
A STATE-EXPLORATION TECHNIQUE
FOR SPI-CALCULUS TESTING­
EQUIVALENCE VERIFICATION

Luca Durante, Riccardo Sisto
Politecnico di Torino

Dipartimento di Automatica e Informatica

corso Duca degli Abruzzi 24

I-10129 Torino

Italy

{luca.durante, riccardo.sisto}i!!polito.it

Adriano Valenzano
lstituto di Ricerca sull'lngegneria

delle Telecomunicazioni e deli'Informazione

Politecnico di Torino

corso Duca degli Abruzzi 24

l-10129 Torino

Italy

adriano.valenzano@polito.it

Abstract Several verification techniques based on theorem proving have been de­
veloped for the verification of security properties of cryptographic proto­
cols specified by means of the spi calculus. However, to be used success­
fully, such powerful techniques require skilled users. Here we introduce a
different technique which can overcome this drawback by allowing users
to carry out the verification task in a completely automatic way. It is
based on the definition of an extended labeled transition system, where
transitions are labeled by means of the new knowledge acquired by the
external environment as the result of the related events. By means of
bounding the replication of parallel processes to a finite number, and
by using an abstract representation of all explicitly allowed values in
interactions between the spi process and the environment, the num­
ber of states and transitions remains finite and tractable, thus enabling
the use of state-space exploration techniques for performing verification
automatically.

Keywords: Spi Calculus, Cryptographic Protocols, Testing Equivalence.

Tommaso Bologncsi and Diego Latella (Eds.), Fomuzl Methods for Distributed System Develqnnent.
(!;) 2000 IFIP International Federation for Infonnation Processing.
Published by Kluwer Academic Publishers. All rights reserved.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35533-7_26

http://dx.doi.org/10.1007/978-0-387-35533-7_26

156 L. Durante, R. Sisto and A. Valenzano

1. INTRODUCTION
Due to the increasing importance of secure distributed applications

such as electronic commerce, formal verification of cryptographic proto­
cols is being extensively studied by several researchers. Some of them
have investigated proof techniques, based on various proof systems and
description formalisms [10, 11]. Although partial automation of proofs
is possible using theorem provers, this approach is generally highly time
consuming and requires a lot of expertise. An alternative simpler and
quicker approach is to use state exploration methods, such as model
checking [4, 5, 6, 7, 8]. This requires modeling protocol behaviors as
reasonably sized finite state systems, which generally entails introduc­
ing simplifying assumptions that can reduce the accuracy of the analysis.
Nevertheless, this kind of verification has the invaluable advantage of be­
ing fully automatic.

Both theorem proving and state exploration have been used with sev­
eral description formalisms. In this paper attention is focused on spi
calculus [1], a process algebra derived from the IT-calculus [9] with some
simplifications and the addition of cryptographic operations. The main
strength of spi calculus with respect to other similar formalisms stands
in its simplicity in describing cryptographic protocols and their security
requirements. In particular, in [1] it is shown how security properties
such as authentication and secrecy can easily be expressed by means of
a testing equivalence notion. For example, if P(M) is the description of
a cryptographic protocol to exchange a secret message M, secrecy can
be simply expressed saying that for any M', P(M) and P(M') must be
testing equivalent, i.e. any tester process must be unable to distinguish
their behaviors. Instead, when other specification formalisms are used,
it is generally required that both the protocol and the attacker behavior
be specified. The attacker specification is not only extra work, but also
a potential weak point, because it is somewhat arbitrary and might not
include some possible attacks on the protocol. Expressing properties in
terms of testing equivalence means implicitly considering any attacker
that can be specified in spi calculus. This is because the tester process
actually represents the protocol environment, i.e. the attacker.

The main problem that remains with the spi calculus approach is the
checking of testing equivalence in an efficient and easy way. This is
difficult because of universal quantification over testers: checking equiv­
alence means checking that two processes are indistinguishable for any
tester process, and there are infinitely many such processes. This prob­
lem has been addressed in [2] and [3]' where tractable proof methods
aimed at checking the testing equivalence of spi calculus processes are

State-exploration for spi-calculus 157

introduced. In [2J, the proof method is based on a bisimulation relation
that is a sufficient but not necessary condition for testing equivalence. In
[3J, a more accurate method is proposed to check may-testing, an equiva­
lence very similar to the testing equivalence defined in [lJ. The approach
presented in [3J starts from the definition of a contextual labeled tran­
sition system which represents the protocol behavior constrained by the
knowledge which the environment has about names and keys. The proof
method exploits the fact that the trace equivalence defined on this model
is a necessary and sufficient condition for may-testing equivalence.

Differently from the above two approaches, this paper investigates
the possibility of checking the spi calculus may-testing equivalence using
state exploration instead of theorem proving. The quantification over
contexts problem is solved in a way similar to the one reported in [3J,
i.e. by defining a labeled transition system such that trace equivalence
is necessary and sufficient for may-testing equivalence. The other new
problem that has to be solved in order to make state exploration possible
and effective is to keep the size of the trace sets to be explored within
finite and reasonable bounds. This objective is achieved mainly in two
different ways. First of all, to keep the state set finite, only spi calculus
processes having a finite number of parallel instances are dealt with. In
practice, our approach is to substitute any replication expression of the
form !P, which is interpreted in spi calculus as an infinite number of
copies of P running in parallel, with a finite number n of parallel copies
of P. Since the replication operator is generally used to represent par­
allel sessions of a cryptographic protocol, this restriction is equivalent
to considering up to n parallel runs of the protocol. Consequently, at­
tacks that are possible only with more than n parallel sessions cannot
be detected in this way. A similar restriction is adopted in the literature
whenever state exploration methods are used and is generally consid­
ered fairly acceptable, since bugs tend to show up with few numbers of
parallel sessions.

A second way to reduce the size of the trace sets consists in avoiding
the explicit representation of transitions corresponding to inputs from
the environment. Since the environment can in principle send at any
time any data that is part of its knowledge as well as any fresh name or
integer, the number of such transitions can be huge if not infinite. Our
approach is to represent a set of such transitions as a single transition
with an abstract label called generic term or generic value. This kind
of reduction does not imply any loss in accuracy and is a key means to
make traces enumerable and to limit their number.

The paper is organized as follows: section 2 briefly introduces the
language and our conventions about symbols, section 3 deals with the

158 L. Durante, R. Sisto and A. Valenzano

;' p ::=terms 11', Q, R ::= processes
,1} u(p).P output
m name a(x).P input
(a, p) pair P I Q composition
0 zero (lib) P restriction
suc(a) successor !P replication
x variable 0 nil
{a}p shared-key encryption [a is pJ P match

let (x, y) = a in P pair splitting
case a 0/ 0 : P suc(x) : Q integer case
case 1} 0/ {x}p in P shared-key decryption

Table 1 Syntax of spi calculus

definition of our labeled transition system and section 4 explains the
derivation rules for it and gives an example. In section 5 the concept
of trace equivalence for our labeled transition system is defined while
section 6 contains some final remarks.

2. THE LANGUAGE
The spi-calculus is a process algebraic language defined in [1] as an

extension of the 7l'-calculus, specifically designed for the specification of
cryptographic protocols. No explicit types exist in spi calculus and spi
entities are divided into processes and terms only. However, since spi
calculus terms are extended here with generic terms, we prefer to use
the following partially different naming convention:

• m ranges over names;
• n ranges over natural numbers;
• x and y range over variables;
• b is a fresh name, and b is a tuple of fresh names;
• P, Q and Rare spi calculus processes;
• (j, p, 'f/, 0 and 'lj; denote terms in the most general sense (i.e. generic

terms also);
• E is a set of terms;
• r is the set containing all generic terms;
• 'Y ranges over r;
• A is a substitution list i.e. A = (j1/Pl,(j2/P2,"'(jn/Pn' O[A], P[A]

and E[A] mean that each term Pi must be replaced by (ji in 0, P
and E respectively.

Tab.l shows the language syntax. Informally, the meaning of each
construct of the language is the following:

• Term {(j} p is the encrypted message obtained by encrypting (j
under key P using a shared-key cryptosystem.

State-exploration for spi-calculus 159

• (j(p).P is an output process, ready to output p on channel a when
a synchronization occurs. After the synchronization, P starts. a
should be a name.

• a(x).P is an input process, ready to perform an input from chan­
nel a when a synchronization occurs. After the synchronization,
P[7]/x] starts, where 7] is the input message. a should be a name.

• P I Q is a parallel composition where P and Q run in parallel. They
may either synchronize between themselves or with the external
environment separately.

• (vb)P is a restriction where a fresh, private name b is made and
then P starts.

• !P is a replication where an unbounded number of instances of P
run in parallel.

• [a is p]P is a match. It means that P starts when a and p are the
same; it stucks otherwise.

• 0 is the nil process: it does nothing.
• let (x, y) = ainPisapairsplittingandit behaves as P[p/x,O/y],

provided that term a is a pair (p, 0); it stucks otherwise.
• case a of 0 : P suc(x} : Q is an integer case. If a is 0, it behaves

as P; if a is suc(p}, Q[p/x] starts. It stucks otherwise.
• case 7] of {x} p in P is a shared-key decryption and behaves as

P[a / x] if 7] is a cyphertext as {a} p' Otherwise it stucks.

About encryption the following implicit assumptions hold:
• an encrypted message can be decrypted by means of the corre­

sponding key only;
• the encryption key cannot be detected from the encrypted message;
• an encrypted message is sufficiently redundant so that the decryp­

tion algorithm can detect whether its task succeeded in.

All the above assumptions are formally defined at the end of section 4.
The spi calculus operational semantics is defined in [1]. For lack of

space, they are not recalled here. In this paper we adhere to such def­
initions, with the exception of the replication operator !P, which is in­
terpreted here as a syntactical shortcut for the parallel composition of n
parallel copies of P (i.e. !P = PIPI· .. IP), where n is a predetermined

n
finite natural number.

3. THE ENVIRONMENT-SENSITIVE LTS
Our first objective is the definition of an environment-sensitive labeled

transition system (ES-LTS) describing all the possible interactions of a
given spi calculus process with its environment. Although the concept

160 L. Durante, R. Sisto and A. Valenzano

is borrowed from [3], our specific ES-LTS differs substantially from the
one described in [3].

The environment that is considered in building the ES-LTS is the most
powerful one, power being measured by the knowledge the environment
acquires by interacting with the spi process. For this reason, in analogy
with [3], each state of our ES-LTS is made up of a spi calculus process
P and an environment's knowledge E, and is denoted E [> P. E can be
informally defined as the minimal set of spi calculus terms that allows
the environment to build everything it has learned during the preceding
interactions with P.

Transitions are described by the following syntactical form, already
introduced in [3]:

[> P 8 pi (1)

where J1, is the action performed by process P, and E is a complementary
action used to represent additional information that must be recorded in
the ES-LTS traces. While in [3] such complementary actions represent
environment actions, in our model they are also used for other purposes.

Transitions are categorized into 4 different types, according to their
meaning:

T

>------+ [> p'

[> pi

(2)

(3)

[> p'

[> p'

(4)

(5)

Transitions taking form (2) are related to synchronization events oc­
curring inside the spi process and for this reason they leave the environ­
ment unaware of what has happened, and do not involve any knowledge
migration (E does not change).

Transitions taking the second and third form instead are related to
synchronization events between the spi process and the environment.

Form (3) represents an output on channel a, and implies a data trans­
fer from the process to the environment. In this case there is also a com­
plementary action representing an increment in the environment knowl­
edge. This is denoted as and represents the set of new terms added
to E to yield the new knowledge E'.

Form (4) represents an input on channel a, and implies a data transfer
from the environment to the process. Thus, no modification in the envi­
ronment knowledge takes place. In this case, the complementary action
represents the data sent by the environment to the process. In order to
limit the number of transitions, such data is not represented explicitly,
but it is represented in an abstract way by means of a generic value

State-exploration for spi-calculus 161

denoted 'Y, symbolizing each value the environment is able to build at
that time. Formally, 'Y is a pair (m-y, where m-y is a fresh name that
identifies the term and is the set of terms representing the knowledge
of the environment at the time the data represented by the term was
generated (i.e. The behavior that follows the input of a generic
value is indeed the abstract representation of a set of behaviours, each
one corresponding to a different actual value of the generic term. Such
behaviors are indistinguishable from one another (in the sense they are
not affected by the particular value of the input) until the generic value
that has been received is filtered in some way by means of a let, case or
is operator. Whenever this happens, the contents of the environment's
knowledge at the time the generic value had been generated is analyzed,
in order to find the satisfying value(s), i.e. the actual values of'Y which
enable the behavior to continue after the filtering operation.

To represent the fact that only some of the behaviors continue after
a filtering operation, we use another kind of transition, which takes the
form (5). This transition is labeled by a substitution list>. representing
the substitution of a generic term with a corresponding set of satisfying
values. In this case, pI and are obtained actualizing P and by >.
(PI = =

4. DERIVATION RULES FOR THE ES-LTS
The spi calculus semantics is defined in [1 J by means of the reaction

relation where P pI means that process P can evolve into pI
by performing an (internal) action. To formally define our environment
sensitive LTS we use a set of derivation rules based upon the derivation
system defined in [1 J for the reaction relation. In practice, the reaction
relation definition rules are assumed implicitly. Although generic terms
are new with respect to the original spi calculus, we assume that deriva­
tion rules as defined in [lJ apply to generic terms as to any other term.
This does not introduce any technical problem, because all terms are
treated in the same way in [lJ.

In order to minimize the number of derivation rules needed, we exploit
the following property:

{

3 P, Q, b I R ==y I Q)

\;/ R 3 P, Q, b I R == (vb}{u(x).P I Q)
y

R == 0

(6)

where symbol == means structural equivalence as defined in [1J. Infor­
mally this property means that each spi expression R can always be

162 L. Durante, R. Sisto and A. Valenzano

reduced to a structural equivalent expression taking one of the three
syntactical forms shown in (6), i.e. input and output action prefix and
inaction. Consequently, it is enough only to define derivation rules for
such syntactical forms (indeed, no rule is needed for inaction because it
represents a stuck process).

The following rules specify the conditions for transitions of types (2),
(3) and (4):

(vb) I O'(x).Q) -+ (vb) (P I Q[p/x]) (7)
I: t> (vb) I u(x).Q) H I: t> (vb) (P I Q[p/x])

I: t> (v b) (u(p}.P I Q) I: U {p} t> (vb)(P I Q)
(8)

EU{p}\(EU{p}nE)

I:f-u (9)
I: t> (vb) (O'(x).P I Q) I: t> (vb) (Ph/xli Q)

'Y

Rule (7) describes interactions on channel a, internal to the spi process
itself. Each of them corresponds exactly to a reaction step as defined in
[lJ. The environment is not involved in such an event, thus it is unaware
of what has happened, and it's knowledge E remains unchanged after
the event. Label T emphasizes the silence of the event.

Rule (8) describes what happens when the spi process is ready to
perform an output on a certain channel a, provided that a belongs to
the environment's knowledge (this precondition is expressed by E f- a,
formally defined at the end of this section). The transition is labeled
with the output channel (j and with the new knowledge that message
p brings to the environment's knowledge. Such new knowledge can be
computed as E U {p} \ (E U {p} n E), where E U {p} represents the final
knowledge reached after the addition of p to E.

It is worth noting that the update of the environment's knowledge is
not simply E U {p}, because the addition of p to E could enable a further
decoding of terms already present in E. The notation E informally
represents the minimal set of terms needed to generate all the elements
that can be generated by E. In practice, we can imagine that is the
result of two operations: first, E is expanded by adding to it all the terms
that derive from all possible decoding operations. It is then minimized,
considering that, when an element of E has been decoded into simpler
parts (already added to E too), it is no longer necessary to continue
to keep it in E, since in can be built by means of its parts. A formal
definition of this operation is given at the end of this section.

For example, let us consider P(M, k) ::= a({Mh).b(k).Q with E
{a, b}. By means of rule (8) we have the following behavior:

State-exploration for spi-calculus 163

{a, b} [> a({Mh).b(k).Q
{{M}d

{a, b, {Mh} [> b(k}.Q ii
t-t {a, b, M, k} [> Q

{M,k}
The example shows clearly how the environment's knowledge is re-

arranged after k has been received from b and that {M, k} is the new
knowledge added to the environment's knowledge, instead of only {k}.

In particular, looking at event ,we start with E = {a, b, {Mh}
{M,k}

and, withp = k, E U {p} = {a, b, {Mh, k}. By means of k, now {Mh
can be decrypted and replaced by M. Such an operation is performed
by operator -, thus E U {p} = {a, b, M, k}. E U {p} n E = {a, b}
describes the knowledge that is present both in E and in E U {p}, i.e.
knowledge not affected by the reception of p, thus E U {p} \ (E U {p} n E)
represents the knowledge brought, directly and indirectly, by p, i.e. the
new knowledge used to label the transition.

Rule (9) describes what happens when the spi process is ready to
perform an input from a certain channel, provided that the channel
belongs to the environment's knowledge (E f- 0'). The transition is
labeled with the input channel 0' and with the generic term , which
describes everything the environment can build by using elements of its
knowledge E. After synchronization, the input variable x is bound to ,.
The environment's knowledge E does not need to be updated, as it is
the action of transferring data from the environment to the spi process.

Rule (9) empasizes the moment when a behavior comprising all possi­
ble behaviors for each acceptable value of, starts. Thus semantic rules
must be introduced which are able to emphasize when a certain abstract
behavior, representing all possible behaviors for a generic term" contin­
ues only for some particular values of ,. Such rules are the ones needed
to define type (5) transitions and are applied whenever two terms must
be compared. It is worth noting that after a comparison operation each
generic term is not necessarily substituted with a non-generic value, but
it can be substituted with another more specialized term, made up of
other generic terms. For example, rule (12) replaces a generic term with
a pair of generic terms.

O(u. p) /\ u. P = (,p, (A» /\ A i= 0 (10)
E!> (vii) (u(O).P I p(x).Q I R) 7 E[A]!> (vii) (,p(O).P[A] I ,p(X).Q[A] I R[A])

Rule (10) must be used whenever the spi process becomes ready on
both one input and one output channel, in order to check whether the
channels can be the same or not.

0(0' • p) indicates whether the match exists, and, if it does, 'if; is the
matching value, and>' is the substitution list which must be applied to

164 L. Durante, R. Sisto and A. Valenzano

turn a and/or pinto t/J. In practice t/J and>' make it possible to satisfy
the following: a[>.] = p[>.] = t/J, and the transition labeled with >.
means that future behavior is allowed only when a[>.] = p[>.] = t/J.
a. p and O(a. p) are formally defined in [12].

The case>. = 0 means that the match exists and no substitution list is
needed i.e. a and p are the same term; but this case is already handled
in [1].

Q(O'ep) /\ O'ep = (t/J, (>.)) /\ >. "" 0 (11)
t> ([0' is pl P) I Q H t> P[>'] I Q[>.]

>.

Rule (11) tries to equate terms a and p. In case of success, the
behavior expressions P and Q are updated with the substitution list
>. and then enabled. The environment's knowledge E is also updated
with >.. The matching value t/J is not explicitly used, but >. contains all
the information needed to turn a and/or pinto t/J in P and Q.

E [> (let (x,y) ="1 in P) I Q E [h'/')] [>P [h\'YII), I Q [hi /')] (12)
'Y

where "I' = (m"l" Er) and "I" = (mr"' Er); mr' and mr" are fresh
names.

Rule (12) equates the pair of variables (x, y) with a generic term which
is turned into a pair of generic terms whose names are fresh and whose
knowledge is inherited from 7. As shown by the substitution list, this
new pair replaces 7 in P and its components are respectively assigned
to x and y.

t> (case "(of 0 : P suc(x) : Q) I R f------t t> P[Ohl I R[Oh] (13)
01"1

t> (case"(of 0 : P suc(x) : Q) I R hl t> Qb' h. "(' Ix] I Rbi hl (14)
'Yh

where "I' = (mr" 0) and mr, is a fresh name. Such a restriction allows
to constrain the generic data to be an integer number only (due to rule
(17), an empty E can always produce integer numbers).

When a generic term is involved in such a construction, the behaviour
forks. In fact, if the value 0 is assumed, then behavior P is enabled,
otherwise Q. In the former case, the generic term 7 has been replaced
by 0, while in the latter one all integer values are still allowed, thus
the domain of the new generic term "I' has been restricted to the set of
natural numbers (17).

Q("I0p) /\ "lop = (t/J, (A)) /\ A"" 0
t> (case "1 of {x}p in P) I Q f------t [> P[A, t/Jlx] I Q[A]

>.

(15)

Behavior P is enabled when term 17 can be considered as something
encrypted by means of p. In this case 0(17 0 p) returns true, t/J is the

State-exploration for spi-calculus 165

value of the encrypted message, and ,\ is the substitution list that gives
the equivalence 1][,\J = {'¢}P[AJ. The environment's knowledge is
accordingly updated. 1] 0 p and 0,(1] 0 p) are formally defined in [12J.

The following rules allow us to verify whether a certain term can be
generated by means of the contents of

where

!; {=} f-- (

'*
f-- suc(p) {=} f-- P

(16) f-- pi 1\ f-- p" {=} f-- (pi, p") (20)
(17) 1\ '* (21)
(18) f-- p 1\ f- (7 '* f- {P}a (22)
(19)

!; f- (7' V (7' I f- (7' (23)

Definition (23) does not introduce circularity in (16) since'Y .;.
In the following, we introduce a set of rules that should allow to

compute from

(24)
(pi, p") E (27)

p E 1\ \ {p} f- P -t> \ {(pi, pll)} U {pi} U {p"}

-t> \ {p}
(25)

1\ (28)
suc(p) E (26) -t> \ {{P}a } U {p}

-t> \ {suc(p)} U {p}

It can be proven [12J that the number of all allowed evolutions, starting
from is finite and each one has a finite number of steps. In particular
the last set of each evolution The proof can be made by underlining
that each rule tends to replace a composite term with its components
(i.e. no rule does insert in any element previously extracted by another
one) and, given two or more rules, their application (evaluation) order
does not affect the obtained set.

4.1. AN EXAMPLE OF ES-LTS
Fig.l shows the ES-LTS of a simple spi process. We have two pro­

cesses: (l/k)(c(k).c(y). [C(y, {zh)] P(z)) and (I/M)(c(x).c({M}x}.Q).
The former generates a fresh key which is sent to the latter which en­
crypts M with the received key and sends back the encrypted message to
the former. The former checks the received message ([C(y, {zh)] stands
for case y of {zh in) and enters P. In fig. 1 each behavior is bounded
by a box, and the related environment's knowledge is enclosed in braces

166 L. Durante, R. Sisto and A. Valenzano

{e,k} {e,k}
(vk)(c(y). [C(y, {zh)] P(z)) (vk)(c(y). [C(y, {zh)] P(z))

I (vM)(c({Mh3)·Q) .. I (vM)(c({M}·m)·Q) •

Figure 1 Example of ES-LTS

State-exploration for spi-calculus 167

near to the box itself. The initial environment's knowledge contains only
the unrestricted name c. The initial specification can evolve along the
three following paths:

a) an internal synchronization occurs (8). The behavior expres-

sion is reduced accordingly.

If a second internal synchronization occurs, a final state (P and Q
are not specified) is reached without any interaction with the envi­
ronment. The two alternative paths concern interactions with the
environment; in particular they are the two interleavings of the
allowed input and output interaction with the environment. In
case of the input interaction first (), the environment knows

"(1

only c, thus in the next state it is not possible to find a special-
izing value for 'Yl that matches the constraint ([CbI' {zh))). By
contrast, when the process output precedes the input, the environ­
ment receives {Mh (even ifit cannot decrypt it) before generating
'Y2, which can be turned into {Mh (H }in the next state.

{Mhh2

b) an input interaction occurs (): in this case a path leads to
"(3

a final state, moreover a second path leads to a behavior labeled
with.ro. Due to lack of space, this behavior has not been expanded
further; however it is similar to the one labeled with *, where 'Y3
replaces k and the environment also knows k. Thus the set of
allowed evolutions is richer than the one obtained from *.

c) an output interaction occurs (): in this case, a path leads to
k

a behavior labeled with., similar to the one with.ro. Another path
leads to a little more complex path, which takes into account all
allowed interleavings between actions.

Now let us analyze the leftmost path in more detail: the environment
knows c, thus it sends a generic term 'Y3 to the spi process over channel
c. 'Y3 represents each message the environment is able to build at this
point. The spi process uses 'Y3 to encrypt Mj when it outputs {Mh3 on
channel c, the environment is able to capture M since it knows c and M
has been encrypted by means of something it knows. Thus the transition
has been labeled with M, which has also been added to the environment's
knowledge. The spi process is now ready to output k on channel Cj k
is captured by the environment (which enlarges its knowledge) and it is
used to label the transition. At the next input event, the environment
gives a generic 'Y4 to the spi process. The last transition means that the
last behavior is reached only when 'Y4 can be seen as something encrypted
with k. It is allowed since E,,(4 includes k.

168 L. Durante, R. Sisto and A. Valenzano

The meaning of the whole path is the following: the path to the last
but one state includes all paths that can be built using each allowed
message the environment can build in correspondence to the two input
events. The last state is reachable only when the second generic mes­
sage (f4) has been made as something encrypted with k. The something
cannot only be M, but also (M, M), {{M, chh (even if meaningless)
and so on.

5. TRACE SEMANTICS
As seen above, transitions take the forms (2), (3), (4) and (5). By

introducing I==> as the reflexive and transitive closure of H , we in-

a Q a'
ductively define I==> as I==> 1---7 I==> where a = a· a' and b = {3. b'

b {3 b'
and the pair (a, (3) can assume the forms (0, 8E), (a, ')') and (-, A) in
the cases of (3), (4) and (5) respectively.

In order to check whether two processes are trace equivalent, for a
process P, we define:

traees(P) = {(a, b) I :3 P' I P P'} (29)
b

where P is a spi process and, inductively, the trace equivalence:

(a'.a', (3'.b') (a".a", (31.b") {:} (a', (3') '" (a", (3") 1\ (a', b') (a", b") (30)

where (a', (3') rv (a", (3") is defined as it follows:

(e', ,') '" (e", ,") ¢=:> e' == e" 1\ m"r' == m"r" (31)
(2", 8r;') '" (e", 8r;1I) ¢=:> 2" == e" 1\ R(8r;', 8r;1I) (32)

(-,).') '" (-, >.") ¢=:> B(>,', >.") (33)

R(8E', 8E") holds true if a bijective mapping exists between 8E' and
8E" so that each pair of the mapping (a', a") satisfies the following:

a' == a" V (a' == {17'}II' 1\ a" == {17"}II") (34)

S(A', A") holds true if a bijective mapping exists between A' and A" so
that each pair of the mapping (a' 11", a" 11''') satisfies the following:

a' == {17'}9'
1\

a" == {17"}9"
m"r' == m"r" 1\ a' == a" V 1\

r;"r' \ {a'} 'r/ a'
1\

r;"r" \ {a"} 'r/ a"

(35)

State-exploration for spi-calculus 169

In practice, in the case of input transitions (31), we require that the
names of the two channels are the same, and that the two generic terms
are also the same; in the case of output transitions (32), we require
that the new data added to the environment's knowledge are the same
or are indistinguishable from the environment's point of view (34). It
must be remembered that when an encrypted term is present in t5E, it
means that the environment cannot decrypt it, thus it cannot distinguish
among such kinds of terms.

In the case of specializing transitions (33), two corresponding substi­
tution items must replace the same generic term (m-y' == m-y") and the
replacing terms must be the same, or must be indistinguishable, in the
sense of the environment's knowledge. In fact two different replacing
terms can be considered equivalent when they are encrypted terms that
the environment's knowledge cannot decrypt (last sentence in (35)).

Everything works well since the following assumptions holds: the same
criteria must be used in generating the name of generic terms in both
processes (rules (31) and (35)), and the initial environment's knowledge
must be the same for both processes. In particular, it is assumed that
the initial environment's knowledge of a process explicitly contains each
unrestricted name of the process specification.

The fact that two trace equivalent processes in our definition are also
testing equivalent, and vice versa, will be proven in a future work.

6. CONCL USIONS
A tractable method to check the spi calculus may-testing equivalence

by state space exploration has been presented. It deals with the spi
calculus as defined in [1], with the only exception of the replication
operator. As far as we know, this is the first attempt in this direction.
Previous related work, reported in [2] and [3], investigated only the
theorem proving approach.

Further research efforts are oriented to formally prove soundness and
completeness of the method and to develop a tool that can implement
the verification task automatically.

References

[1] M. Abadi, and A. D. Gordon, "A Calculus for Cryptographic Pro­
tocols The Spi Calculus", Digital Research Report, vol. 149, January
1998, pp. 1-110.

[2] M. Abadi, and A. D. Gordon, "A bisimulation method for crypto­
graphic protocols", Nordic Journal of Computing, Vol. 5, pp. 267-303,
1998.

170 L. Durante, R. Sisto and A. Valenzano

[3] M. Boreale, R. De Nicola, and R. Pugliese, "Proof Techniques for
Cryptographic Processes", Proc. of the 14th IEEE Symposium Logic
In Computer Science (LICS'99), IEEE Computer Society Press, pp.
157-166, 1999.

[4] G. Lowe, "Breaking and fixing the Needham-Schroeder public-key
protocol using FDR", Proc. of TACAS'97, Springer LNCS 1055,
1996.

[5] G . Lowe, "Casper: a compiler for the analysis of security proto­
cols", Proc. of 1996 IEEE Computer Security Foundations Work­
shop, IEEE Computer Society Press, 1996.

[6] G. Lowe, B. Roscoe, "Using CSP to Detect Errors in the TMN Pro­
tocol" , IEEE Transactions on Software Engineering, Vol. SE-23, No.
10, pp. 659-669, October 1997.

[7] J. K. Millen, S. C. Clark, and S. B. Freedman, "The Interrogator:
Protocol Security Analysis", IEEE Transactions on Software Engi­
neering, Vol. SE-13, No.2, pp. 274-288, February 1987.

[8] G. Leduc, O. Bonaventure, L. Leonard, E. Koerner, and C. Pecheur,
"Model-Based Verification of a Security Protocol for Conditional Ac­
cess to Services", Formal Methods in System Design, Vol. 14, No.2,
pp. 171-191, March 1999.

[9] R. Milner, J. Parrow, and D. Walker, "A Calculus of mobile pro­
cesses, parts I and II", Information and Computation, pages 1-40
and 41-77, September 1992.

[10] L. C. Paulson, "The inductive approach to verifying cryptographic
protocols", Journal of Computer Security, Vol. 6, pp. 85-128, 1998.

[11] S. Schneider, "Verifying Authentication Protocols in CSP", IEEE
Transactions on Software Engineering, Vol. SE-24, No.9, pp. 741-
758, September 1998.

[12] L. Durante, R. Sisto, and A. Valenzano, "A state-exploration tech­
nique for spi-calculus testing equivalence verification", Technical Re­
port DAI/ ARC 1-00, Politecnico di Torino, Italy, 2000.

	A STATE-EXPLORATION TECHNIQUE FOR SPI-CALCULUS TESTING-EQUIVALENCE VERIFICATION
	1. INTRODUCTION
	2. THE LANGUAGE
	3. THE ENVIRONMENT-SENSITIVE LTS
	4. DERIVATION RULES FOR THE ES-LTS
	4.1. AN EXAMPLE OF ES-LTS
	5. TRACE SEMANTICS
	6. CONCL USIONS
	References

