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Abstract Several verification techniques based on theorem proving have been de­
veloped for the verification of security properties of cryptographic proto­
cols specified by means of the spi calculus. However, to be used success­
fully, such powerful techniques require skilled users. Here we introduce a 
different technique which can overcome this drawback by allowing users 
to carry out the verification task in a completely automatic way. It is 
based on the definition of an extended labeled transition system, where 
transitions are labeled by means of the new knowledge acquired by the 
external environment as the result of the related events. By means of 
bounding the replication of parallel processes to a finite number, and 
by using an abstract representation of all explicitly allowed values in 
interactions between the spi process and the environment, the num­
ber of states and transitions remains finite and tractable, thus enabling 
the use of state-space exploration techniques for performing verification 
automatically. 

Keywords: Spi Calculus, Cryptographic Protocols, Testing Equivalence. 

Tommaso Bologncsi and Diego Latella (Eds.), Fomuzl Methods for Distributed System Develqnnent. 
(!;) 2000 IFIP International Federation for Infonnation Processing. 
Published by Kluwer Academic Publishers. All rights reserved. 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35533-7_26

http://dx.doi.org/10.1007/978-0-387-35533-7_26


156 L. Durante, R. Sisto and A. Valenzano 

1. INTRODUCTION 
Due to the increasing importance of secure distributed applications 

such as electronic commerce, formal verification of cryptographic proto­
cols is being extensively studied by several researchers. Some of them 
have investigated proof techniques, based on various proof systems and 
description formalisms [10, 11]. Although partial automation of proofs 
is possible using theorem provers, this approach is generally highly time 
consuming and requires a lot of expertise. An alternative simpler and 
quicker approach is to use state exploration methods, such as model 
checking [4, 5, 6, 7, 8]. This requires modeling protocol behaviors as 
reasonably sized finite state systems, which generally entails introduc­
ing simplifying assumptions that can reduce the accuracy of the analysis. 
Nevertheless, this kind of verification has the invaluable advantage of be­
ing fully automatic. 

Both theorem proving and state exploration have been used with sev­
eral description formalisms. In this paper attention is focused on spi 
calculus [1], a process algebra derived from the IT-calculus [9] with some 
simplifications and the addition of cryptographic operations. The main 
strength of spi calculus with respect to other similar formalisms stands 
in its simplicity in describing cryptographic protocols and their security 
requirements. In particular, in [1] it is shown how security properties 
such as authentication and secrecy can easily be expressed by means of 
a testing equivalence notion. For example, if P(M) is the description of 
a cryptographic protocol to exchange a secret message M, secrecy can 
be simply expressed saying that for any M', P(M) and P(M') must be 
testing equivalent, i.e. any tester process must be unable to distinguish 
their behaviors. Instead, when other specification formalisms are used, 
it is generally required that both the protocol and the attacker behavior 
be specified. The attacker specification is not only extra work, but also 
a potential weak point, because it is somewhat arbitrary and might not 
include some possible attacks on the protocol. Expressing properties in 
terms of testing equivalence means implicitly considering any attacker 
that can be specified in spi calculus. This is because the tester process 
actually represents the protocol environment, i.e. the attacker. 

The main problem that remains with the spi calculus approach is the 
checking of testing equivalence in an efficient and easy way. This is 
difficult because of universal quantification over testers: checking equiv­
alence means checking that two processes are indistinguishable for any 
tester process, and there are infinitely many such processes. This prob­
lem has been addressed in [2] and [3]' where tractable proof methods 
aimed at checking the testing equivalence of spi calculus processes are 
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introduced. In [2J, the proof method is based on a bisimulation relation 
that is a sufficient but not necessary condition for testing equivalence. In 
[3J, a more accurate method is proposed to check may-testing, an equiva­
lence very similar to the testing equivalence defined in [lJ. The approach 
presented in [3J starts from the definition of a contextual labeled tran­
sition system which represents the protocol behavior constrained by the 
knowledge which the environment has about names and keys. The proof 
method exploits the fact that the trace equivalence defined on this model 
is a necessary and sufficient condition for may-testing equivalence. 

Differently from the above two approaches, this paper investigates 
the possibility of checking the spi calculus may-testing equivalence using 
state exploration instead of theorem proving. The quantification over 
contexts problem is solved in a way similar to the one reported in [3J, 
i.e. by defining a labeled transition system such that trace equivalence 
is necessary and sufficient for may-testing equivalence. The other new 
problem that has to be solved in order to make state exploration possible 
and effective is to keep the size of the trace sets to be explored within 
finite and reasonable bounds. This objective is achieved mainly in two 
different ways. First of all, to keep the state set finite, only spi calculus 
processes having a finite number of parallel instances are dealt with. In 
practice, our approach is to substitute any replication expression of the 
form !P, which is interpreted in spi calculus as an infinite number of 
copies of P running in parallel, with a finite number n of parallel copies 
of P. Since the replication operator is generally used to represent par­
allel sessions of a cryptographic protocol, this restriction is equivalent 
to considering up to n parallel runs of the protocol. Consequently, at­
tacks that are possible only with more than n parallel sessions cannot 
be detected in this way. A similar restriction is adopted in the literature 
whenever state exploration methods are used and is generally consid­
ered fairly acceptable, since bugs tend to show up with few numbers of 
parallel sessions. 

A second way to reduce the size of the trace sets consists in avoiding 
the explicit representation of transitions corresponding to inputs from 
the environment. Since the environment can in principle send at any 
time any data that is part of its knowledge as well as any fresh name or 
integer, the number of such transitions can be huge if not infinite. Our 
approach is to represent a set of such transitions as a single transition 
with an abstract label called generic term or generic value. This kind 
of reduction does not imply any loss in accuracy and is a key means to 
make traces enumerable and to limit their number. 

The paper is organized as follows: section 2 briefly introduces the 
language and our conventions about symbols, section 3 deals with the 
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;' p ::=terms 11', Q, R ::= processes 
,1} u(p).P output 
m name a(x).P input 
(a, p) pair P I Q composition 
0 zero (lib) P restriction 
suc(a) successor !P replication 
x variable 0 nil 
{a}p shared-key encryption [a is pJ P match 

let (x, y) = a in P pair splitting 
case a 0/ 0 : P suc( x) : Q integer case 
case 1} 0/ {x}p in P shared-key decryption 

Table 1 Syntax of spi calculus 

definition of our labeled transition system and section 4 explains the 
derivation rules for it and gives an example. In section 5 the concept 
of trace equivalence for our labeled transition system is defined while 
section 6 contains some final remarks. 

2. THE LANGUAGE 
The spi-calculus is a process algebraic language defined in [1] as an 

extension of the 7l'-calculus, specifically designed for the specification of 
cryptographic protocols. No explicit types exist in spi calculus and spi 
entities are divided into processes and terms only. However, since spi 
calculus terms are extended here with generic terms, we prefer to use 
the following partially different naming convention: 

• m ranges over names; 
• n ranges over natural numbers; 
• x and y range over variables; 
• b is a fresh name, and b is a tuple of fresh names; 
• P, Q and Rare spi calculus processes; 
• (j, p, 'f/, 0 and 'lj; denote terms in the most general sense (i.e. generic 

terms also); 
• E is a set of terms; 
• r is the set containing all generic terms; 
• 'Y ranges over r; 
• A is a substitution list i.e. A = (j1/Pl,(j2/P2,"'(jn/Pn' O[A], P[A] 

and E[A] mean that each term Pi must be replaced by (ji in 0, P 
and E respectively. 

Tab.l shows the language syntax. Informally, the meaning of each 
construct of the language is the following: 

• Term {(j} p is the encrypted message obtained by encrypting (j 
under key P using a shared-key cryptosystem. 
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• (j(p).P is an output process, ready to output p on channel a when 
a synchronization occurs. After the synchronization, P starts. a 
should be a name. 

• a(x).P is an input process, ready to perform an input from chan­
nel a when a synchronization occurs. After the synchronization, 
P[7]/x] starts, where 7] is the input message. a should be a name. 

• P I Q is a parallel composition where P and Q run in parallel. They 
may either synchronize between themselves or with the external 
environment separately. 

• (vb)P is a restriction where a fresh, private name b is made and 
then P starts. 

• !P is a replication where an unbounded number of instances of P 
run in parallel. 

• [a is p]P is a match. It means that P starts when a and p are the 
same; it stucks otherwise. 

• 0 is the nil process: it does nothing. 
• let (x, y) = ainPisapairsplittingandit behaves as P[p/x,O/y], 

provided that term a is a pair (p, 0); it stucks otherwise. 
• case a of 0 : P suc(x} : Q is an integer case. If a is 0, it behaves 

as P; if a is suc(p}, Q[p/x] starts. It stucks otherwise. 
• case 7] of {x} p in P is a shared-key decryption and behaves as 

P[a / x] if 7] is a cyphertext as {a} p' Otherwise it stucks. 

About encryption the following implicit assumptions hold: 
• an encrypted message can be decrypted by means of the corre­

sponding key only; 
• the encryption key cannot be detected from the encrypted message; 
• an encrypted message is sufficiently redundant so that the decryp­

tion algorithm can detect whether its task succeeded in. 

All the above assumptions are formally defined at the end of section 4. 
The spi calculus operational semantics is defined in [1]. For lack of 

space, they are not recalled here. In this paper we adhere to such def­
initions, with the exception of the replication operator !P, which is in­
terpreted here as a syntactical shortcut for the parallel composition of n 
parallel copies of P (i.e. !P = PIPI· .. IP), where n is a predetermined 

n 
finite natural number. 

3. THE ENVIRONMENT-SENSITIVE LTS 
Our first objective is the definition of an environment-sensitive labeled 

transition system (ES-LTS) describing all the possible interactions of a 
given spi calculus process with its environment. Although the concept 
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is borrowed from [3], our specific ES-LTS differs substantially from the 
one described in [3]. 

The environment that is considered in building the ES-LTS is the most 
powerful one, power being measured by the knowledge the environment 
acquires by interacting with the spi process. For this reason, in analogy 
with [3], each state of our ES-LTS is made up of a spi calculus process 
P and an environment's knowledge E, and is denoted E [> P. E can be 
informally defined as the minimal set of spi calculus terms that allows 
the environment to build everything it has learned during the preceding 
interactions with P. 

Transitions are described by the following syntactical form, already 
introduced in [3]: 

[> P 8 pi (1) 

where J1, is the action performed by process P, and E is a complementary 
action used to represent additional information that must be recorded in 
the ES-LTS traces. While in [3] such complementary actions represent 
environment actions, in our model they are also used for other purposes. 

Transitions are categorized into 4 different types, according to their 
meaning: 

T 

>------+ [> p' 

[> pi 

(2) 

(3) 

[> p' 

[> p' 

(4) 

(5) 

Transitions taking form (2) are related to synchronization events oc­
curring inside the spi process and for this reason they leave the environ­
ment unaware of what has happened, and do not involve any knowledge 
migration (E does not change). 

Transitions taking the second and third form instead are related to 
synchronization events between the spi process and the environment. 

Form (3) represents an output on channel a, and implies a data trans­
fer from the process to the environment. In this case there is also a com­
plementary action representing an increment in the environment knowl­
edge. This is denoted as and represents the set of new terms added 
to E to yield the new knowledge E'. 

Form (4) represents an input on channel a, and implies a data transfer 
from the environment to the process. Thus, no modification in the envi­
ronment knowledge takes place. In this case, the complementary action 
represents the data sent by the environment to the process. In order to 
limit the number of transitions, such data is not represented explicitly, 
but it is represented in an abstract way by means of a generic value 
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denoted 'Y, symbolizing each value the environment is able to build at 
that time. Formally, 'Y is a pair (m-y, where m-y is a fresh name that 
identifies the term and is the set of terms representing the knowledge 
of the environment at the time the data represented by the term was 
generated (i.e. The behavior that follows the input of a generic 
value is indeed the abstract representation of a set of behaviours, each 
one corresponding to a different actual value of the generic term. Such 
behaviors are indistinguishable from one another (in the sense they are 
not affected by the particular value of the input) until the generic value 
that has been received is filtered in some way by means of a let, case or 
is operator. Whenever this happens, the contents of the environment's 
knowledge at the time the generic value had been generated is analyzed, 
in order to find the satisfying value(s), i.e. the actual values of'Y which 
enable the behavior to continue after the filtering operation. 

To represent the fact that only some of the behaviors continue after 
a filtering operation, we use another kind of transition, which takes the 
form (5). This transition is labeled by a substitution list>. representing 
the substitution of a generic term with a corresponding set of satisfying 
values. In this case, pI and are obtained actualizing P and by >. 
(PI = = 

4. DERIVATION RULES FOR THE ES-LTS 
The spi calculus semantics is defined in [1 J by means of the reaction 

relation where P pI means that process P can evolve into pI 
by performing an (internal) action. To formally define our environment 
sensitive LTS we use a set of derivation rules based upon the derivation 
system defined in [1 J for the reaction relation. In practice, the reaction 
relation definition rules are assumed implicitly. Although generic terms 
are new with respect to the original spi calculus, we assume that deriva­
tion rules as defined in [lJ apply to generic terms as to any other term. 
This does not introduce any technical problem, because all terms are 
treated in the same way in [lJ. 

In order to minimize the number of derivation rules needed, we exploit 
the following property: 

{ 

3 P, Q, b I R ==y I Q) 

\;/ R 3 P, Q, b I R == (vb}{u(x).P I Q) 
y 

R == 0 

(6) 

where symbol == means structural equivalence as defined in [1J. Infor­
mally this property means that each spi expression R can always be 
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reduced to a structural equivalent expression taking one of the three 
syntactical forms shown in (6), i.e. input and output action prefix and 
inaction. Consequently, it is enough only to define derivation rules for 
such syntactical forms (indeed, no rule is needed for inaction because it 
represents a stuck process). 

The following rules specify the conditions for transitions of types (2), 
(3) and (4): 

(vb) I O'(x).Q) -+ (vb) (P I Q[p/x]) (7) 
I: t> (vb) I u(x).Q) H I: t> (vb) (P I Q[p/x]) 

I: t> (v b) (u(p}.P I Q) I: U {p} t> (vb)(P I Q) 
(8) 

EU{p}\(EU{p}nE) 

I:f-u (9) 
I: t> (vb) (O'(x).P I Q) I: t> (vb) (Ph/xli Q) 

'Y 

Rule (7) describes interactions on channel a, internal to the spi process 
itself. Each of them corresponds exactly to a reaction step as defined in 
[lJ. The environment is not involved in such an event, thus it is unaware 
of what has happened, and it's knowledge E remains unchanged after 
the event. Label T emphasizes the silence of the event. 

Rule (8) describes what happens when the spi process is ready to 
perform an output on a certain channel a, provided that a belongs to 
the environment's knowledge (this precondition is expressed by E f- a, 
formally defined at the end of this section). The transition is labeled 
with the output channel (j and with the new knowledge that message 
p brings to the environment's knowledge. Such new knowledge can be 
computed as E U {p} \ (E U {p} n E), where E U {p} represents the final 
knowledge reached after the addition of p to E. 

It is worth noting that the update of the environment's knowledge is 
not simply E U {p}, because the addition of p to E could enable a further 
decoding of terms already present in E. The notation E informally 
represents the minimal set of terms needed to generate all the elements 
that can be generated by E. In practice, we can imagine that is the 
result of two operations: first, E is expanded by adding to it all the terms 
that derive from all possible decoding operations. It is then minimized, 
considering that, when an element of E has been decoded into simpler 
parts (already added to E too), it is no longer necessary to continue 
to keep it in E, since in can be built by means of its parts. A formal 
definition of this operation is given at the end of this section. 

For example, let us consider P(M, k) ::= a({Mh).b(k).Q with E 
{a, b}. By means of rule (8) we have the following behavior: 
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{a, b} [> a({Mh).b(k).Q 
{{M}d 

{a, b, {Mh} [> b(k}.Q ii 
t-t {a, b, M, k} [> Q 

{M,k} 
The example shows clearly how the environment's knowledge is re-

arranged after k has been received from b and that {M, k} is the new 
knowledge added to the environment's knowledge, instead of only {k}. 

In particular, looking at event ,we start with E = {a, b, {Mh} 
{M,k} 

and, withp = k, E U {p} = {a, b, {Mh, k}. By means of k, now {Mh 
can be decrypted and replaced by M. Such an operation is performed 
by operator -, thus E U {p} = {a, b, M, k}. E U {p} n E = {a, b} 
describes the knowledge that is present both in E and in E U {p}, i.e. 
knowledge not affected by the reception of p, thus E U {p} \ (E U {p} n E) 
represents the knowledge brought, directly and indirectly, by p, i.e. the 
new knowledge used to label the transition. 

Rule (9) describes what happens when the spi process is ready to 
perform an input from a certain channel, provided that the channel 
belongs to the environment's knowledge (E f- 0'). The transition is 
labeled with the input channel 0' and with the generic term , which 
describes everything the environment can build by using elements of its 
knowledge E. After synchronization, the input variable x is bound to ,. 
The environment's knowledge E does not need to be updated, as it is 
the action of transferring data from the environment to the spi process. 

Rule (9) empasizes the moment when a behavior comprising all possi­
ble behaviors for each acceptable value of, starts. Thus semantic rules 
must be introduced which are able to emphasize when a certain abstract 
behavior, representing all possible behaviors for a generic term" contin­
ues only for some particular values of ,. Such rules are the ones needed 
to define type (5) transitions and are applied whenever two terms must 
be compared. It is worth noting that after a comparison operation each 
generic term is not necessarily substituted with a non-generic value, but 
it can be substituted with another more specialized term, made up of 
other generic terms. For example, rule (12) replaces a generic term with 
a pair of generic terms. 

O(u. p) /\ u. P = (,p, (A» /\ A i= 0 (10) 
E!> (vii) (u(O).P I p(x).Q I R) 7 E[A]!> (vii) (,p(O).P[A] I ,p(X).Q[A] I R[A]) 

Rule (10) must be used whenever the spi process becomes ready on 
both one input and one output channel, in order to check whether the 
channels can be the same or not. 

0(0' • p) indicates whether the match exists, and, if it does, 'if; is the 
matching value, and>' is the substitution list which must be applied to 
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turn a and/or pinto t/J. In practice t/J and>' make it possible to satisfy 
the following: a[>.] = p[>.] = t/J, and the transition labeled with >. 
means that future behavior is allowed only when a[>.] = p[>.] = t/J. 
a. p and O(a. p) are formally defined in [12]. 

The case>. = 0 means that the match exists and no substitution list is 
needed i.e. a and p are the same term; but this case is already handled 
in [1]. 

Q(O'ep) /\ O'ep = (t/J, (>.)) /\ >. "" 0 (11) 
t> ([0' is pl P) I Q H t> P[>'] I Q[>.] 

>. 

Rule (11) tries to equate terms a and p. In case of success, the 
behavior expressions P and Q are updated with the substitution list 
>. and then enabled. The environment's knowledge E is also updated 
with >.. The matching value t/J is not explicitly used, but >. contains all 
the information needed to turn a and/or pinto t/J in P and Q. 

E [> (let (x,y) ="1 in P) I Q E [h'/')] [>P [h\'YII), I Q [hi /')] (12) 
'Y 

where "I' = (m"l" Er) and "I" = (mr"' Er); mr' and mr" are fresh 
names. 

Rule (12) equates the pair of variables (x, y) with a generic term which 
is turned into a pair of generic terms whose names are fresh and whose 
knowledge is inherited from 7. As shown by the substitution list, this 
new pair replaces 7 in P and its components are respectively assigned 
to x and y. 

t> (case "( of 0 : P suc(x) : Q) I R f------t t> P[Ohl I R[Oh] (13) 
01"1 

t> (case"(of 0 : P suc(x) : Q) I R hl t> Qb' h. "(' Ix] I Rbi hl (14) 
'Yh 

where "I' = (mr" 0) and mr, is a fresh name. Such a restriction allows 
to constrain the generic data to be an integer number only (due to rule 
(17), an empty E can always produce integer numbers). 

When a generic term is involved in such a construction, the behaviour 
forks. In fact, if the value 0 is assumed, then behavior P is enabled, 
otherwise Q. In the former case, the generic term 7 has been replaced 
by 0, while in the latter one all integer values are still allowed, thus 
the domain of the new generic term "I' has been restricted to the set of 
natural numbers (17). 

Q("I0p) /\ "lop = (t/J, (A)) /\ A"" 0 
t> (case "1 of {x}p in P) I Q f------t [> P[A, t/Jlx] I Q[A] 

>. 

(15) 

Behavior P is enabled when term 17 can be considered as something 
encrypted by means of p. In this case 0(17 0 p) returns true, t/J is the 
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value of the encrypted message, and ,\ is the substitution list that gives 
the equivalence 1][,\J = {'¢}P[AJ. The environment's knowledge is 
accordingly updated. 1] 0 p and 0,(1] 0 p) are formally defined in [12J. 

The following rules allow us to verify whether a certain term can be 
generated by means of the contents of 

where 

!; {=} f-- ( 

'* 
f-- suc(p) {=} f-- P 

(16) f-- pi 1\ f-- p" {=} f-- (pi, p") (20) 
(17) 1\ '* (21) 
(18) f-- p 1\ f- (7 '* f- {P}a (22) 
(19) 

!; f- (7' V (7' I f- (7' (23) 

Definition (23) does not introduce circularity in (16) since'Y .;. 
In the following, we introduce a set of rules that should allow to 

compute from 

(24) 
(pi, p") E (27) 

p E 1\ \ {p} f- P -t> \ {(pi, pll)} U {pi} U {p"} 

-t> \ {p} 
(25) 

1\ (28) 
suc(p) E (26) -t> \ {{P}a } U {p} 

-t> \ {suc(p)} U {p} 

It can be proven [12J that the number of all allowed evolutions, starting 
from is finite and each one has a finite number of steps. In particular 
the last set of each evolution The proof can be made by underlining 
that each rule tends to replace a composite term with its components 
(i.e. no rule does insert in any element previously extracted by another 
one) and, given two or more rules, their application (evaluation) order 
does not affect the obtained set. 

4.1. AN EXAMPLE OF ES-LTS 
Fig.l shows the ES-LTS of a simple spi process. We have two pro­

cesses: (l/k)(c(k).c(y). [C(y, {zh)] P(z)) and (I/M)(c(x).c({M}x}.Q). 
The former generates a fresh key which is sent to the latter which en­
crypts M with the received key and sends back the encrypted message to 
the former. The former checks the received message ([C(y, {zh)] stands 
for case y of {zh in) and enters P. In fig. 1 each behavior is bounded 
by a box, and the related environment's knowledge is enclosed in braces 
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{e,k} {e,k} 
(vk)(c(y). [C(y, {zh)] P(z)) (vk)(c(y). [C(y, {zh)] P(z)) 

I (vM)(c({Mh3)·Q) .. I (vM)(c({M}·m)·Q) • 

Figure 1 Example of ES-LTS 
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near to the box itself. The initial environment's knowledge contains only 
the unrestricted name c. The initial specification can evolve along the 
three following paths: 

a) an internal synchronization occurs ( 8 ). The behavior expres-

sion is reduced accordingly. 

If a second internal synchronization occurs, a final state (P and Q 
are not specified) is reached without any interaction with the envi­
ronment. The two alternative paths concern interactions with the 
environment; in particular they are the two interleavings of the 
allowed input and output interaction with the environment. In 
case of the input interaction first ( ), the environment knows 

"(1 

only c, thus in the next state it is not possible to find a special-
izing value for 'Yl that matches the constraint ([CbI' {zh))). By 
contrast, when the process output precedes the input, the environ­
ment receives {Mh (even ifit cannot decrypt it) before generating 
'Y2, which can be turned into {Mh ( H }in the next state. 

{Mhh2 

b) an input interaction occurs ( ): in this case a path leads to 
"(3 

a final state, moreover a second path leads to a behavior labeled 
with.ro. Due to lack of space, this behavior has not been expanded 
further; however it is similar to the one labeled with *, where 'Y3 
replaces k and the environment also knows k. Thus the set of 
allowed evolutions is richer than the one obtained from *. 

c) an output interaction occurs ( ): in this case, a path leads to 
k 

a behavior labeled with., similar to the one with.ro. Another path 
leads to a little more complex path, which takes into account all 
allowed interleavings between actions. 

Now let us analyze the leftmost path in more detail: the environment 
knows c, thus it sends a generic term 'Y3 to the spi process over channel 
c. 'Y3 represents each message the environment is able to build at this 
point. The spi process uses 'Y3 to encrypt Mj when it outputs {Mh3 on 
channel c, the environment is able to capture M since it knows c and M 
has been encrypted by means of something it knows. Thus the transition 
has been labeled with M, which has also been added to the environment's 
knowledge. The spi process is now ready to output k on channel Cj k 
is captured by the environment (which enlarges its knowledge) and it is 
used to label the transition. At the next input event, the environment 
gives a generic 'Y4 to the spi process. The last transition means that the 
last behavior is reached only when 'Y4 can be seen as something encrypted 
with k. It is allowed since E,,(4 includes k. 
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The meaning of the whole path is the following: the path to the last 
but one state includes all paths that can be built using each allowed 
message the environment can build in correspondence to the two input 
events. The last state is reachable only when the second generic mes­
sage (f4) has been made as something encrypted with k. The something 
cannot only be M, but also (M, M), {{M, chh (even if meaningless) 
and so on. 

5. TRACE SEMANTICS 
As seen above, transitions take the forms (2), (3), (4) and (5). By 

introducing I==> as the reflexive and transitive closure of H , we in-

a Q a' 
ductively define I==> as I==> 1---7 I==> where a = a· a' and b = {3. b' 

b {3 b' 
and the pair (a, (3) can assume the forms (0, 8E), (a, ')') and (-, A) in 
the cases of (3), (4) and (5) respectively. 

In order to check whether two processes are trace equivalent, for a 
process P, we define: 

traees(P) = {(a, b) I :3 P' I P P'} (29) 
b 

where P is a spi process and, inductively, the trace equivalence: 

(a'.a', (3'.b') (a".a", (31.b") {:} (a', (3') '" (a", (3") 1\ (a', b') (a", b") (30) 

where (a', (3') rv (a", (3") is defined as it follows: 

(e', ,') '" (e", ,") ¢=:> e' == e" 1\ m"r' == m"r" (31) 
(2", 8r;') '" (e", 8r;1I) ¢=:> 2" == e" 1\ R(8r;', 8r;1I) (32) 

(-, ).') '" (-, >.") ¢=:> B(>,', >.") (33) 

R( 8E', 8E") holds true if a bijective mapping exists between 8E' and 
8E" so that each pair of the mapping (a', a") satisfies the following: 

a' == a" V (a' == {17'}II' 1\ a" == {17"}II") (34) 

S(A', A") holds true if a bijective mapping exists between A' and A" so 
that each pair of the mapping (a' 11", a" 11''') satisfies the following: 

a' == {17'}9' 
1\ 

a" == {17"}9" 
m"r' == m"r" 1\ a' == a" V 1\ 

r;"r' \ {a'} 'r/ a' 
1\ 

r;"r" \ {a"} 'r/ a" 

(35) 
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In practice, in the case of input transitions (31), we require that the 
names of the two channels are the same, and that the two generic terms 
are also the same; in the case of output transitions (32), we require 
that the new data added to the environment's knowledge are the same 
or are indistinguishable from the environment's point of view (34). It 
must be remembered that when an encrypted term is present in t5E, it 
means that the environment cannot decrypt it, thus it cannot distinguish 
among such kinds of terms. 

In the case of specializing transitions (33), two corresponding substi­
tution items must replace the same generic term (m-y' == m-y") and the 
replacing terms must be the same, or must be indistinguishable, in the 
sense of the environment's knowledge. In fact two different replacing 
terms can be considered equivalent when they are encrypted terms that 
the environment's knowledge cannot decrypt (last sentence in (35)). 

Everything works well since the following assumptions holds: the same 
criteria must be used in generating the name of generic terms in both 
processes (rules (31) and (35)), and the initial environment's knowledge 
must be the same for both processes. In particular, it is assumed that 
the initial environment's knowledge of a process explicitly contains each 
unrestricted name of the process specification. 

The fact that two trace equivalent processes in our definition are also 
testing equivalent, and vice versa, will be proven in a future work. 

6. CONCL USIONS 
A tractable method to check the spi calculus may-testing equivalence 

by state space exploration has been presented. It deals with the spi 
calculus as defined in [1], with the only exception of the replication 
operator. As far as we know, this is the first attempt in this direction. 
Previous related work, reported in [2] and [3], investigated only the 
theorem proving approach. 

Further research efforts are oriented to formally prove soundness and 
completeness of the method and to develop a tool that can implement 
the verification task automatically. 
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