
Chapter 12

A TINA-based Distributed Environment for
Mobile Multimedia Applications

Alexandre S. Pinto, Luis F. Faina and Eleri Cardozo
DCA - FEEC - UN/CAMP, PO Box 6101
Campinas, SP, Brazil, CEP 13083-970

Key words: TINA, DPE, CORBA, Mobile Systems, Multimedia Systems

Abstract: This paper describes the design and implementation of a component of the
Telecommunications Information Networking Architecture (TINA): the
Distributed Processing Environment (DPE). TINA provides concepts,
principles, models and standards for the next generation of telecommunication
services. These new services take advantage of modem technologies such as
high speed networks, multimedia processing, distributed objects, and
component-oriented software development. The goal is to devise services that
can be introduced, modified and withdrawn as soon as market demands are
identified. TINA DPE provides the infrastructure necessary to distribute the
service components among service users, providers and retailers. Our DPE
implementation offers two basic facilities to the TINA applications: life-cycle
and stream facilities. Life-cycle facilities allow distributed objects be deployed
and managed transparently, while stream facilities allow application objects to
exchange media flows such as audio and video flows.

1. INTRODUCTION

From the last two decades the telecommunication market is experiencing
a dramatic growth pushed by demands from large enterprise business to
hobbyists at home [1]. However, the current telecommunication
infrastructure was designed to carry voice and data, not to provide
sophisticated services. The improvement of existing services is currently
limited by the lack of computing power available at the switching facilities

J. N. de Souza et al. (eds.), Managing QoS in Multimedia Networks and Services
© Springer Science+Business Media New York 2000

164 Part Four - Network Programmability

and central office. As a result, the introduction of a new service or
modification of an existing one is a slow, costly and labor intensive process.

Back in 1992, with this scenario in mind, about forty companies
including telecom operators and equipment suppliers plus computing
manufacturers and software suppliers, founded the Telecommunications
Information Networking Architecture Consortium - or TINA-C [2]. The
chief objective of this consortium is to devise an open architecture (the
TINA architecture) for supporting the development and management of
telecommunication services, no matter how complex a service would be. In
the TINA architecture services are pieces of software with components
distributed among users and providers. Being software-based with high
degree of platform independence, object-oriented (or more recently,
component-oriented), and based on well accepted industry standards,
services can be rapidly introduced, adapted and withdrawn according to the
market demands.

This work describes the design and implementation of a component of
the TINA architecture: the Distributed Processing Environment (DPE). The
DPE is an infrastructure responsible for the distribution of the software
implementing a telecommunication service. Our DPE implementation is
based on CORBN [3] and RM-ODP2 standards [4]. The highlights of this
implementation are the supporting for multimedia flows and object
migration.

This paper is organized as follows. Section 2 presents a short introduction
to the TINA architecture. Section 3 provides details of the design and
implementation of a CORBA-compliant TINA DPE. Section 4 presents how
multimedia streams are supported by the DPE as well as how this facility is
integrated with the life-cycle facilities. Section 5 presents some
implementation issues and an application built above our DPE. Finally,
section 6 closes the paper with some concluding remarks and future research
directions.

2. OVERVIEW OF TINA

TINA [5] is a software architecture targeted to telecommunication
systems and designed according to two principles: distribution and object­
orientation. Distribution means that TINA software is decomposed into a set
of components, being these components located at different processing
nodes. Object-orientation states that the unit of distribution is an object or an
aggregation of objects.

1 Common Object Request Broker Architecture from the Object Management Group (OMG).
2 Reference Model for Open Distributed Processing from ISO.

A TINA Distributed Environment for Mobile Multimedia Applications 165

The TINA architecture is depicted in Fig.I. Each processing node is
based on some hardware architecture that runs a Native Computing and
Communication Environment, the NCCE. NCCE can be viewed as a
dedicated or general-purpose operating system plus a stack of network
protocols. Each processing node has an implementation of the DPE running
on it.

DPE

Telecommunication
Application Objects

DPE

__ ::::tIIiI - Hardware

Figure 1. TINA Environment [5]

The DPE offers a homogeneous interface to the TINA applications
(Fig.1). Some DPE functionalities may be missed at some NCCE. For
instance, a NCCE dedicated solely to management tasks can be deprived
from multimedia stream facilities.

The TINA DPE [6] has two major functions: distribution (deployment)
and communication. The distribution function defines the unit of distribution
as engineering computational object - eCO. An eCO has one or more
interfaces. eCOs are instantiated from templates, something similar to
classes in object-oriented programming languages. A template states rules
for object instantiation such as the initial state and interfaces. For
management purposes, objects are aggregated into clusters. A cluster is a
unit of spatial location, activation/deactivation and migration. eCOs can be
created and removed from a cluster during the cluster's lifetime. Clusters
live inside capsules, the TINA's unit of resource allocation. An interesting
(and rarely implemented) property of clusters is migration: a cluster can
migrate from a capsule to another carrying all of its objects. The last
component in the deployment model is the node, a unit of network
connectivity and network management. A node provides DPE support and
manages its computing resources autonomously.

166 Part Four - Network Programmability

In order to interact, objects must bind their interfaces. The DPE
communication function defines two types of interfaces: operational and
stream interfaces. The interaction that occurs at an operational interface is
structured in terms of invocations of one or more operations, and possibly
responses to these invocations. In a stream interaction, the information
exchange occurs in the form of unidirectional media flow (e.g., audio and
video flows).

In order to support interactions between objects located at different
clusters, a channel is defined (Fig.2). A channel is an infrastructure
providing mechanisms for supporting distribution transparency (access,
location, etc.) plus an interface for management and control purposes
(Fig.2).

Cluster I Cluster 2

control interface

Figure 2. A channel binding two eCOs

3. DPE ARCHITECTURE

The architecture of the implemented DPE is shown in Fig.3. The DPE is
built over a CORBA platform [7]. A CORBA platform allows interactions
between objects in a distributed heterogeneous system. DPE instances are
connected through the OMG's Internet Inter-ORB Protocol (IIOP), a
standard for ORB interworking [3].

The two main facilities available at our DPE are the stream [8] and the
life-cycle [9] facilities. Stream facilities allow the telecommunication
services to manipulate multimedia streams (flows), while life-cycle facilities
allow the service components to be distributed and managed across the
network. Stream facilities are fully compliant with the OMG's Control and
Management of Audio/Video Streams [10] and the life cycle facilities were
defined according the TINA DPE specifications [5] [6].

Back to Fig.3, the life-cycle facilities provide functionalities for the
management of eCOs, clusters and capsules (including cluster migration),
and the stream facilities provide functionalities for the establishment and

A TINA Distributed Environment for Mobile Multimedia Applications 167

management of channels. All the DPE functionalities, available at the DPE
interface, are accessed through an object request broker (ORB).

I DPE Interface I

;< Object Request Broker

Stream Facilities I Life-cycle Facilities I!

I 1 I RTP

r J TCP/UDP I ATMAAL5 DPE I
Object Oriented

Database

Figure 3. DPE Architecture

3.1 Support for Life-Cycle

The support for life-cycle in our TINA DPE is realized through
management interfaces at object, cluster, capsule and node levels.

Each interface defined in a TINA object is realized through a CORBA
object. A special CORBA object, the eCO manager, defines an interface for
management purposes (the remaining interfaces are referred as application
interfaces). This management interface has the following IDL description:

interface eCOManager {
long addInterface(in Object interface_ref);
long removeInterface(in Object interface_ref);
sequence<Object> getInterfaces();
long checkpoint(in string template);
long recover(in string template);
long Delete();
long deactivate(in string template); };

The operation checkpoint () saves the state of the CORBA object in a
template; recover () restores the state of the CORBA object from a
template; Delete () acts as a destructor for the CORBA object, releasing all
the resources allocated to the object; and deactivate () is equivalent to a
checkpoint () followed by a Delete () .

Typically, templates point to database entries that store the state of
objects in persistent memory. The eCOManager interface performs

168 Part Four - Network Programmability

management functions within a TINA object. This interface is application
independent, being its implementation provided by the DPE.

Application interfaces are added to and removed from an eCO via
addInterface () and deleteInterface () operations, respectively. These
operations receive as input parameter the interface reference (that is, the
CORBA object reference servicing the interface). get Interfaces () returns
a sequence of all application interfaces currently attached to the TINA
object. The remaining operations simply call their counterparts at each
CORBA object servicing the application interfaces.

The application is responsible also to provide a factory for object
instantiation from templates.

The management of clusters is provided by cluster managers
implementing the following IDL interface:

interface ClusterManager {
eCOManager makeObject(in string object_name);
sequence<eCOManager> getObjects();
long checkpoint(in string template);
long recover(in string template);
long Delete();
long deactivate(in string template); };

The operation makeObj ect () installs a new object in a cluster, returning
a reference of its eCO manager. The input parameter is a name from which
the object is identified in the cluster. This new object is created without any
application interfaces. getObj ects () returns the references of the object
managers in the cluster. The remaining operations, checkpoint () ,
recover (), deactivate () and Delete () call their corresponding
operations at each object manager in the cluster.

The capsule management interface is given below:

interface CapsuleManager {
ClusterManager makeCluster(in string cluster_name);
sequence<ClusterManager> getClusters();
long reactivate(in string cluster_name, in string template);
long migrate(in string cluster_name, in string capsule_name,

in string node_name); };

The operation makeCluster () creates a new empty cluster within the
capsule, returning a reference of its cluster manager. The input parameter is

A TINA Distributed Environment for Mobile Multimedia Applications 169

a name from which the cluster is identified in the capsule. getClusters ()
returns the references of the cluster managers in the capsule. reactivate ()
installs a new cluster from a template generated during a cluster checkpoint.
Figure 4 illustrates a migration scenario accomplished through deactivation
followed by reactivation of the migrating cluster.

Node management is performed by node managers implementing the
following IDL interface:

interface NodeManager
sequence<CapsuleManager> getCapsules(); };

This interface defines only one life-cycle operation, getCapsules () that
returns all the capsules created within the node.

Node #1 Node #2

roo _ _ , App App

I, , -, i Factory Factory

: eCOl eco I : Q Q eco
I I Mana I ! Mana

eCOI

I I ger I Cluster I Cluster ger
I, !, ® ri2) (IV C) i Manager! Manager Q@ (j21 ~
, l ~ 'r -::r:: .:r:. I se5' Capsule Capsule Q 'r 'r 'X I Cluster I -~ / i Manager Manager Cluster I
'--._ _... - _ .. _-_ .. - - -) ../}-!--:--~
Capsule I t l

Deactivate ("template i'') ~ L Reactivate ("cluster I", ''template i")

Capsule 2

Migrate ("cluster I", "capsule 2", "node #2") -

Figure 4. Cluster migration.

3.2 Support for Object Binding

Implicit binding is provided by the object request broker (ORB),
needing no additional support from the DPE, The support for explicit
binding through channels is an important component of the DPE, As stated
before, in our implementation, channels are realized above an infrastructure
based on the OMG standard Control and Management of AudiolVideo
Streams (AVStreams) [10], This infrastructure allows the establishment and
management of media flows, and its functionalities are related to the channel
control interface shown in Fig,2, A VStreams, as detailed in the next section,
is fully integrated with the life-cycle facilities, This means, for instance, that
when an eCO is destroyed, the channel endpoints connected to it are also
destroyed. Also, when an eCO migrates with its cluster, the channel
endpoints are reconstructed in the cluster's new location,

170 Part Four - Network Programmability

4. DPE STREAM FACILITIES

Streams are facilities for supporting continuous media transfer. A
stream aggregates a set of flow connections and terminates on a stream
endpoint. Each flow connection is unidirectional and ends on aflow endpoint
(FEP) within a stream endpoint. Flow endpoints can be a flow consumer or
flow producer.

Multimedia devices abstract physical or logical devices that generate or
consume media segments. Multimedia devices are bounded through streams
in order to establish a media flow between a media producer and one or
more media consumers. The interface MMDevice defines operations related to
multimedia devices.

Inside multimedia devices two objects are responsible for controlling
the media transferring: the stream endpoint object and the virtual device
object. Stream endpoints provide operations related to network transport
(connections, quality of service, etc.), while virtual devices provide
operations related to device configuration (media formats, sampling rates,
etc.). The interfaces StreamEndPoint and VDev abstract stream endpoints
and virtual devices, respectively.

Streams are controlled by a control object that provides operations for
flow control (start () I stop () I destroy () and multimedia device
bindings. The interface StreamCtrl implements such operations.

Figure 5 shows a unidirectional audio stream connecting a microphone
to a speaker. The StreamCtrl interface, pictured in Fig.5, is equivalent to
the channel control interface shown in Fig.2.

Microphone Speaker

Vdev

Q
Stream

I .. M

MMDev StreamCtrI MMDev

Figure 5. A basic audio stream configuration

As stated before, our DPE implementation provides mobility of clusters
through deactivation and subsequent reactivation on a different capsule. One
important feature of our DPE is the incorporation of mobility to channels.
When a cluster migrates, all channel endpoints are equally deactivated and

A TINA Distributed Environment for Mobile Multimedia Applications 171

reactivated at the new cluster destination. This feature allows a TINA
session to be suspended at one site and resumed on a different site.

In order to incorporate mobility to channels, we specialized our
AVStreams implementation, mainly the stream controller (streamCtrl) and
the multimedia device (MMDevice) objects. The idea is to incorporate
mobility functions to stream controllers and checkpointing/recovering
functions to multimedia devices. Such functions are absent in the current
OMG A VStreams specification. The extended MMDevice IDL interface is
given below:

interface AppMMDevice : AVStreams: :MMDevice
long checkpoint(in string template) i

long recover(in string template) i

long Delete() i }i

This extended interface just turns an A VStreams multimedia device
object into an engineering computational object (eCO) by incorporating the
checkpoint (), recover () and Delete () operations.

The extended StreamCtrl IDL interface is presented below:

interface ChannelCtrl : AVStreams::StreamCtrl {
long configureChannel (in AVStreams: :streamQos the_qos,

in AVStreams: :flowSpec the_spec) i

long configureEndPoints (in eCOManager a_eco, in AppMMDevice
a-party, in eCOManager b_eco, in AppMMDevice b-party) i

long changeEndPoint(in eCOManager eco, in AppMMDevice party) i

long deactivateChannel() i

long reactivateChannel() i }i

This extended interface allows the configuration
(conf igureChanne I () of the channel by stating the quality of service
parameters (e.g., network bandwidth and maximum delay) and the
specification of the flows (e.g., PCM audio and MPEG video).
configureEndpoints () establishes the binding between two multimedia
devices, assigning them to their respective eCOs. changeEndPoint () allows
the re-assignment of a multimedia device to a new eCO. This operation is
performed when an eCO attached to a channel is reactivated after migration.
deactivateChannel () and reactivateChannel () operations are performed
during the migration process.

Two more operations are related to channel creation and destruction and
are part of the node interface (as specified by RM-ODP):

172 Part Four - Network Programmability

interface NodeManager
long createChannel

(in eCOManager a_eco, in AppMMDevice a-party,
in eCOManager b_eco, in AppMMDevice b-party,
in AVStreams::streamQos the_qos,
in AVStreams::flowSpec the_spec,in ChannelCtrl the_ctrl);

long destroyChannel(in ChannelCtrl the_ctrl); };

TINA applications call createChannel () in order to establish a stream
binding between two eCOs. The application passes the references of the
multimedia devices (a-party and b-party) and the eCO managers assigned to
the eCOs to be bound. QoS parameters and flow types (the_qos and
the_spec) may also be specified (null parameters means "no QoS specified"
and "all flows", respectively). The last parameter is a reference of a channel
controller that will manage the channel. Each channel type supported must
implement a channel controller of that type. Our OPE has two channel
controllers implemented: one for PCM audio and one for CellB video.
createChannel () returns a flag indicating success or failure. Upon success,
the application uses the channel control object to start, pause and destroy the
channel.

When a cluster migrates, the OPE takes the following actions with
respect to channels. Each eCO manager maintains a list of channel
controllers managing the channels connected to the object. When the object
is deactivated, the eCO manager calls the deactivate () operation on the
channel controller in order to de-allocate the resources assigned to the
channel. When the object is reactivated in the destination capsule, the eCO
manager re-establishes the channel by calling changeEndPoint () and
reactivateChannel () on the channel controller. Notice that the channel
controller is not deactivated during migration of channel endpoints.

In case of point-to-point channels both channel endpoints are destroyed
and reconstructed during migration. For point-to-multipoint channels, only
the migrating endpoint is destroyed and reconstructed during migration.

5. IMPLEMENTATION ISSUES

The TINA OPE reported in this paper was implemented on the following
computing infrastructure. Processing nodes consist of a set of Sun Sparc 5
and Ultra workstations with OC-3 ATM network interface card (155
Mbits/s) connected through an ATM switch from Xylan Corporation. The
Solaris 2.6 operating system from Sun Soft runs on each processor. Orbix
2.3 [11], a CORBA 2.0-compliant platform from lona Technologies, and
ObjectStore 5.0 [12], a distributed object-oriented database from Object

A TINA Distributed Environment for Mobile Multimedia Applications 173

Design, are the major software products employed in this project. Orbix
provides the major CORBA components (IDL compiler, ORB,
implementation and interface repositories and locator), while ObjectStore
provides persistence functions necessary for checkpointing and recovering of
objects, clusters and channels.

At each node runs a CORBA server (servant) implementing the
NodeManager interface. Capsules are Solaris processes with a servant
implementing the CapsuleManager interface. This servant executes on an
exclusive thread. Cluster and eCO managers are also servants running on
exclusive threads. Application servants are distributed through any number
of threads. All of these threads execute within the capsule's address space.
This implementation follows exactly the RM-ODP where capsules provide
the resources for clusters and objects.

In order to illustrate the DPE support for migration, let us consider a
"desktop telephone" service3 (Fig.6). Before the establishment of the audio
stream supporting the conversation, two capsules are created on each
participating node. The application at the caller side calls createChannel ()

on its node interface in order to establish an audio channel with two flows
connecting the multimedia devices (a pair of microphone and speaker at each
side). These devices derive from the interface AppMMDevice. An object that
implements the interface audioChannelCtrl, a specialization of the
interface ChannelCtrl for audio streams, controls the audio channel.

Suppose that one party decides to move to a different node. The
application can then build an empty capsule at this node and call migrate ()

on the actual capsule passing the new capsule as target. After the cluster
migration completes, the channel is re-established and the application
resumes. It is important to notice that TINA applications hide the DPE
functions from the final users.

6. CONCLUDING REMARKS

This paper presented a CORBA-based implementation of a major
component of the TINA architecture, the Distributed Processing
Environment (DPE). The implementation has the following highlights:
support to deployment and management of nodes, capsules, clusters and
objects; support to stream binding, allowing application objects to exchange
media flows; support to migration, allowing clusters to migrate from one
capsule to another; multi-threaded implementation, allowing different levels
of parallelism among the objects.

3 The telephone set is a desktop computer and the telephone networks is a data network.

174 Part Four - Network Programmability

t o .-.-.-.-.---.- .-.-.-._._._._._._._._._ ••• -.-.-.-._._-_._._._._._ ••••• -._._._._._._._._.-.,

Node #1 i, (---) i Node #2
, , ,

Capsule I

Node #4
createChannel(...)

App
Factory

Q
Capsule
Manager

Mgrate(...)

App
Factory

Q
Capsule
Manager

Q

Node #3

App
Factory

Q
Capsule
Manager

Q

Ouster
Manager

Q

Ouster
Manager

Q

Figure 6. Desktop telephone application.

! ,
eC02

,
;

eCO
, t

Manager Me Spk

Q Q Q
Ouster 2

Capsule 2

flows

eCOl

eCO
Manager Spk Me

Q Q Q
Ouster I

Capsule 3

Among the applications of interest, the offering of telecommunication
services over the Internet is receiving special attention. The increasing of
speed in both on access networks and backbones is making the Internet the
most promising infrastructure for new telecommunication services. Since the
TCP/IP protocol stack provides only connectivity services, the integration of
TINA and Internet can turn the Internet in a truly multi-service global
network. Another point of interest is to employ some CORBA 3 [13]
features, mainly, objects supporting multiple interfaces4 and quality of
service control. These features are not available in the current CORBA
development platforms.

ACKNOWLEDGMENTS

This research is being supported by the following Brazilian funding
agencies: CAPES which provides MSc and PhD scholarships to the first and
second author, CNPq (grant 300723/93-8) and FINEP (grant 1588/96).

4 Multiple interfaces allows a direct mapping between TINA and CORBA objects.

A TINA Distributed Environment for Mobile Multimedia Applications 175

REFERENCES

[I] R.W. Lucky. "New Communications Services - What Does Society Want?", Proceedings
of the IEEE, 85(10), October 1997.

[2] Fabrice Dupuy, Gunnar Nilson, and Yuji Inoue. "TINA Consortium: Toward Networking
Telecommunications Information Services", IEEE Communications Magazine, 33(11): 78-
83, November 1995.

[3] Object Management Group. "CORBAlIIOP 2.3.1 Specification", Technical Report
formal/99-IO-07, 1999. URL at http://www.omg.org.

[4] ISO/IEC 10746/ ITU-T Draft Rec. X.90I, X.902 & X903. "ODP Reference Model Part I,
Part 2 & Part 3", Technical Report, June 1995.

[5] H. Berndt et al. "The TINA Book". Prentice Hall Europe, 1999.
[6] TINA-C. "Engineering Modelling Concepts - DPE Architecture", Technical Report, TINA

Consortium, December 1994. URL at http://www.tinac.com/.
[7] S.Vinoski. "CORBA: Integrating Diverse Applications Within Distributed Heterogeneous

Environments", IEEE Communications Magazine, 14, February 1997.
[8] L.F.Faina, E.J. Oliveira, R.C.M. Prado and E. Cardozo. "Developing Multimedia

Applications with the OMG Streaming Framework". In Proc. of the ICC'99 - MAST'99
(Mini Conference on Multimedia Applications, Services and Technologies), Vancouver,
Canada, June 1999. URL at ftp://ftp.dca.fee.unicamp.br/pub/docsleleri/Mast99.pdf

[9] A.S. Pinto, E.J. Oliveira, L.F. Faina and E.Cardozo. "TINA-based Environment for
Mobile Multimedia Services". In Proc. ofthe TINA'99, Hawaii, USA, April 1999.

[10] Object Management Group "CORBAtelecoms: Telecommunications Domain
Specification", Technical Report formal/98-07-12, OMG, October 1997. URL at
http://www.omg.org/.

[II] IONATechnologies Ltd., "Orbix 2.3c MT - Programming Guide", November 1997.
[12] Object Design. "ObjectStore - C++ API User Guide - Release 4", June 1995.
[13] Jon Siegel, "CORBA 3 Fundamentals and Programming", John Wiley & Sons, second

edition, 2000.

