Process. var C : Context
cmb (I =def P) t C : Context if not(I definedln C) .
eq I definedln nil = false .
eq I definedln «I' =def P) & C) = (I == I') or (I definedln C)
eq def(I, nil) = not-defined.
eq def(I, «I' =def P) t C» = if I == I' then P else def(I, C) fi

endfm)

The general idea for implementing in rewriting logic the operational
semantics of CCS, is to translate each semantic rule into a rewrite rule
where either the premises are rewritten to the conclusion, or the conclu­
sion is rewritten to the premises. In previous work [7J the first approach
was followed; here we adopt the second one, because we want to be able
to prove in a bottom-up way that a given transition is valid in CCS.

The CCS transition P pI is represented in Maude by the term
p -- a -> pI, of sort Judgement, built by means of the operator

op _--_->_ : Process Act Process -> Judgement [prec 50] .

In general, a semantic rule has a conclusion and a set of premises,
each one represented by a judgement. So we need a sort to represent
sets of judgements:

sort JudgementSet. subsort Judgement < JudgementSet
op emptyJS : -> JudgementSet .
op __ JudgementSet JudgementSet -> JudgementSet

[assoc comm id: emptyJS prec 60] .
var J Judgement. eq J J = J .

The union constructor is written with empty syntax (__), and declared
associative (assoc), commutative (comm), and with identity element the
empty set (id: emptyJS). Matching and rewriting take place modulo such
properties. Idempotency is specified by means of an explicit equation.

A semantic rule is implemented as a rewrite rule where the singleton
set consisting of the judgement representing the conclusion is rewritten
to the set consisting of the judgements representing the premises.

354 A. Verdejo and N. Marli-Oliet

For example, for the restriction operator of ees, we have the rule2

crl [res] : P \ L -- A -> P' \ L
=> ------------------------

P -- A -> P' if (A =/= L) and (A =/= L) .

and for the axiom schema defining the prefix operator we have

rl [pref]: A. P -- A -> P
=> ---------------------

emptyJS .

Thus, a transition P pI is possible in ees if and only if the judge­
ment representing it can be rewritten to the empty set of judgements
by rewrite rules of the form described above that define the operational
semantics of ees in a backwards search fashion.

However, we have found problems while working with this approach
in the current version of Maude. The first one is that sometimes new
variables appear in the premises which are not in the conclusion. For
example, in one of the semantic rules for the parallel operator we have

rl [par]: P I Q -- tau -> P' I Q'

=> ---------------------------------
P -- L -> P' Q -- L -> Q' .

where L is a new variable in the right hand side of the rewrite rule. Rules
of this kind cannot be directly used by the Maude default interpreter;
they can only be used at the metalevel using a strategy to instantiate
the extra variables.

Another problem is that sometimes several rules can be applied to
rewrite a judgement. For example, for the summation operator we have,
because of its intrinsic nondeterminism,3

rl [sunU: P + Q -- A -> P' rl [sunU: P + Q -- A -> Q'

=> ------------------- => --------------------
P -- A -> P' . Q -- A -> Q' •

In general, not all of these possibilities lead to an empty set of judge­
ments. So we have to deal with the whole tree of possible rewritings of
a judgement, searching if one of the branches leads to emptyJS.

In Section 2, we show how these problems can be solved in the current
version of the Maude system by using reflection, obtaining an executable
semantics, where we can prove if a transition P pI is possible.

2Using the fact that text beginning with --- is a comment in Maude, rules are displayed
in such a way as to emphasize the correspondence with the usual presentation in textbooks,
although in this case the conclusion is above the horizontal line.
30nly one rule is enough by declaring _+_ to be commutative. In this case, nondeterminism
appears because of possible multiple matches (modulo commutativity) against pattern P + Q.

Implementing CCS in Maude 355

In Section 3, we extend this representation in order to be able to
answer different kinds of questions, such as if process P can perform
action a (and we do not care about the process it becomes), or which
are the successors of a process P after performing actions in a given set
As, that is,

succ(P,As) = {PI I P pI A a E As}.

In Section 4 we show how we can define in Maude the semantics of
the Hennessy-Milner modal logic for describing local capabilities of CCS
processes.

2. EXECUTABLE CCS SEMANTICS
In this section we show how the problem of new variables in the right­

hand side of a rewrite rule is solved by using the concept of explicit
meta variables presented by Stehr and Meseguer [11 J, and how nondeter­
ministic rewriting is controlled by using a search strategy [1, 4].

New variables in the right hand side of a rule represent "unknown"
values when we are rewriting; by using metavariables we make explicit
this lack of knowledge. The semantics with explicit metavariables has
to bind them to concrete values when these values become known.

For the moment, metavariables are only needed as actions in the
judgements, so we declare a new sort for metavariables as actions:

sort HetaVaxAct .
op ?'(_')A : Qid -> HetaVaxAct .
vax NEWl : Qid .

We also introduce a new sort Act? of "possible actions," and modify
the operator for building judgements in order to deal with it:

sort Act? subsorts Act HetaVaxAct < Act? .
vax ?A : HetaVaxAct. vax A? : Act? .
op _--_->_ : Process Act? Process -> Judgement [prec 50] .

As mentioned above, a metavariable will be bound when its con­
crete value becomes known, so we need a new judgement stating that a
metavariable is bound to a concrete value

op '[_:=_'] : HetaVaxAct Act -> Judgement.

and a way to propagate this binding to the rest of judgements where
the bound metavariable may be present. Since this propagation has to
reach all the jUdgements in the current state of the inference process, we
introduce an operation to enclose the set of judgements, and a rule to
propagate a binding

0P '{'{_'}'} : JudgementSet -> Configuration.
vax JS : JudgementSet .

356 A. Verdejo and N. Marti-Oliet

rl [bind] : {{ [?A :: A] JS }} :> {{ <act ?A :: A > JS }} .

where we use several overloaded, auxiliary functions <act_: = _> _ to per­
form the substitutions (see complete specification in the full version [13]).

Now we are able to redefine the rewrite rules implementing the CCS
semantics, taking care of metavariables. For the prefix operator we main­
tain the previous axiom schema and add a new rule for the case when a
metavariable appears in the judgement
rl [pref] : A. P -- A -> P rl [pref] : A. P -- ?A -> P

:> -------------------- :> --------------------
emptyJS . [?A :: A] .

Note how the metavariable ?A present in the left hand side judgement is
bound to the concrete action A taken from the process A. P. This binding
will be propagated to any other judgement in the set of judgements
containing A.P -- ?A -> P.

For the summation operator, we generalize the rules allowing a more
general variable A? of sort Act?, since the behavior is the same indepen­
dently of whether a metavariable or an action appears in the judgement:

rl [sum] : P + Q -- A? -> P' rl [sum] : P + Q -- A? -> Q'
:> ------------------- :> -------------------

P -- A? -> P' . Q -- A? -> Q' .

Nondeterminism is again present; we deal with it in Section 2.1.
For the parallel operator, there are two rules for the cases when one

of the composed processes performs an action on its own,
rl [par] : P I Q -- A? -> P' I Q rl [par] : P I Q -- A? -> P I Q'

:> ----------------------- :> ------------------------
P -- A? -> P' . Q -- A? -> Q' .

and two additional rules dealing with the case when communication
happens between both processes,
rl [par] : P I Q -- tau -> P' I Q'

:> --
P -- ?(NEW1)A -> P' Q -- - ?(NEW1)A -> Q' .

rl [par] : P I Q -- ?A -> P' I Q'
:> ---

P -- ?(NEW1)A -> P' Q -- - ?(NEW1)A -> Q' [?A:: tau] .

where we have overloaded the - operator op : Act? -> Act? .
Note how the term? (NEWt) A is used to represent a new metavariable.

Rewriting has to be controlled by a strategy that instantiates the variable
NEW1 with a new (quoted) identifier each time one of the above rules is
applied, in order to build new metavariables. The strategy presented in
Section 2.1 does this as well as implementing the search in the tree of
possible rewritings.

Implementing CCS in Maude 357

There are two rules dealing with the restriction operator of ees,
depending on whether an action or a metavariable occurs in the lefthand
side judgement

crl [res] : P \ L -- A -> P' \ L
=> ------------------------

P -- A -> P' if (A =/= L) and (A =/= - L) .

rl [res] : P \ L -- ?A -> P' \ L
=> --

P -- ?A -> P' [?A =/= L] [?A =/= - L] .

In the latter case, we cannot use a conditional rewrite rule as in the
former case, because the condition (?A =/= L) and (?A =/= - L) can­
not be checked until we know the concrete value of the metavariable ? A.
Hence, we have to add a new kind of judgement used to state constraints
between metavariables, which is eliminated when it is fulfilled,

op '[_=/=_'] : Act? Act? -> Judgement.
crl [dist] : [A =/= A'] => emptyJS if A =/= A' .

where (normal) actions are used.
For the relabelling operator of ecs we have similar rewrite rules, and

for process identifiers we only need the generalization of the original rule
by means of a more general variable A?

crl [def] : x -- A? -> P'?
=> -------------------------------

def(X, context) -- A? -> P'? if (X definedln context) .

Using these rules, we can begin to pose some questions about the
capability of a process to perform an action. For example, we can ask if
the process ' a. ' b . 0 can perform action ' a (becoming , b . 0) by rewriting
the configuration composed of a judgement representing that transition:

Maude> (rev {{ 'a . 'b . 0 -- 'a -> 'b . 0 }} .)
Result Configuration: {{ emptyJS }}

Since a configuration consisting of the empty set of judgements is reached,
we can conclude that the transition is possible.

However, if we ask if the process 'a. 0 + ' b . 0 can perform action ' b
becoming process 0, we get as result
Maude> (rev {{ 'a . 0 + 'b . 0 -- 'b -> 0 }} .)
Result Configuration : {{ 'a . 0 -- 'b -> 0 }}

representing that the given transition is not possible, which is not the
case. TheproblemisthatH'a.O + 'b.O -- 'b -> O}} can berewrit­
ten in two different ways, and only one of them leads to a configuration
consisting of the empty set of judgements.

Therefore, we need a strategy to search the tree of all possible rewrites.

358 A. Verdejo and N. M arli- Oliet

2.1. SEARCHING IN THE TREE OF
REWRITINGS

Rewriting logic is reflective [2], that is, there is a finitely presented
rewrite theory U that is universal in the sense that we can represent any
finitely presented rewrite theory n (including U itself) and any terms
t, t' in n as terms nand l, t! in U, and we then have the following
equivalence: n f- t ----t t' {:} U f- (n, l) ----t (n, t!).

In Maude, key functionality of the universal theory U has been effi­
ciently implemented in the functional module META-LEVEL, where Maude
terms are reified as elements of a data type Term, Maude modules are
reified as terms in a data type Module, the process of reducing a term
to normal form is reified by a function meta-reduce, and the process
of applying a rule of a system module to a subject term is reified by a
function meta-apply [3].

In this section we show how the reflective properties of Maude [2] can
be used to control the rewriting of a term and the search in the tree
of possible rewritings of a term. The depth-first strategy is based on
previous work [1, 4], although modified to deal with the substitution of
metavariables explained in the previous section.

The module implementing the search strategy is parameterized with
respect to a constant equal to the metarepresentation of the Maude
module which we want to work with. Hence, we define a parameter
theory with a constant MOD representing the module, and a constant
labels representing the list of labels of rewrite rules to be applied:
(fth AMODULE is including META-LEVEL

op MOD : -> Module .
op labels : -> QidList .

endfth)

The module containing the strategy, extending META-LEVEL, is then
the parameterized module SEARCH [M :: AMODULE].

Since we are defining a strategy to search a tree of possible rewritings,
we need a notion of search goal. For the strategy to be general enough,
we assume that the module MOD has an operation ok (defined at the
object level), which returns a value of sort Answer such that

• ok(T) = solution means that the term T is one of the terms we
are looking for, that is, T denotes a solution;

• ok(T) = no-solution means that the term T is not a solution and
no solution can be found below T in the search tree;

• ok(T) = maybe-sol means that T is not a solution, but we do not
know if there are solutions below it.

Implementing CCS in Maude 359

The strategy controls the possible rewritings of a term by means of
meta-apply. meta-apply(M, T ,L,S ,N) applies (discarding the first N
successful matches) a rule of module M with label L, partially instantiated
with substitution S, to the term T. It returns the resulting fully reduced
term and the representation of the match used in the reduction.

We saw before the necessity of instantiating the new variables in the
right hand side of a rewrite rule in order to create new metavariables. We
have to provide a substitution in such a way that the rules are always ap­
plied without new variables in the right hand side. For simplicity we will
assume that a rule has at most three new variables called NEW1, NEW2, and
NEW3. These variables are then substituted by new identifiers, which are
quoted numbers. Hence, we define a new operation meta-apply' which
receives the greatest number used to substitute variables in T and uses
three new numbers to create three new (metarepresented) identifiers.

vars N H : Machinelnt. var L : Qid. var T : Term .
op subst : Hachinelnt -) Substitution
eq subst(H) • «'NEW1GQid <- {conc(" , index(' , H + 1»}'Qid);

('NEW2GQid <- {conc(" , index(' , M + 2»}'Qid);
('NEW3GQid <- {conc(" , index(' , H + 3»}'Qid»

op meta-apply' : Term Qid Hachinelnt Machinelnt -) Term .
eq meta-apply' (T,L,N,H) • extTerm(meta-apply(MOD,T,L,subst(M),N» .

meta-apply' returns one of the possible one-step rewritings at the
top level of a given term. Our first step is to define an operation allRew
that returns all the possible one-step sequential rewritings [8] of a given
term by using rewrite rules with labels in the list labels. The third
argument of allRew represents the greatest number M used to substitute
new variables in T. There is a TermList sort in module META-LEVEL, but
it does not have an identity element, which we need to represent the
case when no rule can be applied. So we extend it as follows:

op - : -) TermList. var TL : TermList .
eq -, TL = TL. eq TL, - • TL .

The operations needed to find all the possible rewritings, and their
definitions, are as follows:

op allRew : Term QidList Hachinelnt -) TermList .
op topRew : Term Qid Machinelnt Machinelnt -) TermList
op lowerRew : Term Qid Hachinelnt -) TermList .
op rewArguments : Qid TermList TermList Qid Machinelnt -) TermList
op rebuild : Qid TermList TermList TermList -) TermList .
var LS : QidList . vars C S OP : Qid . vars Before After : TermList
eq allRew(T, nil, H) = - .
eq allRew(T, L LS, M) = topRew(T, L, 0, M), ••• rew at the top of T

lowerRew(T, L, M), ••• rew of subterms
allRew(T, LS, M). • •• rew with labels LS

360 A. Verdejo and N. Marti-Dliet

eq topRew(T, L, N, M) =
if meta-apply'(T, L, N, M) == error. then -
else (meta-apply'(T, L, N, M) , topRew(T, L, N + 1, M» fi .

eq lowerRew({C}S, L, M) = - .
eq lowerRew(OP[TL], L, M) = rewArguments(OP, -, TL, L, M) .
eq rewArguments(OP, Before, T, L, M) =

rebuild(OP, Before, allRew(T, L, M), -) .
eq rewArguments(OP, Before, (T, After), L, M)

rebuild(OP, Before, allRew(T, L, M), After) ,
rewArguments(OP, (Before, T), After, L, M) .

eq rebuild(OP,Before,-,After) = - .
eq rebuild(OP,Before,T,After) = meta-reduce(MOD,OP[Before,T,After])
eq rebuild(OP,Before,(T, TL),After) =

meta-reduce(MOD, OP[Before,T,After]), rebuild(OP,Before,TL,After) .

Now we can define a strategy to search in the (conceptual) tree of all
possible rewritings of a term T for a term that satisfies the ok predi­
cate. Each node of the search tree is a pair, whose first component is a
term and whose second component is a number representing the greatest
number used as identifier for new variables in the process of rewriting
the term. The tree nodes that have been generated but not yet been
checked are maintained in a sequence.

sorts Pair PairSeq. subsort Pair < PairSeq
op <_I ,_> : Term Machinelnt -> Pair
op nil -> PairSeq .
op _1_ : PairSeq PairSeq -> PairSeq [as soc id: nil] .
var PS : PairSeq .

We need an operation to build these pairs from the list of terms pro­
duced by allRew:

op buildPairs : TermList Machinelnt -> PairSeq .
eq buildPairs(-, N) = nil. eq buildPairs(T, N) = < T , N > .
eq buildPairs«T, TL), N) = < T , N > 1 buildPairs(TL, N) .

The operation rewDepth starts the search by calling the operation
rewDepth' with the root of the search tree. rewDepth' returns the first
solution found in a depth-first way. If there is no solution, the error.
term is returned.

op rewDepth : Term -> Term .
op rewDepth' : PairSeq -> Term
eq rewDepth(T) = rewDepth'« meta-reduce (MOD , T), 0 » .
eq rewDepth'(nil) = error •.
eq rewDepth'« T , N > 1 PS) =

if meta-reduce(MOD, 'ok[T]) == {'solution}'Answer then T
else (if meta-reduce(MOD, 'ok[T]) == {'no-solution}'Answer then

rewDepth' (PS)
else rewDepth'(buildPairs(allRew(T,labels,N),N + 3) 1 PS)
fi) fi .

Implementing CCS in Maude 361

Now we can test the ees semantics with some examples using differ­
ent judgements. First, we define a module CCS-OK extending the ees
syntax and semantic rules by defining some process constants to be used
in the examples, and the predicate ok that states when a configuration
is a solution. In this case a configuration denotes a solution when it is
the empty set of judgements, representing that the set of judgements at
the beginning is provable by means of the semantic rules.

(mod CCS-OK is including CCS-SEMANTICS .
ops p1 p2 : -> Process
eq p1 = ('a 0) + ('b. 0 I ('c. 0 + 'd . 0» •
eq p2 = ('a. 'b . 0 I (- 'c . 0) ['a / 'c]) \ 'a
sort Answer .
ops solution no-solution maybe-sol : -> Answer .
op ok : Configuration -> Answer
var JS : JudgementSet .
eq ok({{ emptyJS }}) = solution
ceq ok({{ JS }}) = maybe-sol if JS =/= emptyJS

endm)

In order to instantiate the parameterized generic module SEARCH, we
use the Full Maude up function to obtain the metarepresentation of
module CCS-OK, and then we declare a view [3]:

(mod META-CCS is including META-LEVEL
op METACCS : -> Module .
eq METACCS = up(CCS-OK) .

endm)
(view ModuleCCS from AMODULE to META-CCS is

op MOD to METACCS .
op labels to ('bind 'pref 'sum 'par 'res 'dist 'rel 'def) .

endv)
(mod SEARCH-CCS is

protecting SEARCH[ModuleCCS]
endm)

Now we can test the examples. First we can prove that process p1
can perform action 'e becoming 'b.O I 0.4

Maude> (red rewDepth({{ p1 -- 'c -> 'b . 0 I 0 }}».)

Result Term: {{ emptyJS }}

We can also prove that p2 cannot perform action' a (but see later).

Maude> (red rewDepth({{p2 -- 'a -> ('b.O I (-'c.O) ['a/'c])\'a}}».)
Result Term : error.

4We refer to the Maude manual [3) for indications about how to introduce metarepresented
terms. Here we use t for the metarepresentation of term t.

362 A. Verdejo and N. Marti-Oliet

In these examples, we have had to provide the resulting process. In the
positive proof there is no problem, but in the negative proof, that is, that
p2 cannot perform action' a, the given proof is not completely correct:
We have proved that process p2 cannot perform action 'a becoming
('b. 0 I (-, c .0) [, a/ ' c]) \ 'a, but we have not proved that there is
no way in which p2 can execute action 'a. We will see in the next section
how this can be proved.

3. HOW TO OBTAIN NEW RESULTS
We are now interested in answering questions such as: Can process P

perform action a (without caring about the process it becomes)? That
is, we want to know if P p' is possible, but p' is unknown. This is
the same problem we found when new variables appear in the premises
of a semantic rule. The solution, as we did with actions, is to define
metavariables as processes, adding a new sort of possible processes, and
modifying the operator used to build the basic transition judgements.

sort MetaVarProc. op ?'(_')P : Qid -> MetaVarProc .
sort Process? subsorts Process MetaVarProc < Process? .
var ?P : MetaVarProc .
op _--_->_ : Process? Act? Process? -> Judgement [prec 50]

We also have to define a new kind of judgements that binds metavari­
abIes with processes, a rule to propagate these bindings, and operations
that perform the substitution (see full version [13]). For the CCS op­
erators, new rules have to be added to deal with metavariables in the
second process of the transition judgement. For example, for the prefix
operator we have to add two new rules:
rl [pref] : A. P -- A -> ?P rl [pref] : A. P -- ?A -> ?P

=> ------------------ => ----------------------
[?P := P] . [?A := A] [?P := p] .

Now, we can prove that process p2 cannot perform action 'a, by
rewriting the judgement p2 -- 'a -) ? (' any)P, where the metavari­
able? (, any) P means that we do not care about the resulting process.

Maude> (red revDepth({{ p2 -- 'a -> ?('any)P }}) .)
Result Term : error.

Another interesting question is which are the successors of a process
P after performing actions in a given set As, that is,

succ(P, As) = {P' I P p' I\a E As}.

Since we can use metavariables as processes, we have to rewrite a
judgement like P -- A -) ?('proc)P instantiating the variable A with
actions in the given set. Those rewritings will bind the metavariable

Implementing aas in Maude 363

? (, proc) P with the successors of P, but we find two problems. The first
one is that we lose the bindings between metavariables and processes
when they are substituted by applying the rewrite rule bind. To solve
this, we have to modify the operator to build configurations, by also
keeping a set of bindings already produced, which will be saved by the
bind rule:

op '{'{_I_'}'} : JudgementSet JudgementSet -> Configuration
r1 [bind] : {{ [?P :- P] JS I JS' }} =>

{{ «proc ?P := P > JS) I [?P :- P] JS' }} .

We have to change also the function ok, adding this new argument.
Another problem is that rewDepth only returns one solution, but we

can modify it in order to get all the solutions, that is, in order to explore
the whole tree of rewritings finding all the nodes that satisfy the function
ok. The operation allSol returns a set with all the solutions.

sort TermSet. subsort Term < TermSet .
op '{'} : -> TermSet .
op _U_ : TermSet TermSet -> TermSet [assoc comm id: {}] .
ceq T U T' = T if meta-reduce(MOD, '_==_[T, T']) == {'true}'Bool
op a11Sol : Term -> TermSet .
eq a11S01(T) = allSolDepth« meta-reduce (MOD,T), 0 » .
op a11SolDepth : PairSeq -> TermSet
eq allSolDepth(nil) = {} .
eq al1SolDepth« T , N > IPS) =

if meta-reduce(MOD, 'ok[T]) -= {'solution}'Answer then
(T U a11SolDepth(PS))

else (if meta-reduce(MOD, 'ok[T]) {'no-so1ution}'!nswer then
allSolDepth(PS)

fi .

else al1SolDepth(buildPairs(allRew(T,labe1s,N),N + 3) IPS)
fi)

Now we can define (in an extension of module SEARCH-CCS) a func­
tion succ which, given the metarepresentation of a process and a set of
metarepresentations of actions, returns the set of metarepresentations of
the process successors.

op succ : Term TermSet -> TermSet
eq succ(T, {}) • {} .
eq succ(T, A U AS) = fi1ter(allSol(

"{'LI_'}'} ['_--_->_ [T, A, '?'C')P [{"proc}'Qid]] ,
{'emptyJS}'JudgementSet]), '?'(_')P [{"proc}'Qid])

U succ(T,AS) .

where filter (see full version [13]) is used to remove all the bindings
involving metavariables different from ? (, proc) P.

364 A. Verdejo and N. Mart{-Oliet

4. MODAL LOGIC FOR CCS PROCESSES
In this section we show how we can define in Maude the semantics

of a modal logic for CCS processes by using the functions of previous
sections. We introduce a modal logic for describing local capabilities
of CCS processes. This logic, which is a version of Hennessy-Milner
logic [6], and its semantics are presented by Stirling [12]. Formulas are
as follows:

where K is a set of actions. The satisfaction relation describing when a
process P satisfies a property q" P F q" is defined as follows:

PFtt
P F q,1 /\ q,2
P F q,1 V 4>2
P F [K]q,
P F (K)q,

iff P F q,1 and P F q,2
iff P 1= 4>1 or P 1= 4>2
iff 'v' Q E {PI I P pI /\ a E K} . Q F= 4>
iff 3 Q E {PI I P pI /\ a E K} . Q 1= q,

First, we define a sort HMFormula of modal logic formulas and opera­
tions to build these formulas:
(mod MODAL-LOGIC is protecting CCS-SUCC

sort HMFormula •
ops tt ff : -> HMFormula .
ops _/_ _\/_: HMFormula HMFormula -> HMFormula
ops '[_']_ <_>_: TermSet HMFormula -> HMFormula

We define the modal logic semantics in the same way as we did with
the CCS semantics, that is, by defining rewrite rules that rewrite a
judgement P 1= 4> into the set of judgements which have to be fulfilled:

op _1-_ : Term HMFormula -> Judgement.
op forall : TermSet HMFormula -> JudgementSet .
op exists : TermSet HMFormula -> JudgementSet .
var P : Term. vars K PS : TermSet. vars Phi Psi : HMFormula
rl [true] P 1= tt => emptyJS.
rl [and] P 1= Phi /\ Psi => (P 1= Phi) (P 1= Psi) .
rl [or] P 1= Phi \/ Psi => P 1= Phi .
rl [or] P 1= Phi \/ Psi => P 1= Psi .
rl [box] P 1= [K] Phi => forall(succ(p. K). Phi)
rl [diam] P 1= < K > Phi => exists(succ(P. K). Phi)
eq forall({}. Phi) = emptyJS .
eq forall{P UPS. Phi) = (P 1= Phi) forall(PS. Phi)
rl [ex] : exists{P UPS. Phi) => P 1= Phi.

These rules are also nondeterministic. For example, the application
of the two rules or is nondeterministic because they have the same left­
hand side, and the rule ex is also nondeterministic because of multiple

Implementing CCS in Maude 365

matchings modulo associativity and commutativity. We can instantiate
the module SEARCH in Section 2.1 with the metarepresentation of the
module containing the definition of the modal logic semantics.

As an example, we show some modal formulas satisfied by a vending
machine 'Ven [12] defined in a CCS context as

eq context = «'Ven =def ('2p . 'VenB + 'ip . 'VenL» &
('VenB =def 'big. 'collectB . 'Ven) &
('VenL =def 'little. 'collectL . 'Ven»

and how they can be proved in Maude.
One of the properties that the vending machine fulfills is that a button

cannot be depressed initially, that is, before money is deposited.

Maude> (red revDepth('Ven 1= ['big U 'little] ff) .)

Result Term : emptyJS

Another interesting property of 'V en is that after a ' 2p coin is in­
serted, the little button cannot be depressed whereas the big one can:

Maude> (red revDepth('Ven 1= ['2p]«['little] ff) /\ «'big> .)

Result Term : emptyJS

5. CONCLUSION
We have represented the CCS structural operational semantics in

rewriting logic in a general way, solving the problems of new variables
in the right hand side of the rules and nondeterminism by means of the
reflective features of rewriting logic and its realization in the Maude
module META-LEVEL.

We have seen how the semantics can be extended to answer questions
about the capability of a process to perform an action, by considering
metavariables as processes in the same way as we had done with actions.
Having metavariables as processes allows also answering which are the
successors of a process after performing an action, and this allows a
representation of the semantics of the Hennessy-Milner modal logic in a
similar way to its mathematical definition.

In the full version of this paper [13], in addition to more details, we
have extended (using the same techniques) the semantics representa­
tion to sequences of actions or traces. We have also implemented weak
transition semantics, P pi, which does not observe 'T transitions.
Finally, we have extended the modal logic representation introducing
new modalities [K] and ((K}) defined by means of the weak transition
relation.

Other specific-purpose tools, such as the Concurrency Workbench [5],
are more efficient and expressive than our tool, which is much in the

366 A. Verdejo and N. M arti- Dliet

style of a prototype, where we can play not only with processes and
their capabilities, but with the semantics, represented at a very high
mathematical level, adding or modifying some rules.

Although our implementation is much in the style of logic program­
ming, one advantage is the possibility of working with algebraic spec­
ifications modulo equational axioms. Moreover, other strategies could
be employed rather than depth-first, still keeping the same underlying
specification.

Work in progress applies all these techniques to the specification lan­
guage E-LOTOS, developed within ISO for the formal specification of
open distributed concurrent systems [10].

Acknowledgements We are grateful to J. Meseguer and the referees for
their helpful comments on earlier versions of this paper.

References
[1] R. Bruni. Tile Logic for Synchronized Rewriting of Concurrent Systems. PhD

thesis, Dipartimento di Informatica, Universita di Pisa, 1999.
[2] M. Clave!. Reflection in General Logics and in Rewriting Logic with Applications

to the Maude Language. PhD thesis, University of Navarre, 1998.

[3] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. Quesada. Maude: Specification and Programming in Rewriting Logic. SRI
International, Jan. 1999, revised Aug. 1999.

[4] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer, and
J. Quesada. Using Maude. In Proc. FASE 2000, LNCS 1783. Springer, 2000.

[5] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench: A
semantics-based tool for the verification of finite-state systems. ACM TI-ansac­
tions on Programming Languages and Systems, 15(1):36-72, Jan. 1993.

[6] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur­
rency. Journal of the ACM, 32(1):137-161, Jan. 1985.

[7] N. Marti-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame­
work. Technical Report SRI-CSL-93-05, SRI International, 1993. To appear in
Handbook of Philosophical Logic, Kluwer Academic Publishers.

[8] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96:73-155, 1992.

[9] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[10] J. Quemada, editor. Final committee draft on Enhancements to LOTOS.

ISO/IEC JTC1/SC21/WG7 Project 1.21.20.2.3., May 1998.
[11] M.-O. Stehr and J. Meseguer. Pure type systems in rewriting logic. In Proc. of

LFM'99: Workshop on Logical Frameworks and Meta-Languages, France, 1999.

[12] C. Stirling. Modal and temporal logics for processes. In Logics for Concurrency:
Structure vs Automata, LNCS 1043, pages 149-237. Springer, 1996.

[13] A. Verdejo and N. Marti-Oliet. Executing and verifying CCS in Maude. Tech­
nical Report 99-00, Dpto. Sistemas Informaticos y Programacion, Universidad
Complutense de Madrid, Feb. 2000.

	IMPLEMENTING CCS IN MAUDE
	1. INTRODUCTION

	2. EXECUTABLE CCS SEMANTICS
	2.1. SEARCHING IN THE TREE OFREWRITINGS
	3. HOW TO OBTAIN NEW RESULTS
	4. MODAL LOGIC FOR CCS PROCESSES
	References

