
ELLIPTIC CURVE CRYPTOGRAPHY ON SMART 
CARDS WITHOUT COPROCESSORS 

Adam D. Woodbury 
Electrical and Computer Engineering Department 

adw@ece.wpi.edu 

Daniel V. Bailey 
Computer Science Department 
bailey@cs.wpi.edu 

Christof Paar 
Electrical and Computer Engineering Department, Computer Science Department 

christof@ece.wpi.edu 

Worcester Polytechnic Institute 

Worcester, MA 01609 USA 

Abstract This contribution describes how an elliptic curve cryptosystem can be 
implemented on very low cost microprocessors with reasonable perfor­
mance. We focus in this paper on the Intel 8051 family of microcon­
trollers popular in smart cards and other cost-sensitive devices. The 
implementation is based on the use of the finite field GF((28 - 17)17) 

which is particularly suited for low end 8-bit processors. Two advantages 
of our method are that subfield modular reduction can be performed in­
frequently, and that an adaption of Itoh and Tsujii's inversion algorithm 
is used for the group operation. We show that an elliptic curve scalar 
multiplication with a fixed point, which is the core operation for a sig­
nature generation, can be performed in a group of order approximately 
2134 in less than 2 seconds. Unlike other implementations, we do not 
make use of curves defined over a subfield such as Koblitz curves. 

Keywords: finite fields, fast arithmetic, Optimal Extension Fields, modular reduc­
tion, elliptic curves, implementation, smart cards, Intel 8051 

http://dx.doi.org/10.1007/978-0-387-35528-3_22


72 IFIP CARDIS 2000 

1. INTRODUCTION AND MOTIVATION 
A typical large-scale smart card application such as retail banking 

can entail the manufacture, personalization, issuance, and support of 
millions of smart cards. Due to the grand scale involved, the success of 
such an application is inherently linked to careful cost management of 
each of these areas. However, budgetary constraints must be weighed 
against the basic requirements for smart card security. The security 
services offered by a smart card often include both data encryption and 
public-key operations. Creation of a digital signature is often the most 
computationally intensive operation demanded of a smart card. 

Smart cards often use 8-bit microcontrollers derived from 1970s fam­
ilies such as the Intel 8051 [25) and the Motorola 6805. The use of 
public-key algorithms such as RSA or DSA, which are based on modu­
lar arithmetic with very long operands, on such a processor predictably 
results in unacceptably long processing delays. To address this prob­
lem, many smart card microcontroller manufacturers include additional 
on-chip hardware to accelerate long-number arithmetic operations. How­
ever, in cost-sensitive applications it can be attractive to execute public­
key operations on smart cards without coprocessors. 

The challenge addressed in this contribution is to implement a public­
key digital signature algorithm which does not introduce performance 
problems or require additional hardware beyond an 8-bit microcontroller. 
To address this problem, we turn to the computational savings made 
available by elliptic curve cryptosystems. An elliptic curve cryptosystem 
relies on the assumed hardness of the Elliptic Curve Discrete Logarithm 
Problem (ECDLP) for its security. An instance of the ECDLP is posed 
for an elliptic curve defined over a finite field GF(pm) for p a prime 
and m a positive integer. The rule to perform the elliptic curve group 
operation can be expressed in terms of arithmetic operations in the finite 
field; thus the speed of the field arithmetic determines the speed of the 
cryptosystem. 

In this paper, we first compare the finite field arithmetic performance 
offered by three different types of finite field which have been proposed 
for elliptic curve cryptosystems (ECCs): binary fields GF(2n), even com­
posite fields GF((2n)m), and finally Optimal Extension Fields (OEFs): 
GF(pm) for p a pseudo-Mersenne prime, m chosen so that an irreducible 
binomial exists over GF(p). Our results show that core field arithmetic 
operations in GF(2n) lag behind the other two at a ratio of 5:1. The 
arithmetic offered by OEFs and composite fields is comparable in per­
formance. However, the recent result of Gaudry, Hess, and Smart [10) 
has shown that the ECDLP can be easily solved when even composite 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 73 

fields are used. Thus, in the main part of this paper we present the 
results of applying OEFs to the construction of ECCs to calculate a 
digital signature within a reasonable processing time with no need for 
hardware beyond an 8-bit microcontroller. The target processor is an 
8051, derivatives of which are on many popular smart cards such as the 
Siemens 44C200 and Phillips 82C852. 

2. PREVIOUS WORK 
This section reviews some of the most relevant previous contributions. 

It has been long recognized that efficient finite field arithmetic is vital 
to achieve acceptable performance with ECCs. Before an attack was 
published rendering them unattractive, many implementors chose even­
characteristic finite fields with composite extension degree. 

A paper due to De Win et.al. [8] analyzes the use of fields GF((2n)m), 
with a focus on n = 16, m = 11. This construction yields an extension 
field with 2176 elements. The subfield GF(216) has a Cayley table of suf­
ficiently small size to fit in the memory of a workstation. Optimizations 
for multiplication and inversion in such composite fields of characteristic 
two are described in [11]. 

Schroeppel et.al. [24] report an implementation of an elliptic curve 
analogue of Diffie-Hellman key exchange over GF(2155). The arithmetic 
is based on a polynomial basis representation of the field elements. An­
other paper by De Win et.al. [9] presents a detailed implementation of 
elliptic curve arithmetic on a desktop PC, using finite fields of the form 
GF(p) and GF(2n), with a focus on its application to digital signature 
schemes. For ECCs over prime fields, their construction uses projective 
coordinates to eliminate the need for inversion, along with a balanced 
ternary representation of the multiplier. Claus Schnorr presents a digital 
signature algorithm based on the finite field discrete logarithm problem 
in [23]. The algorithm is especially suited for smart cards. 

The work in [1, 2] introduces OEFs and provides performance statistics 
on high-end ruse workstations. A paper extending the work on OEFs 
appears in [16]. In this paper, sub-millisecond performance on high-end 
ruse workstations is reported. Further, the authors achieve an ECC 
performance of 1.95 msec on a 400 MHz Pentium II. A rump session pre­
sentation in [20] introduces an efficient algorithm for exponentiation in 
an OEF which leads to efficient implementation of cryptosystems based 
on the finite field discrete logarithm problem. Reference [3] introduces 
the Itoh-Tsujii inversion algorithm for OEFs which is used in this contri­
bution. 



74 IFIP CARDIS 2000 

In [21], Naccache and M'Raihi provide an overview of smart cards with 
cryptographic capabilities, including a discussion of general implementa­
tion concerns on various types of smart cards. In [22] a zero-knowledge 
system on an 8-bit microprocessor without a coprocessor is presented. 

In a white paper [6], Certicom Corp. provides performance data for an 
ECC defined over GF(2163) on smart card CPUs without cryptographic 
coprocessors. Statistics on the performance of the finite field arithmetic 
operations are not included. In addition, no details are provided about 
the particular elliptic curve they chose as a basis for their implementa­
tion. When a Siemens SLE44C80S is used as the smart card microcon­
troller, digital signature performance of under 1.5 seconds is reported. 
An improved timing of 700 msec is reported for a Siemens SLE66C80S, 
a 16-bit microcontroller. These processors are variants of the Intel 8051 
and hence these results are directly relevant to those achieved in this 
paper. 

3. FINITE FIELD CHOICE 
To implement an ECC, an implementor must select a finite field in 

which to perform arithmetic calculations. A finite field is identified with 
the notation GF(pm) for p a prime and m a positive integer. It is well 
known that there exists a finite field for all primes p and positive rational 
integers m. This field is isomorphic to GF(p)[x]f(P(x)), where P(x) = 
xm+ Pi xi,Pi E GF(p), is a monic irreducible polynomial of degree 
m over GF(p). In the following, a residue class will be identified with 
the polynomial of least degree in this class. 

Various finite fields admit the use of different algorithms for arith­
metic. Unsurprisingly, the choices of p, m, and P(x) can have a dramatic 
impact on the performance of the ECC. In particular, there are generic 
algorithms for arithmetic in an arbitrary finite field and there are spe­
cialized algorithms which provide better performance in finite fields of a 
particular form. In the following, we briefly describe field types proposed 
for ECC. 

3.1. BINARY FIELDS 
Implementors designing custom hardware for an ECC often choose 

p = 2 and P(x) to be a trinomial or pentanomial. Such choices of irre­
ducible polynomial lead to efficient methods for extension field modular 
reduction. We will refer to this type of field as a ''binary field," in accor­
dance with [13]. The elements of the subfield GF(2) can be represented 
by the logical signals 0 and 1. In this way, it is both speed and area 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 75 

efficient to construct hardware circuits to perform the finite field arith­
metic. 

3.2. EVEN COMPOSITE FIELDS 

In software, the choice of parameters varies considerably with the wide 
array of available microprocessors. Many authors have suggested the use 
of p = 2 and m a composite number. In this case, the field GF(2m) is 
isomorphic to GF((2"t), form= sr and we call this an "even composite 
field." Then multiplication and inversion in the subfield GF(2") can 
be efficiently performed by table look-up if s is not too large. In turn, 
these operations in the extension field GF((2"t) are calculated using 
arithmetic in the subfield. As in the binary field case, the irreducible 
polynomials for both the subfield and the extension field are chosen to 
have minimal weight. This approach can provide superior performance 
when compared to the case of binary fields. However, a recent attack 
against ECCs over composite fields [10) makes them inappropriate for 
use in practice. 

3.3. OPTIMAL EXTENSION FIELDS 

An alternative construction is to use OEFs [2], which choose p of the 
form 2n ± c, for n, c arbitrary positive rational integers. In this case, one 
chooses p of appropriate size to use the multiply instructions available on 
the target microcontroller. In addition, m is chosen so that an irreducible 
binomial P(x) = xm- w exists. 

3.4. ROUGH PERFORMANCE COMPARISON 

To address our need for fast field arithmetic in an ECC implemented 
on a smart card, we compared these three options for finite field arith­
metic on a standard Intel 8051 running at 12 MHz. Due to the 8051's 
internal clock division factor of 12, one internal clock cycle is equivalent 
to one microsecond. Thus, these timings may be interpreted as either 
internal clock cycles or microseconds. We implemented extension field 
multiplication for the three candidates in assembly. We chose a field or­
der of about 2135 which provides moderate security as will be discussed 
in Section 3.5 below. Field multiplication is the time critical operation in 

most ECC realizations. We represented field elements with a polynomial 
basis and took advantage of the standard arithmetic algorithms available 
for each. Results are shown in Table 1. 

Thus we see that binary fields offer performance which lags far behind 
the other two options. Further, even composite fields have recently been 



76 IFIP CARDIS 2000 

Table 1 Extension field multiplication performance on an Intel 8051 

Field appr. Field Order # Cycles for Multiply 
GF(2135) 

GF((28)17) 

GF((28 -17)17 ) 

19,600 
7,479 
5,084 

shown to have cryptographic weaknesses [10]. Hence, we are lead to 
conclude that OEFs are the best choice for our application. 

3.5. REMARK ON THE FINITE FIELD ORDER 
CHOSEN 

In recent work, Lenstra and Verheul show that under particular as­
sumptions, 952-bit RSA and DSS systems may be considered to be of 
equivalent security to 132-bit ECC systems [17]. The authors further 
argue that 132-bit ECC keys are adequate for commercial security in 
the year 2000. This notion of commercial security is based on the hy­
pothesis that a 56-bit block cipher offered adequate security in 1982 for 
commercial applications. 

This estimate has more recently been confirmed by the breaking of 
the ECC2K-108 challenge [12]. First, note that the field GF((28 -17)17) 

has an order of about 2134 • Breaking the Koblitz (or anomalous) curve 
cryptosystem over GF(2108) required slightly more effort than a brute 
force attack against DES. Hence, an ECC over a 134-bit field which does 
not use a subfield curve is by a factor of v'I08 · ..f2'i6 216 harder to 
break than the ECC2K-108 challenge or DES. Thus, based on current 
knowledge of EC attacks, the system proposed here is roughly security 
equivalent to a 72-bit block cipher. This implies that an attack would 
require about 65,000 times as much effort as breaking DES. Note also 
that factoring the 512-bit RSA challenge took only about 2% of the 
time required to break DES or the ECC2K-108 challenge. This implies 
that an ECC over the proposed field GF(23917) offers far more security 
than the 512-bit RSA system which has been popular for fielded smart 
card applications. In summary, we feel that our selection of field order 
provides medium-term security which is sufficient for many current smart 
card applications. 

Of course, the discussion above assumes that there are no special at­
tacks against ECC over OEFs. This assumption seems to be valid at the 
time of writing [10]. 

To generate good elliptic curves over OEFs there are two basic ap­
proaches. The first one is based on the use of a curve defined over 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 77 

GF(p) using the method in [4, Section VI.4]. The second, more general, 

method uses Schoof's algorithm together with its improvements. The 
algebra package LiDIA v2.0.1 supports EC point counting over arbitrary 

fields. 

4. ALGORITHMS FOR AN 8-BIT 
MICROCONTROLLER 

When choosing an algorithm to implement on 8-bit processors, it is 
important that the parameter choices match the target platform. The 
Intel 8051 offers a multiply instruction which computes the product of 
two integers each less than 28 = 256. Thus, we chose a prime 28 - 17 = 
239 as our field characteristic so that multiplication of elements in the 
prime subfield can use the ALU's multiplier. In addition, the nature 
of the OEF leads to an efficient reduction method. Field elements are 
represented as polynomials of degree up to 16, with coefficients in the 
prime subfield GF(239). As mentioned in Section 3.3, the polynomial 
is reduced modulo an irreducible polynomial, P(x) = xm - w. In this 
implementation P(x) = x17 - 2. 

The key performance advantage of OEFs is due to fast modular reduc­
tion in the subfield. Given a prime, p = 2n - c, reduction is performed 
by dividing the number x into two n-bit words. The upper bits of x are 
"folded" into the lower ones, leading to a very efficient reduction. The 
basic reduction step which reduces a 2n-bit value x to a result with 1.5n 
bits is given by representing x = x12n + xo, where xo, Xt < 2n. Thus a 
reduction is performed by: 

x = X1 c + xo mod 2n - c, (1) 

which takes one multiplication by c, one addition, and no divisions or 
inversions. As will be seen in Section 4.1, the reduction principle for 
OEFs is expanded for the implementation described here. 

Furthermore, calculating a multiplicative inverse over the 8-bit subfield 
is easily implemented with table look-up. There is a relative cost in 
increased codesize, but the subfield inverse requires only two instructions. 
In contrast, a method such as the Extended Euclidian Algorithm would 
require a great deal more processing time. This operation is required for 
our optimized inversion algorithm, as described in Section 4.3. 

For elliptic curves, extension field multiplication is the most important 
basic operation. The elliptic curve group operation requires 2 multipli­
cations, 1 squaring, 1 inversion, and a number of additions that are 
relatively fast compared with the first three. In our case, squaring and 
inversion performance depends on the speed of multiplication. Therefore 



78 IFIP CARDIS 2000 

the speed of a single extension field multiplication defines the speed of 
the group operation in general. 

Addition is carried out in the extension field by m -1 component-wise 
additions modulo p. Subtraction is performed in a similar manner. 

4.1. MULTIPLICATION 
Extension field multiplication is implemented as polynomial multipli­

cation with a reduction modulo the irreducible binomial P(x) = x17 - 2. 
This modular reduction is implemented in an analogous manner to the 
subfield modular reduction outlined above. First, we observe that xm = 
w mod xm - w. This observation leads to the general expression for this 
reduction, given by 

C(x) = + + + ... 
+ ci]x + + ctiJ mod xm - w. (2} 

Thus, product C of a multiplication A x B can be computed as shown 
in Algorithm 4.1. 

Algorithm 4.1 Extension Field Multiplication 
Require: A(x) = 'La;xi,B(x) = 'Lb;xi E GF(23917}/P(x), where 

P(x) = xm- w; a;, b; E GF(239); 0::;; i < 17 
Ensure: C(x) = LCiXi = A(x)B(x), Cj E GF(239) 

First we calculate the intermediate values for d;, i = 17, 18, ... , 32. 
ci7 +-- a1b16 + a2b15 + ... + a14b3 + a15b2 + a15b1 
cis +-- a2b16 + a3b15 + ... + a15b3 + a15b2 

+-- a15b16 + a16b15 
+-- a15b16 

Now calculate Cj, i = 0, 1, ... , 16. 
Co +-- aobo +wei 7 mod 239 
Ct +-- aobt + a1bo + wci8 mod 239 

Cts +-- aobts + a1b14 + ... + a14b1 + atsbo + mod 239 
Ct6 +-- aobt6 + a1b15 + ... + a14b-.2 + a1sb1 + a16bo mod 239 

As can be seen, extension field multiplication requires m 2 inner prod­
ucts a;bj, and m- 1 multiplications by w when the schoolbook method 
for polynomial multiplication is used. These m2 + m - 1 subfield mul­
tiplications form the performance critical part of a field multiplication. 
In the earlier OEF work [1], [2], a subfield multiplication was performed 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 19 

Table 2 Inner product maximum value 

1 one inner product multiplication with a maximum value of (p-1}2 

2 we accumulate 17 products, 16 of which are multiplied by w = 2 

3 ACCmax = 33(p -1)2 = 1869252 = 1C85C4h < 221 

as single-precision integer multiplication resulting in a double-precision 
product with a subsequent reduction modulo p. For OEFs with p = 2n±c, 
c > 1, this approach requires 2 integer multiplications and several shifts 
and adds using Algorithm 14.47 in [19]. A key idea of this contribution 
is to deviate from this approach. We propose to perform only one re­
duction modulo p per coefficient Ci, i = 0, 1, ... , 16. This is achieved 
by allowing the residue class of the sum of integer products to be repre­
sented by an integer larger than p. The remaining task is to efficiently 
reduce a result which spreads over more than two words. Hence, we can 
reduce the number of reductions to m, while still requiring m2 + m - 1 
multiplications. 

During the inner product calculations, we perform all required mul­
tiplications for a resulting coefficient, accumulate a multi-word integer, 
and then perform a reduction. The derivation of the maximum value for 
the multi-word integer Ci before reduction is shown in Table 2. 

We now expand the basic OEF reduction shown in Equation (1) for 
multiple words. As the log2 (ACCmax) = 21 bits, the number can be 
represented in the radix 28 with three digits. We observe 2n = c (mod 
2n- c) and 22n = c2 (mod2n- c). Thus the expanded reduction for 
operands of this size is performed by representing x = x222n +x12n +xo, 
where xo, XI. x2 < 2n. The first reduction is performed as 

(3) 

noting that = 289 = 50 mod 239. The reduction is repeated, now 
representing the previous result as x' = xi 2n + where xi < 2n. 
The second reduction is performed as 

x" = xic+ mod 2n- c. (4) 

The maximum intermediate values through the reduction are shown 
in Table 3. Step 1 shows the maximum sum after inner product addition. 
While this value is the largest number that will be reduced, it is more 
important to find the maximum value that can result from the reduction. 
This case can be found by maximizing x1 and x0 at the cost of reducing 



80 IFIP CARDIS 2000 

Table 3 Intermediate reduction maxima 

1 Using Equation (3), given that 0 x 1C85C4h 

2 max(x') = 1734h, when x = lBFFFFh. 

3 Using Equation (4), given that 0::; x'::; 1734h 

4 max{x") = 275h, when x' = 16FFh. 

x 2 by one. Looking at Table 3 again, this value is shown in step 2, as 
is the resulting reduced value. The process is repeated again in steps 3 
and 4, giving us the maximum reduced value after two reductions. 

Note that through two reductions, we reduced a 21-bit input to 13 
bits, and finally to 10 bits. At this point in the reduction, we could 
perform the same reduction again, but it would only provide a slight 
improvement. Adding would result in a 9-bit number. Therefore 
it is much more efficient to handle each possible case. Most important 
is to eliminate the two high bits, and then to ensure the resulting 8-bit 
number is the least positive representative of its residue class. The entire 
multiplication and reduction is shown in Algorithm 4.2. 

To perform the three-word reduction requires three 8-bit multiplica­
tions and then several comparative steps. After the first two multiplica­
tions, the inner product sum has been reduced to a 13-bit number. If we 
were to reduce each inner product individually, every step starting at line 
13 in Algorithm 4.2 would be required. Ignoring the trailing logic, which 
would add quite a bit of time itself, this would require m = 17 multi­
plications as opposed to the three needed in Algorithm 4.2. By allowing 
the inner products to accumulate and performing a single reduction we 
have saved 14 multiplications, plus additional time in trailing logic, per 
coefficient calculation. Recall that we require 17 coefficient calculations 
per extension field multiplication. 

4.2. SQUARING 
Extension field squaring is similar to multiplication, except that the 

two inputs are equal. By modifying the standard multiplication routine, 
we are able to take advantage of identical inner product terms. For 
example, c2 = aob2 + a1b1 + a2bo + wc19, can be simplified to c2 = 
2aoa2 + a12 + WCI9· Further gain is accomplished by doubling only one 
coefficient, reducing it, and storing the new value. This approach saves us 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 81 

Algorithm 4.2 Extension Field Multiplication with Subfield Reduction 

Require: A(x) = l:a;xi,B(x) = 2:b;xi E GF(23917)/P(x), where 
P(x)=xm-w; a;,b;EGF(239); 

Ensure: C(x) = I::c;xi = A(x)B(x), c; E GF(239) 
1: Define z[w] to mean the w-th 8-bit word of z 
2: c; 0 
3: if i f=. 16 then 
4: for j m - 1 downto i + 1 do 
5: c; c; + ai+m-jbj 
6: end for 
7: c; 2c; - multiply by w = 2 
8: end if 
9: for j i downto 0 do 

10: c; +--- c; + a;-jbj 
11: end for 
12: c; c;[2] *50+ c;[1] * 17 + c;[O] -begin reduction, Equation (3) 
13: t c;[1] * 17 -begin Equation (4) 
14: if t 256 then 
15: t t[O] + 17 
16: end if 
17: c; c;[O] + t -end Equation (4) 
18: if c; 256 then 
19: c; c;[O] + 17 
20: if c; 256 then 
21: c; c;[O] + 17 
22: terminate 
23: end if 
24: end if 
25: Cj Cj - 239 
26: if c; 0 then 
27: Cj Cj + 239 
28: end if 



82 IFIP CARDIS 2000 

from recalculating the doubled coefficient when it is needed again. A side 
benefit of all the effort is that the maximum inner product value is slightly 
lower. The exact inner product maximum is 177F8h, but this makes little 
difference to the reduction algorithm. After two general OEF reductions, 
the maximum is reduced to 242h. As this is still a 10-bit number, the next 
reduction steps would be identical to their multiplication counterparts, 
and therefore the same reduction code is used. 

4.3. INVERSION 
Inversion in the OEF is performed via a modification of the Itoh-Tsujii 

algorithm [14] as shown in [3], which reduces the problem of extension 
field inversion to subfield inversion. The algorithm computes an inverse 
in GF(p17) as A-1 = (Ar)-1 Ar-1 where r = (p17 -1)/{p-1) = 11 ... lOp. 
Algorithm 4.3 shows the details of this method. A key point is that 
ArE GF(p) and is therefore an 8-bit value. Therefore the step shown in 
line 10 is only a partial extension field multiplication, as all coefficients 
of Ar other than b0 are zero. Inversion of Ar in the 8-bit subfield is 
performed via a table look-up. 

The most costly operation is the computation of Ar. Because the 
exponent is fixed, an addition chain can be derived to perform the ex­
ponentiation. Form= 17, the addition chain requires 4 multiplications 
and 5 exponentiations to a pi-th power. The element is then inverted in 
the subfield, and then multiplied back in. This operation results in the 
field inverse. 

The Frobenius map raises a field element to the p-th power. In prac­
tice, this automorphism is evaluated in an OEF by multiplying each 
coefficient of the element's polynomial representation by a ''Frobenius 
constant," determined by the field and its irreducible binomial. A list of 
the constants used is shown in Table 4. To raise a given field element to 
the pi-th power, each a;, j = 0, 1, ... , 16, coefficient are multiplied by 
the corresponding constant in the subfield GF(239). 

Thus we have efficient methods for both the exponentiation and sub­
field inversion required in Algorithm 4.3. Our results in Section 6 show 
the ratio of multiplication time to inversion time is 1:4.8. This ratio 
indicates that an affine representation of the curve points offers better 
performance than the corresponding projective-space approach, which 
eliminates the need for an inversion in every group operation at the ex­
pense of many more multiplications. 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 

Table4 Frobenius constants B(x) = A(x)"; 

Exponent 
Coefficient p p2 p4 

ao 1 1 1 
at 132 216 51 
a2 216 51 211 
a a 71 22 6 
a4 51 211 67 
as 40 166 71 

a6 22 6 36 
ar 36 101 163 
as 211 67 187 
ag 128 132 216 
a to 166 71 22 
an 163 40 166 
at2 6 36 101 
ata 75 128 132 
at4 101 163 40 
Ut5 187 75 128 
Ut6 67 187 75 

Algorithm 4.3 Inversion Algorithm in GF((28 -17)t7) 

Require: A E GF(pt7) 

Ensure: B =A-t mod P(x) 
t: Bo t- AP = A (to),. 
2: Bt t- BoA= A(n),. 
3: B2 t- (Bt)P2 = A(llOO),. 
4: Bat- B2Bt = A(uu),. 
5, B 4 t- (Ba)P4 = A(tntoooo),. 
6: Bs t- B4Ba = A(nnnn),. 
7, B 6 t- (Bs)Ps = A(tnnnwooooooo),. 
8: Br t- B6Bs = A(nnnnnnnn),. 
9, Bs t- (Br)P = A(nnnnnnnno),. 

to: b t- BsA = Ar-t A= Ar 
11: b t- b-t = (Ar)-t 
t2: B t- bBs = (Ar)-t Ar-1 =A -1 

83 

p8 
1 

211 
67 
36 

187 
22 

101 
40 
75 
51 
6 

71 
163 
216 
166 
132 
128 



84 IFIP CARDIS 2000 

4.4. GROUP OPERATION 
The operation in the Abelian group of points on an elliptic curve is 

called "point addition." This operation adds two curve points, and re­
sults in another point on the curve. Using an ECC for signatures involves 
the repeated application of the group law. The group law using affine 
coordinates is shown below [18]. 

If P = (x1,y1) E GF(pm), then -P = (x1, -yl). If Q = (x2,y2) E 
GF(pm), Q =/: -P, then P + Q = (x3, y3), where 

X3 A2 - Xl- X2, (5) 

Y3 >.(xl- X3)- Yl, (6) 

r= if p =/: Q, 
:Z:2-:Z:l' 

>. (7) 
3zha if P= Q. 2yl , 

The >. term is calculated depending on the relationship of P and Q. 
If they are equal, then a point doubling is performed, using the second 
equation. Note that >. is undefined if the points are additive inverses, 
or if either point is zero. These conditions must be examined before the 
group operation is performed. 

4.5. POINT MULTIPLICATION 
The operation required in an ECC is point multiplication, denoted by 

kP, where k is an integer and P is a point on the curve. For large k, 
computing kP is a costly endeavor. However, well-studied techniques 
used for ordinary integer exponentiation can be advantageously applied. 
The most basic of these algorithms is the binary-double-and-add algo­
rithm [15]. It has a complexity oflog2 (k)+H(k) group operations, where 
H is the Hamming weight of the multiplier k. On average, then, we 
can expect this algorithm to require 1.5log2 (k) group operations. Using 
more advanced methods, such as signed digit, k-ary or sliding window, 
the complexity may be reduced to approximately 1.2log2 (k) group op­
erations on average [19]. 

The situation is much better in certain applications, however. The 
most common public-key operation for a smart card is to provide a dig­
ital signature. The ECDSA algorithm [13] involves the multiplication 
of a public fixed curve point by the user generated private key as the 
core operation. Because the curve point is known ahead of time, pre­
computations may be performed to expedite the signing process. Using 
a method devised by de Rooij in [7], we are able to reduce the number 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 85 

of group operations necessary by a factor of four over the binary-double­
and-add algorithm. The de Rooij algorithm is a variant of that devised 
by Brickell, Gordon, McCurley, and Wilson [5], but requires far fewer 
precomputations. 

Algorithm 4.4 EC Fixed Point Multiplication using Precomputation and 
Vector Addition Chains 
Require: {b0 A, b1 A, ... , bt A}, A E E(GF(pm)), and s = sibi 
Ensure: C =sA, C E E(GF(pm)) 

1: Define M E [0, t] such that ZM ;::: Zi for all 0 ::; i ::; t 
2: Define N E [0, t], N =/:. M such that ZN ;::: Zi for all 0::; i ::; t, i =/:. M 
3: for i +- 0 to t do 
4: A;+-
5: Zi f- Si 
6: end for 
7: Determine M and N for {zo,z1, ... ,zt} 
8: while ZN ;::: 0 do 
9: q +- LzM/zNJ 

10: AN +- qAM + AN - general point multiplication 
11: ZM +- ZM mod ZN 
12: Determine M and N for {zo, z1, ... , Zt} 
13: end while 
14: c +- ZMAM 

A modified form of de Rooij is shown in Algoritm 4.4. Note that the 
step shown in line 10 requires general point multiplication of AM by q, 
where 0 ::; q < b. This is accomplished using the binary-double-and-add 
algorithm. In (7], the author remarks that during execution, q is rarely 
greater than 1. 

The choice of t and b are very important to the operation of this 
algorithm. They are defined such that bt+1 ;::: #E(GF(pm)). The algo­
rithm must be able to handle a multiplier, s, not exceeding the order of 
the elliptic curve. The number of point precomputations and temporary 
storage locations is determined by t+ 1, while b represents the maximum 
size of the exponent words. Thus we need to find a compromise between 
the two parameters. · 

Two obvious choices for an 8-bit architecture are b = 216 and b = 
28 , since dividing the exponent into radix b words is essentially free as 
they align with the memory structure. This results in a precomputation 
count of 9 and 18 points, respectively. The tradeoff here is the cost 
of memory access vs. arithmetic speeds. As we double the number of 
precomputed points, the algorithm operates only marginally faster, as 



86 IFIP CARDIS 2000 

shown in [7], but the arithmetic operations are easier to perform on the 
8-bit microcontroller. The problem is that the time to access such large 
quantities of data, 34 bytes per precomputed point and storage location 
in external RAM (XRAM), adds up. Note that even though the XRAM 
may be physically internal to the microcontroller, it is outside the natural 
address space, and thus a time delay is incurred for access. 

For b = 216, we must perform 16-bit multiplication and modular re­
duction, but only need to store 9 precomputed points and 9 temporary 
points. Forb= 28 , however, we must now store 18 precomputed points 
and 18 temporary points, but now only have to perform 8-bit multiplica­
tion and modular reduction. Implementation results show that the speed 
gain from doubling the precomputations and the faster 8-bit arithmetic 
slightly outweighs the cost of the increase in data access, as shown in 
Section 6, assuming a microcontroller with enough XRAM is available. 

5. IMPLEMENTATION DETAILS 
Implementing ECCs on the 8051 is a challenging task. The processor 

has only 256 bytes of internal RAM available, and only the lower 128 
bytes are directly addressable. The upper 128 bytes must be referenced 
through the use of the two pointer registers: RO and Rl. Accessing this 
upper half takes more time per operation and incurs more overhead in 
manipulating the pointers. To make matters worse, the lower half of the 
internal RAM must be shared with the system registers and the stack, 
thus leaving fewer memory locations free. XRAM may be utilized, but 
there is essentially only a single pointer for these operations, which are 
at typically at least three times slower than their internal counterparts. 

This configuration makes the 8051 a tight fit for an ECC. Each curve 
point in our group occupies 34 bytes of RAM, 17 bytes each for the X and 
Y coordinates. To make the system as fast as possible, the most intensive 
field operations, such as multiplication, squaring, and inversion, operate 
on fixed memory addresses in the faster, lower half of RAM. During a 
group operation, the upper 128 bytes are divided into three sections for 
the two input and one output curve points, while the available lower half 
of RAM is used as a working area for the field arithmetic algorithms. A 
total of four 17-byte coordinate locations are used, starting from address 
3Ch to 7Fh, the top of lower RAM. This is illustrated in Table 5. 

Finally, six bytes, located from 36h to 3Bh, are used to keep track of 
the curve points, storing the locations of each curve point in the upper 
RAM. Using these pointers, we can optimize algorithms that must re­
peatedly call the group operation, often using the output of the previous 
step as an input to the next step. Instead of copying a resulting curve 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 87 

Address 
00--07h 
08-14h 
15-35h 
36-3Bh 
3C-7Fh 

80-E5h 
E6-FFh 

Table 5 Internal RAM memory allocation 

Function 
Registers 

de Rooij Algorithm Variables 
Call Stack (variable size) 

Pointers to Curve Points in Upper RAM 
Temporary Field Element Storage 

Temporary Curve Point Storage 
Unused 

Table 6 Program size and architecture requirements 

Type 
Code 
Internal RAM 
External RAM 

Fixed Storage 

Size (bytes) 
13k 
183 
306 
34 
306 

Function 
Program Storage 

Finite Field Arithmetic 
Temporary Points 

Integer Multiplicand 
Procomputed Points 

point from the output location to an input location, which involves using 
pointers to move 34 bytes around in upper RAM, we can simply change 
the pointer values and effectively reverse the inputs and outputs of the 
group operation. 

The arithmetic components are all implemented in handwritten, loop­
unrolled assembly. This results in large, but fast and efficient program 
code, as shown in Table 7. Note that the execution times are nearly 
identical to the code size, an indication of their linear nature. Each 
arithmetic component is written with a clearly defined interface, making 
them completely modular. Thus, a single copy of each component exists 
in the final program, as each routine is called repeatedly. 

Extension field inversion is constructed using a number of calls to the 
other arithmetic routines. The group operation is similarly constructed, 
albeit with some extra code for point equality and inverse testing. The 
binary-double-and-add and de Rooij algorithms were implemented in C, 
making calls to the group operation assembly code when needed. Looping 
structures were used in both programs as the overhead incurred is not as 
significant as it would be inside the group operation and field arithmetic 
routines. The final size and architecture requirements for the programs 
are shown in Table 6. 



88 IFIP CARDIS 2000 

Table 7 Finite field arithmetic performance on a 12 MHz 8051 

Time a Code Size 
Description Operation (!Jsec) {bytes) 
Multiplication C(x) = A(x)B(x) 5084 5110 
Squaring C(x) = A2 (x) 3138 3259 
Addition C(x) = A(x) + B(x) 266 360 
Subtraction C(x) = A(x) - B(x) 230 256 
Inversion C(x) = A-1(x) 24489 b 

Scalar Mult. C(x) = sA(x) 642 666 
Scalar Mult. by 2 C(x) = 2A(x) 180 257 
Scalar Mult. by 3 C(x) = 3A(x) 394 412 
Frobenius Map C(x) = AP;(x) 625 886 
Partial Multiplication co of A(x)B(x) 303 305 
Subfield Inverse c=a-1 4 236 
aTime calculated averaging over at least 5,000 executions with random inputs. 
bJnversion is a collection of calls to the other routines and has negligible size itself. 

Table 8 Elliptic curve performance on a 12 MHz 8051 

Operation 
Point Addition 
Point Double 
Point Multiplication 
Point Multiplication 
Point Multiplication 

6. RESULTS 

Method 

Binary Method 
de Rooij w /9 precomp. 
de Rooij w /18 precomp. 

Time (msec) 
39.558 
43.025 

8370 
1950 
1830 

Our target microcontroller is the Siemens SLE44C24S, an 8051 deriva­
tive with 26 kilobytes of ROM, 2 kilobytes of EEPROM, and 512 bytes 
of XRAM. This XRAM is in addition to the internal 256 bytes of RAM, 
and its use incurs a much greater delay. However, this extra memory 
is crucial to the operation of the de Rooij algorithm which requires the 
manipulation of several precomputed curve points. 

The Keil PK51 tools were used to assemble, debug and time the algo­
rithms, since we did not have access to a simulator for the Siemens smart 
card microcontrollers. Thus, to perform timing analysis a generic Intel 
8051 was used, running at 12 MHz. Given the optimized architecture 
of the Siemens controller, an SLE44C24S running at 5 MHz is roughly 
speed equivalent to a 12 MHz Intel 8051. 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 89 

Using each of the arithmetic routines listed in Table 7, the elliptic 
curve group operation takes 39.558 msec per addition and 43.025 msec 
per doubling on average. 

Using random exponents, we achieve a speed of 8.37 seconds for point 
multiplication using binary-double-and-add. This is exactly what would 
be predicted given the speed of point addition and doubling. If we fix 
the curve point and use the de Rooij algorithm discussed in Section 4.5, 
we achieve speeds of 1.95 seconds and 1.83 seconds, for 9 and 18 pre­
computations respectively. This is a speed up factor of well over 4:1 
when compared to general point multiplication. Unfortunately, our tar­
get microcontroller, the SLE44C24S, only has 512 bytes of XRAM where 
we manipulate our precomputed points. Since we require 34 bytes per 
precomputed point, 18 temporary points will not fit in the XRAM, lim­
iting us to 9 temporary points on this microcontroller. These results are 
summarized in Table 8. 

7. CONCLUSIONS AND OUTLOOK 
We demonstrated that a scalar multiplication of a fixed point of an EC 

can be performed in under 2 seconds on an 8051 microcontroller. This 
is the core operation for signature generation in the ECDSA scheme. 
Although the performance and security threshold may not allow the use 
of our implementation in all smart card applications, we believe that 
there are scenarios where these parameters offer an attractive alternative 
to more costly smart cards with coprocessors, especially if public-key 
capabilities are added to existing systems. 

We also believe that our implementation can be further improved. In 
practice, smart card with an 8051-derived microcontroller that can 
be clocked faster than the 5 MHz assumed in Section 6 can obviously 
also easily yield point multiplication times which are below one sec­
ond. In addition, 16-bit smart card microcontrollers such as the Siemens 
SLE66C80S would allow for a larger subfield and smaller extension de­
gree, thus reaping immense benefits in field arithmetic algorithms. Fur­
ther, the use of an elliptic curve defined over the prime subfield, as sug­
gested in [16], could also provide a speedup. Each of these potential im­
provements provides further possibilities to apply the fast field arithmetic 
provided by an OEF to construct ECCs on smart card microcontrollers 
without additional coprocessors. 



90 IFIP CARDIS 2000 

8. ACKNOWLEDGEMENTS 
The authors would like to thank Jorge Guajardo and Pedro Soria­

Rodriguez for their contribution of the even composite field multiplica­
tion implementation. 

References 

[1] Daniel V. Bailey. Optimal Extension Fields. Major Qualifying 
Project (Senior Thesis), 1998. Computer Science Department, 
Worcester Polytechnic Institute, Worcester, MA, USA. 

[2] Daniel V. Bailey and Christof Paar. Optimal Extension Fields for 
Fast Arithmetic in Public-Key Algorithms. In Advances in Cryp­
tology - CRYPTO '98. Springer-Verlag Lecture Notes in Computer 
Science, 1998. 

[3] Daniel V. Bailey and Christof Paar. Efficient Arithmetic in Finite 
Field Extensions with Application in Elliptic Curve Cryptography. 
Journal of Cryptology, to appear. 

[4] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptogra­
phy. Cambridge University Press, 1999. 

(5] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast 
exponentiation with precomputation. In Advances in Cryptography 
- EUROCRYPT '92, pages 20Q-207. Springer-Verlag, 1993. 

[6] Certicom Corp. The Elliptic Curve Cryptosystem for Smart Cards. 
online white paper, http:/ jwww.certicom.cajecc/wecc4.htm, 1998. 

[7] Peter de Rooij. Efficient exponentiation using precomputation and 
vector addition chains. In Advances in Cryptography - EURO­
CRYPT '98, pages 389-399. Springer-Verlag, 1998. 

[8] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and 
J. Vandewalle. A fast software implementation for arithmetic oper­
ations in GF(2n). In Asiacrypt '96. Springer-Verlag Lecture Notes 
in Computer Science, 1996. 

[9] E. De Win, S. Mister, B. Preneel, and M. Wiener. On the Per­
formance of Signature Schemes Based on Elliptic Curves. In Al­
gorithmic Number Theory: Third International Symposium, pages 
252-266, Berlin, 1998. Springer-Verlag Lecture Notes in Computer 
Science. 

[10] P. Gaudry, F. Hess, and N. P. Smart. Constructive and Destructive 
Facets of Weil Descent on Elliptic Curves. technical report HPL 
2000-10, http:/ /www.hpl.hp.com/techreports/2000/HPL-2000-
IO.html, 2000. 



Elliptic Curve Cryptography on Smart Cards without Coprocessors 91 

[11] Jorge Guajardo and Christof Paar. Efficient Algorithms for Elliptic 
Curve Cryptosystems. In Advances in Cryptology - Crypto '97, 
pages 342-356. Springer-Verlag Lecture Notes in Computer Science, 
August 1997. 

[12] R. Harley, D. Doligez, D. de Rauglaudre, and X. Leroy. 
http:/ jcristal.inria.fr/%7Eharley jecdl7 j. 

[13] IEEE. Standard Specifications for Public Key Cryptography. Draft, 
IEEE P1363 Standard, 1999. working document. 

[14] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative 
inverses in GF(2m) using normal bases. Information and Computa­
tion, 78:171-177, 1988. 

[15] D. E. Knuth. The Art of Computer Programming. Volume 
2: Seminumerical Algorithms. Addison-Wesley, Reading, Mas­
sachusetts, 2nd edition, 1981. 

[16] Tetsutaro Kobayashi, Hikaru Morita, Kunio Kobayashi, and Fumi­
taka Hoshino. Fast Elliptic Curve Algorithm Combining Frobenius 
Map and Table Reference to Adapt to Higher Characteristic. In 
Advances in Cryptography - EUROCRYPT '99. Springer-Verlag 
Lecture Notes in Computer Science, 1999. 

[17] Arjen Lenstra and Eric Verheul. Selecting cryptographic key sizes. 
In Public Key Cryptography - PKC 2000. Springer-Verlag Lecture 
Notes in Computer Science, 2000. 

[18] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer 
Academic Publishers, 1993. 

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook 
of Applied Cryptography. CRC Press, 1997. 

[20] P. Mihailescu. Optimal Galois field bases which are not normal. 
Fast Software Encryption rump session, 1997. 

[21] D. Naccache and D. M'RaYhi. Cryptographic smart cards. IEEE 
Micro, 16(3):14-24, 1996. 

[22] D. Naccache, D. M'Rai"hi, W. Wolfowicz, and A. di Porto. Are 
crypto-accelerators really inevitable? In Advances in Cryptography 
- EUROCRYPT '95, pages 404-409. Springer-Verlag Lecture Notes 
in Computer Science, 1995. 

[23] C. P. Schnorr. Efficient signature generation by smart cards. Journal 
of Cryptology, 4(3):161-174, 1991. 

[24] R. Schroeppel, H. Orman, S. O'Malley, and 0. Spatscheck. Fast key 
exchange with elliptic curve systems. Advances in Cryptology -
CRYPTO '95, pages 43-56, 1995. 



92 /FIP CARDIS 2000 

[25] Sencer Yeralan and Ashutosh Ahluwalia. Programming and Interfac­
ing the 8051 Microcontroller. Addison-Wesley Publishing Company, 
1995. 


	ELLIPTIC CURVE CRYPTOGRAPHY ON SMART
CARDS WITHOUT COPROCESSORS
	1. INTRODUCTION AND MOTIVATION
	2. PREVIOUS WORK
	3. FINITE FIELD CHOICE
	3.1. BINARY FIELDS
	3.2. EVEN COMPOSITE FIELDS
	3.3. OPTIMAL EXTENSION FIELDS
	3.4. ROUGH PERFORMANCE COMPARISON
	3.5. REMARK ON THE FINITE FIELD ORDERCHOSEN

	4. ALGORITHMS FOR AN 8-BITMICROCONTROLLER
	4.1. MULTIPLICATION
	4.2. SQUARING
	4.3. INVERSION
	4.4. GROUP OPERATION
	4.5. POINT MULTIPLICATION

	5. IMPLEMENTATION DETAILS
	6. RESULTS
	7. CONCLUSIONS AND OUTLOOK
	8. ACKNOWLEDGEMENTS
	References




