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In this paper, instead of designing an automation system that is intended to 
replace a human operator completely with it and to exclude him/her out of the 
loop, we introduce an idea of an interface agent as a sophisticated associate 
for a human operator. Since its decision making style must be close to the 
human's proficient naturalistic decision making, we formalize its resource­
bounded reasoning under critical time pressure by joining a machine learning 
method for concept induction and a classical decision theory. 

1. INTRODUCTION 

Recent popular concept of human-centered automation design has stressed the 
importance of the design philosophy of "people are in charge" or "human-in-the­
loop" (Rouse, 1988). For this idealistic and very broad concept, however, Sheridan 
presented ten alternative meanings with a restrictive qualification saying that the real 
potential is somewhat questionable (Sheridan, 1997). As Sheridan depicted, we 
would like to stress that a human-centered design principle has to be able to answer 
to the following critical issues; 
• how to make the human-autonomy and the mechanical autonomy (i.e., 

automation systems) coexist letting them keep a friendly and sharable 
partnership, and 

• how to avoid the human from the flood of data from the plant and of computer­
based advice. 

In the following of this paper, we at frrst introduce an idea of an interface agent 
as an alternative to the conventional stand-alone, isolated automation systems. Then, 
we will characterize that such an interface agent's reasoning tasks and its decision­
making styles are quite different from the ones of conventional expert systems and 
from conventional decision support systems in that they are severely bounded to the 
real-time contexts. This is close to the human's naturalistic decision making style 
called recognition-primed decision-making (Klein et a/., 1993; Klein, 1993). We 
present a methodology for designing such an interface agent and formalize its 
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resource-bounded reasoning under critical time pressure by joining a machine 
learning method and a classical decision theory. 
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Figure I An interface agent as an associate for a human operator 

2. INTERFACE AGENT AS A HUMAN ASSOCIATE 

An interface agent is a semi-intelligent computer programs that can learn by 
continuously "looking over the shoulder" of the user as he/she is performing actions 
against some complex artifacts. It is expected to be capable of providing the users 
with adaptive aiding as well as of alternating the activities instead of a human 
(Maes, 1993; Maes, 1994). In this sense, an agent has to coexist with a human user 
so that it can evolve by itself as a human user's proficient level improves. It also has 
to be able to stimulate a human user's creativeness coordinately by changing its role 
dynamically as a human's associate, rather than to replace the human user with itself. 

To let an interface agent be a human associate, the most fundamental issue is to 
guarantee transparency of its internal reasoning activity to the human user and to 
have continuous opportunities to interact with the human user to share the process, 
not the product, of reasoning with him/her. One of the major drawbacks of the 
current automation is that automation masks its internal activities from the human 
user and turns out to be a black box. This is causing intransparency to the human 
and lack of variability in ways of interacting with the automation. 

In order to grade up an interface agent from an automated agent to a human 
collaborative agent, we formulate a decision-making activity of an interface agent 
analogous to a human. Within current decision research fields, a shift from a 
classical normative decision making paradigm toward a naturalistic decision-making 
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paradigm is emerging (Klein et al., 1993). The latter has concentrated increasingly 
on the proficient experts' situation assessment ability and their ways of looking at a 
situation and quickly interpreting it using their highly organized base of relevant 
knowledge. That is, these are abilities to recognize and appropriately classify a 
situation. Hereafter, we call this style of decision-making as a recognition-primed 
decision (RPD) model after Klein (Klein, 1993). The distinguishing feature of the 
RPD model is to attempt to describe how people bring their experience to bear on a 
decision and how they are able to continually prepare to initiate workable, timely, 
and cost effective actions. Especially we are interested in modeling their capability 
to act proficiently under severe time pressure (i.e., under emergency); to identify the 
situation quickly and accurately and to act promptly with less time and effort to act. 

In the following of this paper, we at first propose a recognition-primed decision 
model of an interface agent, that is embedded inside the human-artifact interactions 
and that has to work as an intelligent associate for a human user/operator in a time­
critical situation. This is schematically illustrated in Figure I. We put an emphasis 
on the characteristics of an agent's capability of dynamical recognition of the 
complex artifact to be controlled or to be monitored. Wherein, "dynamics" is caused 
by situational factors such as the emergency and temporal availability of evidences. 
We show such a human-friendly way of reasoning is comprehensive enough for a 
human user to share the process with the agent in a collaborative fashion. Then, this 
formulation is applied to a design of an interface for a teleoperated mobile robot. 

3. DYNAMIC CATEGORIZATION OF PLANT ANOMALIES 

Important aspect of our interface agent is how to organize an "appearances" of the 
world (i.e., a complex plant), which is different from a mere collection of objective 
features but is specific to a particular human operator depending upon current time­
criticality he/she is forced to work. To be a human-friendly associate for a human 
operator, an interface agent has to be able to present the current status of the plant so 
that it can help his/her situation awareness and can remind him/her of the recovering 
operation to be adopted (Sawaragi et al., 1996). In time-critical, high-stakes 
situations, the time required by people to review information, and confusion arising 
in attempts to process large amounts of data, can lead to costly delays and errors. 

Under such a time-critical situation, an interface agent must be able to flexibly 
organize the appropriate appearance of the plant status discriminating among what is 
now relevant and what is not for assisting an operator's situation awareness. In our 
system, a taxonomy of all possible plant anomalies is organized in a hierarchical 
fashion using a machine learning technique called concept formation (Fisher, 1986) 
as shown in Figure 2 (Sawaragi et al., 1996). Wherein, the root node represents a 
class of concepts covering all possible anomaly types, and the leaf nodes represent 
the individual anomalous cases (i.e., a hierarchy via is-a and subset-of relations). In 
terms of this hierarchy, determination of the appearance of the plant concerns with 
how to determine the appropriate categorization of the plant anomalies out of the 
hierarchical taxonomy (Figure 2); to fmd a set of exclusive subtrees whose 
extensions are regarded as equivalent. The category of the hypothesis on the 
plausible anomaly types can be defined with a variety of abstraction levels within 
the hierarchical taxonomy. We call each possible categorization within the 
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taxonomy a conceptual cover, that is a categorization of all possible anomalies into 
mutually exclusive and exhaustive classes. 
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Figure 2 Conceptual cover of anomalous state concepts: a categorization adopted by 
an interface agent for its decision framing 

4. RECOGNITION-PRIMED DECISION MAKING MODEL 

In order to rationalize the agent's selecting the appropriate categorization to be 
presented to the human operator and also to be used for its own problem solving 
(i.e., diagnosis), we at first consider about a general probabilistic reasoning model 
(i.e., an influence diagram (Howard and Matheson, 1982)). We regard this as an 
agent's decision model that derives an appropriate action inferring the most plausible 
plant anomaly type by getting symptoms from evidential observations obtained so 
far. This is illustrated in Figure 3(a). 

Wherein, a chance node H denotes a hypothesis node representing a state of the 
plant taking values of anomaly types. Nodes It's represent a set of symptoms 
available to an interface agent, each of which corresponds to the features observable 
in individual instruments of the plant. As knowledge of plant anomalies, an agent 
has acquired dependency among the classes of anomaly types and their associating 
evidences as well as the prior probabilities of occurrence of those hypothetical 
classes. All of these are automatically acquired through the concept formation 
process, and have been stored in a taxonomy hierarchy (Sawaragi et al., 1994). 
Based on this a priori knowledge, getting new observations from the plant, an agent 
updates its prior belief on probable anomaly types based on a Bayes theorem. Then, 
these posterior beliefs are used for calculating the expected utilities of the available 
options defmed in the decision node A based on the knowledge that are defined in 
the diagram defining the interrelationships among nodes of H, A, T and V in Figure 
3(a). The option having the maximum expected utility would be determined as a 
recommendation for an interface agent to adopt. A diamond node is a special type of 
an oval node and is called a value node representing an agent's comprehensive 
utility. This shows that an agent's utility is determined by the types of anomaly and 
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the adopted action as well as by the delay. This reflects the fact that some anomaly 
types require immediate recovering operations as soon as possible and if it is 
delayed its utility would drastically decrease (i.e., a time-dependent utility (Horvitz, 
1991)). In our system, we categorize the utilities defined for all the combinations of 
hypothesis and actions into one of the three classes of time-dependent utilities 
according to the utility for the hard-deadline and the soft-deadline and the time­
invariant utility. 

(a) (b) 

Figure 3 Interface agent's reasoning represented by an influence diagram 

Figure 3(b) is another influence diagram used in our examples mentioned later, 
in which the value structure related to the value node V is more explicitly divided 
into the three subcategories of the decision maker's values. 

In terms of these decision models, a definition of a domain of a hypothesis node 
H corresponds to a conceptual cover showing an appearance of the plant to an 
interface agent. This definition reflects the granularities of an agent's recognizing 
anomaly classifications (i.e., a recognition-primed decision-making). The qualities 
of each possible conceptual cover must be evaluated in terms of the effectivity 
brought about by the adopted actions (i.e., expected value of categorization (Poh et 
al., 1996)). 

Given a particular conceptual cover z, we denote the recommendation obtained 
by solving a model constructed using this by A *z, and defme an expected value of 
categorization w.r.t. conceptual cover z as an expected utility calculated for the 
recommended option A *z and denote this by EVC(z). Denoting a set of symptoms as 
a vector E and noticing the changes of utilities according the elapse of time t, A *z 
and EVC(z) can be represented as follows; 

A *z = arg MaxA u(A *z, lfj, t) p(lfj IE, ;} 
and 

EVC(z) = u(A*z• lfj, t)p(lfj IE,;), 
where lfj represents a set of hypothesis classes of anomaly types making up the 
conceptual cover z, and p(lfj I E, ;) is the probability over them, given observations 
E and background state of information Note that for each conceptual covers z, a 
corresponding decision model may be constructed by retrieving the quantified 
conditional dependencies that are learned in the concept formation process and by 
joining them into a model. Thus, a conceptual cover z* having the maximum EVC 
can be regarded as an action-oriented appearance of the world (i.e., granular states) 
for an agent being affected by various situation factors at the current time t. 
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5. AGENT'S MANAGING COMPLEXITY UNDER TIME­
CRITICALITY 

As an intelligent associate, an agent aims to support an operator to focus his/her 
attention into the actual candidates of the anomalies rather than enforcing him/her 
execute a recommended action. That is, the agent presents the appropriate 
conceptual cover highlighting a set of possible anomalies while hiding its 
competitive other classes of anomalies behind (i.e., distinction between "figures" 
and "grounds" in psychological terms). At the same time, this conceptual cover 
makes up the agent's decision model (i.e., a hypothesis node H) that calculates the 
beliefs on the occurrence of possible. Here, we set the following criteria concerning 
with the determination of the appropriate conceptual cover: 
• An agent should take into account of the expected delay of the operator's action 

execution in response to the presented information. 
• An agent should aggregate anomalies into more abstract classes if the expected 

utilities of all possible actions for those anomalies are negligible. 
• An agent should decompose a class of anomalies into more precise 

classifications if their probabilities of occurrence are high and the recommended 
action to be adopted varies depending on the anomalies within that class. 

• An agent should avoid the risk of hiding the correct anomaly into the "grounds" 
and ofhighlighting the wrong one in the "figures". 

Note that the above criteria are all reflected in the above-mentioned ways of 
determining the conceptual cover mediated by the agent's decision model. 

The selection of the appropriate conceptual cover of this formulation was 
published elsewhere (Sawaragi and Katai, 1999). 

6. NUMERICAL EXAMPLES 

Based on the theory mentioned in the above, we present an example using well­
known database in a machine learning field (i.e., UC Irvine database). We use a 
database of animals consisting of 100 animal instances, each of which is represented 
by a set of 17 attributes with their binary values. As an analogy to the plant 
anomalies and other practical diagnosis, we newly defined three different actions 
(i.e., approach, stop, and escape) available to the decision-maker (i.e., an 
actor) that are commonly adopted against the individual instances of animals. That 
is, attributes correspond to the evidences available to the decision-maker, from 
which he/she has to identify what that animal is and to decide what action to take 
against that. With incomplete observation of those evidences, the decision-maker 
has to update his beliefs on the plausible hypothesis (i.e., animal classes of the 
encountering animals). At that time, the role of the interface agent is to decide how 
to display information so that it can afford the decision-maker's easy recognition as 
well as his/her naturalistic responses properly. Note that the types of utilities shown 
in Figure 5 are assigned to each instance of animals with respect to each possible 
action alternatives, thus the difference of time-criticality is included in the model. 
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At first we construct an animal taxonomy using a conceptual formation 
technique of COBWEB as shown in Figure 4(c). Then, based on the information 
learned and stored within the individual classes of this taxonomy, we build an actor's 
decision model of Figure 3(b). Figure 4(a) shows the recommendations with their 
expected utility output by the decision models at each time a new evidence is added. 
This decision model is constructed by fmding the most appropriate conceptual cover 
at each time according to the procedure mentioned in the previous section. Figure 
4(b) represents a series of evidences that an agent obtains temporally. At each time 
an agent obtains evidences, it updates its beliefs on the hypotheses by Bayes 
reasoning being biased by the prior beliefs (i.e., posterior beliefs in the preceding 
time step) and derives the appropriate conceptual cover at the current time. The shift 
of derived conceptual covers is shown in Figure 4( c), where the denoted filled box 
represents an instance revealing the evidences of Figure 4(b ). 
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Figure 4 Shifts of confidence beliefs and conceptual covers according to the 
accumulation of evidences. (a) recommended actions (b) temporally observed 

evidences (c) conceptual covers 

As shown in these figures, in the initial, the agent's recognition is still vague in a 
sense that it cannot focus into a particular animal. During the subsequent 
observations the agent's recognition is gradually confirmed, but the preciseness of 
the recognition is still coarse (i.e., at the level of class C9). At this time the 
competitive hypotheses are gradually disconfrrmed, and as a result, preciseness of 
their discrimination is not needed (i.e., climbing up the hierarchy to the level 
consisting of C4, C5, C2). At this time the recommended action is quite neutral, 
i.e., "stop" and its belief is still "fuzzy" meaning that the target may be either 
"gorilla", "bear", "girl", or "aardvark". But at time 4, a new evidence strongly 
confirming the animal is obtained, as a result, the agent's recognition turns out to be 
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more precise one (i.e., going down the hierarchy from the level of C9 to its 
descendants). Now that the target is strongly confirmed as the one of these siblings, 
the recommended action accordingly changes from the preceding "stop" to another 
alternative of "escape" as shown in Figure 4(a). Such alternation is due to the 
precise discrimination, or to the alternation of the "appearance" of the world of the 
agent, meaning that the target must be a "gorilla" and not a "bear", "girl", or 
"aardvark". 

7. APPLICATION TO INTERFACE FOR A TELEOPERATED 
MOBILE ROBOT SYSTEM 

7.1 Display Management for an Operator 

We are now applying our proposing method to the interface for a teleoperated 
mobile robot system. As an automation device for a mobile robot, the so-called 
potential field method is well known. Fundamental issue for this approach is that the 
robot has to identify what the target object is; either obstacles to avoid or goals to 
approach. Obtaining evidences of the target object using the sensors on board, the 
robot has to identify that. These correspond to evidences and hypotheses in our 
formulation. Since the robot is moving with a constant velocity and has a limited 
computational resources for the sensing, this identification should be done within a 
finite time constraint, and the evidences can be obtained in a serial, temporal order, 
which is the same as discussed in the previous section. Different from the previous 
example, in this teleoperated mobile robot system, the robot may possibly encounter 
more than one target at the same time. For each target, the robot has to identify it 
respectively during a constrained time span. In this case, the robot attempts to 
identify each of them using respective conceptual covers within the common 
taxonomy (i.e., a repertoire ofthe encountering objects). 

We developed a display system that presents a robot's encountering 
environment to an human operator by showing a pseudo-3D virtual representation as 
illustrated in Figure 5. The cones distinguish the objects to be avoided or to be 
approached according to their colors, and the temporal beliefs as well as the 
identified abstraction levels within the current conceptual covers are shown by the 
differences of the heights and the transparency of the cones, respectively. Figure 5 
illustrates how such a display changes when a robot obtains a new evidence. The 
conceptual covers shown to the right of the display illustrate the conceptual covers 
and the beliefs on the target object (i.e., an object locating in immediate front) 
within that. In this way, an operator can perceive and monitor the change (i.e., a 
process of an automated machine's reasoning) of a robot's semi-automated 
recognizing and moving tasks at the same time. This kind of concept sharing 
between the machine autonomy and the human autonomy will be essential towards 
establishing a balanced automation between a human and a machine. 

7.2 Towards a Socially-Centered Automation 

In my previous paper, we have proposed an idea of Socially-Centered Automation 
that regards an automated system as a true, equivalent partner of a human user 
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having an analogous capability of "sociality" to be embedded within the interactions 
with the human user. In contrast to a conventional Human-Centered Automation 
idea that assumes superior priorities of a human over a machine, we put an emphasis 
on increasing interactions between them, accepting their conflicts and letting them 
cooperate with each other to change a current conflict status into a new coordinated 
one (Sawaragi, 1999). We are now extending the current system towards the one 
based upon this socially-centered automation idea. 

Evidences available to Agent 2 {1,0,0,1,1,lk) 

Conceptual cover by Agent2 

Evidences available to Agent 2{1,0,0,1,1 ,0) 

cover by agent2 

Figure 5 Pseudo-3D displays using VRML and corresponding conceptual covers 

We have restricted what the agent can observe to the sensing information from 
the robot's environment. Another important source that is available to the agent is on 
what operations a human operator is taking. The observation of an operator's actions 
would enable the agent to infer his/her recognizing state of the environment, apart 
from the evidences that the robot can obtain from its task environment. Thus, the 
agent can reason about the internal states that a human operator grasps as well as 
about the true states that the agent itself infers from evidences from the robot's 
environment. As for the former, we can also construct another decision model that 
prescribes what kinds of recommendations to be given to a human operator by 
getting evidences from his/her behavioral features being mediated by inferred 
plausible hypothesis on the target objects. The conceptual covers constructed for 
those hypotheses do not always coincide with the one obtained for the latter, but 
may be differentiated, although their individual extension sets of objects are the 
same. Based upon the degrees of mismatch between the agent's and the operator's 
conceptual covers, interactions acted by the agent against the human operator can be 
altered and varied. Such a change of the agent's ways of interacting with the human 
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operator would alter his/her reactions, which would further make the agent's 
grasping states of the operator change to a new one. In this way, a cyclic, mutually 
binding relation does emerge, where both the human and the agent experience 
conflicts as well as agreements, and they can get to share respective concepts. This 
is a core of our proposing socially-centered automation. 

8. CONCLUSIONS 

In this paper, we put an emphasis on the fact that the agent should be embedded 
within the interactions with a human user, and for realizing this, establishing 
transparency of what the agent is grasping and how it is inferring is essentially 
important. We presented a situation awareness model for an agent integrating both 
of a normative decision theory and a machine learning method, which was applied to 
the interface design of a teleoperated mobile robot. Finally, we presented our 
perspectives towards realizing a socially-centered. 

9. REFERNCES 

I. Fisher, D. (1987). Knowledge Acquisition via Incremental Conceptual Clustering, Machine 
Learning, 2, pp.l39-172. 

2. Horvits, E. (1991). Time-Dependent Utility and Action under Uncertainty, Proc. of the Seventh 
Coriference on Uncertainty in Artificial Intelligence, Los Angels, pp.l51-158. 

3. Howard, R.A. and Matheson, J.E. (1983).1nfluence Diagrams, in Howard, R.A. and Matheson, J.E. 
(Eds.), The Principles and Applications of Decision Analysis, Strategic Decision Group, Menlo 
Park, CA. 

4. Klein, G.A. et al. (1993). Decision Making in Action: Models and Methods, Ablex Pub. Corp., 
Norwood, NJ. 

5. Klein, G.A. (1993). A Recognition-Primed Decision Model of Rapid Decision Making, in Klein, 
G.A. et al. (eds.), Decision Making in Action: Models and Methods, pp.l38-147, Ablex Pub. Corp., 
Norwood, NJ. 

6. Maes, P. and Kozierok, R. (1993). Learning Interface Agents, Proceedings of the Eleventh 
National Conference on Artificial Intelligence, pp.459-465. 

7. Maes, P. (1994). Agents that Reduce Work and Information Overload, Communications of the 
ACM, 37-7, pp.30-40. 

8. Poh, K.L., Fehling, M.R. and Horvitz, E.J. (1994). Dynamic Construction and Refinement of 
Utility-Based Categorization Model, IEEE Trans. of System, Man, and Cybernetics, 24-11, 
pp.l653-1663. 

9. Rouse, W.B. (1988). The Human Role in Advanced Manufacturing Systems, in Compton, D. (Ed.), 
Design and Analysis of Integrated Manufacturing Systems, National Academy Press, Washington, 
D.C .. 

10. Sawaragi, T., Iwai, S., Katai, 0. and Fehling, M.R. (1994). Dynamic Decision-Model Construction 
by Conceptual Clustering, Proc. of the Second World Congress on Expert Systems, pp.376-384, 
Lisbon, Portugal. 

11. Sawaragi, T., Takada, Y., Katai, 0. and lwai, S. (1996). Realtime Decision Support System for 
Plant Operators Using Concept Formation Method, Preprints of International Federation of 
Automatic Control (/FAC) 13th World Congress, Voi.L, pp.373-378, San Francisco. 

12. Sawaragi, T., Katai, 0. (1999). Bio-Informatic Activity Modeling for Human-Artifacts Symbiosis 
under Resource Boundedness, Artificial Life and Robotics, 3, pp.45-53. 

13. Sawaragi, T. (1999). Modeling and Analysis of Human Interactions with and within Complex 
Systems, Proc. of IEEE Conference on System, Man, and Cybernetics, Tokyo. 

14. Sheridan, T.B. (1997). Human-Centered Automation: Oxymoron or Common Sense?, Proc, of 
IEEE Int. Conf. on System, Man and Cybernetics, Vancouver, Canada. 


	CONCEPT SHARING BETWEENHUMAN AND INTERFACE AGENTUNDER TIME CRITICALITY
	1. INTRODUCTION
	2. INTERFACE AGENT AS A HUMAN ASSOCIATE
	3. DYNAMIC CATEGORIZATION OF PLANT ANOMALIES
	4. RECOGNITION-PRIMED DECISION MAKING MODEL
	5. AGENT'S MANAGING COMPLEXITY UNDER TIMECRITICALITY
	6. NUMERICAL EXAMPLES
	7. APPLICATION TO INTERFACE FOR A TELEOPERATEDMOBILE ROBOT SYSTEM
	7.1 Display Management for an Operator
	7.2 Towards a Socially-Centered Automation

	8. CONCLUSIONS
	9. REFERNCES




