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Abstract If someone knocks on your door, the chances are that you can tell by the 
sound who it is. This simple idea is the basis of our pressure sequence 
method, which records the signal arising from a user tapping on a smart 
card. We have built a prototype, piezoelectric, screen printed pressure 
sensor on a smart card. We have also conducted an experiment with 
34 volunteers to assess the effectiveness of the pressure sequence as an 
identification method. While the Equal-Error Rate (EER) of our current 
system is too high, we have identified a number of improvements that 
will lower the EER and make the identification more accurate. The 
sensor and associated circuitry are inexpensive, making it feasible to 
embed our technique in medium to high-end smart cards. 
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1. INTRODUCTION 
The security of an information system depends to a large extent on its 

ability to authenticate legitimate users. Other factors are also important, 
such as the ability of the information system to withstand attacks of 
various kinds. However, we will only be concerned with authentication. 
The most powerful authentication schemes have three components [9). 

1 The token: something the user owns. 

2 Knowledge: something the user knows. 

3 Biometrics, something: 

• The user is (i.e. physiological properties such as fingerprint, reti­
nal pattern) 

• The user can do (i.e. behavioural patterns arising when signing, 
speaking, walking). 

http://dx.doi.org/10.1007/978-0-387-35528-3_22
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Smart cards are in widespread use as the 'token', and pin codes are ubiq­
uitous as the 'knowledge'. Biometrics are not (yet) in widespread use, for 
reasons of cost, but also for reasons of social acceptability. However, this 
situation is beginning to change. Jain et al survey a number of large 
biometric security projects that are currently in progress [8]. They also 
lay down the ground rules for biometrics that are useful to existing and 
emerging e-applications. A biometric should be socially acceptable, low 
cost, accurate and quick. Our work offers a novel, inexpensive and so­
cially acceptable biometric that is fun to work with. The accuracy of our 
method is not yet adequate, but we are working on improvement. 

Carelessness and other operational mishaps [2] can defeat many secu­
rity schemes. For example, PIN numbers and Passwords can be forgotten 
or discovered by malevolent third parties. Making matters worse, it has 
been estimated that around one quarter of all card owners actually write 
their PIN digits on the card! [15]. For low value debit transactions, such 
as for using a public phone or for a transportation card, presentation 
of the card itself is deemed sufficient for the transaction to occur. Since 
the value of the card is typically small, loss results in little more than 
irritation for the owner, and there is little incentive for theft. However 
in a multi-application scheme, many such applications may be active, 
thereby increasing the card's value, hence its attractiveness to a thief. 
As smartcard processors become more powerful, their capacity for run­
ning more applications and storing significant amounts of data increases 
[17]. Following this trend, the card's potential value to a user increases, 
and hence there is an increased requirement for protection of access to 
the smart card contents. 

This paper discusses the requirements and constraints of a novel sensor 
that measures a behavioural trait, and uses the measurements to verify 
the identity of the smart card user. The next section reviews some of the 
current methods for achieving similar goals. 

2. RELATED WORK 
Currently there exist a number of methods of restricting the use of 

a smartcard to its legitimate owner. These range from Passwords, PIN 
numbers and signatures, to biometric methods of verification. They all 
rely upon the use of external devices for verification. For example, PIN 
numbers and passwords must be entered through an external keyboard, 
signatures must be written down, then verified by a (typically non­
expert) third party. Biometric methods of verification are executed by 
the external capture of a characteristic, then the comparison of this live 
characteristic to a template stored on card. The comparison process of-



'Pressure Sequence' -A Novel Method of Protecting Smart Cards 243 

ten occurs externally to the card, and is subject to tolerances set within 
the comparison algorithm. 

This combination of reference knowledge held on smartcard and the 
external capture and/or comparison of some quantity, is not designed to 
protect a smartcard's contents. Rather it is designed to protect access 
to an external service or facility. The smartcard plays both the roles of 
key and storage facility for a reference quantity. Such a scheme is not 
entirely applicable to the protection of a smartcard's contents. Firstly, 
multi-application cards would require either uniformity of external hard­
ware (at each point of use) or each active application running on card 
would require a verification program tailored to the system at the points 
of use for that application. Secondly, if biometric verification occurs ex­
ternally to the card, the external device determines the tolerance of the 
comparison algorithm. This, in effect, exposes a user's data to someone 
else's idea of security. 

To circumvent these problems, we aim to incorporate all components 
of a verification system onto a smart card. In this way, the card's owner 
assumes responsibility for the protection of his data, and may select 
the tightness of security with a level appropriate to the value of the 
smartcard's contents and to his paranoia. 

An alternative would be to embed the functionality of the smart card 
into a mobile device, such as a PDA or a mobile phone. Indeed mobile 
phones with a biometric (fingerprint) sensor have been announced. How­
ever, following this alternative route would require ATMs, POS terminals 
etc. to be upgraded so that they can communicate with the new, secure 
mobile devices, for example via a short range radio link, or infrared. The 
changes to the current world-wide infrastructure would require consider­
able investment, whereas our proposal requires no such changes. 

To augment the capabilities of a smart card with a biometric sensor, 
one could integrate a commercially available fingerprint sensor on the 
card. Probably all commercial fingerprint sensors are silicon based, such 
as the STMicroelectronics TouchChip, the Veridicom FPS1000, or the 
Siemens Fingertip Sensor. These devices consist of a rectangular array 
of between 10,000 and 100,000 capacitance sensors. The chips are large, 
ranging from 200 to 1000 mm2 . The thinnest sensor (the Siemens) is 
1.4 mm thick. To use these devices, the fingertip has to be placed on 
(protected) surface of the sensor. The Thomson CSF FingerChip is of 
a different design. It is a thermal sensor, which is used by sweeping the 
finger over a sensor 'strip'. This makes it possible to have a smaller array 
with only 820 sensors. The software then reconstructs the fingerprint. 
The silicon-based sensors are all too thick, too large (risk of breakage) 
and too expensive to be integrated with smart cards. Because of the high 
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resolution of (typically 500 DPI), silicon based sensors, with the associ­
ated software, offer False Acceptance Rate (FAR) and False Rejection 
Rate (FRR) typically less than a permille. Most commercial systems use 
a PC for the actual processing, making and verifications times in the 
order of a second possible. 

Using a computer keyboard to verify identity on the basis of be­
havioural traits is attractive as keyboards are often already present. A 
system exploiting this would measure the 'rhythm' with which people 
type on keyboards. Joyce and Gupta (9] give an overview of early work 
on keystroke dynamics, showing that a keyboard based rhythm sensor 
can be effective, offering an EER in the order of 5-10%. Proposals have 
been made to apply this technique also to users typing on the keypads 
of ATMs, but we do not know whether any experiments have been done. 
We would expect that the typical sequences that users type on ATMs 
are to short to be useful (13]. 

Behavioural traits have some physiological basis, but also reflect a per­
son's psychological state (12], as such behavioural biometrics will be in­
fluenced by the mood, emotion and environment, in which a person finds 
themselves. Examples of behavioural biometrics include; voice recogni­
tion (11], in which a spoken pass-phrase is sampled and compared to a 
reference template. Use of the pass-phrase, requires that both the voice 
characteristics and the spoken word match with the template. Dynamic 
signature analysis (6], is a method of identifying a person based upon 
the way in which a signature is created. It is insufficient for a forger to 
generate a signature which merely resembles a person's genuine signa­
ture, the dynamics of writing, such as pen pressure, duration and order 
of strokes are all accounted for in this method. 

One characteristic of voice and dynamic signature biometrics, is that 
the person under investigation must want to be recognised. A behavioural 
biometric where this is not quite the case is gait recognition (7], based 
upon the way in which people walk, disguising gait is likely to draw 
considerable suspicion. 

As a conclusion of this brief survey, we believe that we have justified 
why developing techniques to make the smart card itself more capable is 
worth while investigating. This will be the subject matter of the remain­
der of the paper. 

3. SYSTEM CONSTRAINTS FOR AN ON-CARD 
VERIFICATION SYSTEM 

A primary concern when discussing smartcards is cost. Components 
required for a proposed on-card verification system must be oflow cost. In 
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addition, they must be both robust and reliable. For use on a smartcard, 
components should be sufficiently flexible to withstand the strains of 
normal smartcard use. 

One technology which is compatible with the above is that of Polymer 
Thick-Film (PTF) (4]. The PTF technology is one in which n1aterials are 
selectively deposited onto a substrate, typically, this is performed using 
a screen printing process. Common PTF materials include conductors, 
resistors, dielectrics and piezo-electrics, which together can produce de­
vices with good sensing properties, robustness and be, importantly, of 
low cost and high mechanical flexibility [14, 16]. 

Since the verification algorithm must run on the card's processor, it 
should be as simple and efficient as possible. The next section describes 
a potential method of identity verification, which makes use of a sim­
ple PTF sensor and offers a reasonable level of discrimination, at low 
computational cost. 

4. A DESCRIPTION OF THE 'PRESSURE 
SEQUENCE' METHOD 

If someone knocks on your door, the chances are that you can tell by 
the sound who it is. In the early days of telegraphy, operators would 
identify each other by recognising the way in which they tapped out 
messages [12]. These simple ideas form the basis of our pressure sequence 
method. There are two different aspects to knocking on a door (or on 
a smart card for that matter). The first aspect is that of the actual 
rhythm. As anyone can choose a particular rhythm, this will not be a 
fraud resistant aspect to identify a person. The second aspect is that 
of the actual pressure exerted on the door/smart card during each of 
the different taps. We would argue that this aspect depends mostly on 
bio-mechanical properties, because these properties are determined by a 
complex biological system: the human hand has 19 bones, 19 joints, and 
20 muscles with 22 degrees offreedom [10]. This offers considerable scope 
for a biometric that tries to distinguish between humans on the basis of 
finger, hand and wrist motion. 

Our ultimate aim is therefore to differentiate people based on the ac­
tual pressure pulse from the 'knock' itself, not on the rhythm. If we 
can do this, identification will be independent of sequence, although the 
sequence may be incorporated to add a further layer of discrimination. 
This is analogous to voice recognition, whereby, recognition requires both 
the voice characteristics expressed through a pass-phrase, and the pass 
phrase itself. Another analogy is identifying people by the way they type 
on computer keyboards. Our work differs from keyboard behavioural 
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measurements in two essential aspects: firstly we measure not just on/off 
switches but complete pressure curves. This gives more detailed infor­
mation. Secondly we do not rely on external infrastructure, such as key­
boards. Our measurement apparatus is stand-alone. 

Having discussed the foundation of the pressure sequence method, we 
now describe the experimental prototype sensor in the next section. 

5. PROTOTYPESENSOR 
Our prototype sensor is a simple three-layered device, comprising of 

top and bottom electrodes sandwiching an active piezo-electric layer. 
Applied pressure causes proportional charge generation within the piezo 
layer. Charge is measured using a simple charge amplifier and ADC for 
now connected to a PC. The sensor is screen printed directly onto the 
smart card. The charge amplifier is capable of measuring small charges 
corresponding to gentle impulses on the smart card with the embedded 
sensor. The signal capture electronics could be packaged into an ASIC 
(and onto the smartcard), generating a small reduced signal template, 
for efficient comparison on the card's processor. 

Figure 1 Smartcard with Embedded Pressure Sensor 

We have experimented with one type of smart card (PVC). The cards 
we used were finished, complete with offset printing. A typical PVC card 
is thermally stable up to 80 °C [5]. However, our screen printing process 
heats it up to 130 °C. Whilst it is technically possible to work with PVC 
that remains stable at higher temperatures, the cost effectiveness of such 
an approach is questionable. An alternative smart card base material, 
Polycarbonate remains stable at temperatures up to 150 °C, but it is 
also considerably more expensive than PVC. Since the price of the actual 
plastic is a small fraction of the total costs of a smart card, it would 
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be possible to use materials that have high temperature stability. An 
alternative is to screen print the sensor on Mylar, and then to bond 
the sensor onto the card, for example during a lamination process. We 
will study the cost implications, and also investigate the implications 
for the offset printing and further processing steps, caused by possible 
unevenness in the card surface. 

6. EXPERIMENTAL METHOD 
To validate our biometric, we invited students and staff from our de­

partment to spend five minutes of their time doing an experiment. As one 
would expect, only a small number (34) of students and staff volunteered. 
The population is thus self-selected, rather than chosen at random. How­
ever, we believe that there is a reasonable variability in the population to 
make our experiments valid. Our number of volunteers is also comparable 
to that reported in other, similar studies [9]. Based on the outcomes of 
our initial experiment we plan to mount a larger scale experiment with a 
population that is representative for the population at large, and which 
is randomly selected. 

Each volunteer was asked to choose a short tapping sequence (typically 
lasting between 2 and 4 seconds), and to tap that rhythm 30 times, in 
three groups of 10 sequences. In the first sequence the card was held in 
one hand whilst tapping with the other. In the second sequence, the card 
was held in place on a table with one hand, and in the third sequence, 
a mouse mat was placed between the card and the table. These three 
scenarios were thought to be representative of the way in which our 
system would be used in the real world, and remove some experimental 
bias. The volunteers were not given immediate feedback on how they 
were doing. Instead, they were asked to concentrate purely on tapping 
the rhythm. Our experimental set-up is able to give immediate, visual 
feedback, showing the waveform as it is tapped. However, we discovered 
in tryouts that this incited volunteers to vary their rhythms and the 
tapping motions to manipulate the cues. We felt that this created 
a distraction, and consequently disabled the immediate feedback. 

Table A gives an indication of the property of the various rhythms 
chosen by our volunteers. 
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Volunteer M/F A•e #Tape Sequence Shortest Longe•t 
Group Dura.tion Interval Interval 

(mS) (mS) (mS) 
M 41+ 2 438 388 388 

Marcu•030200 M 26-•loO 3 1004 263 566 
Paul M 18-25 3 1357 360 890 

Mauricio M 26-40 3 980 417 424 
Yavuz M 26-40 3 1289 383 621 

Lesley040200 F 41+ 4 1324 277 342 
Bob030200 M 41+ 4 1706 318 665 
Dan030200 M 18-25 4 1842 343 760 
Jeff030200 M 26-40 4 1273 269 475 

James030200 M 26-40 4 1298 237 492 
Danny030200 M 26-40 5 1911 227 424 
Ya.lin030200 M 18-26 • 2001 412 435 
Yean030200 F 18-25 6 2342 311 654 
Mark030200 M 41+ 6 339.5 253 993 

Ma.rijke F 41+ 6 2475 224 604 
Theo040200 M 18-25 7 2602 223 705 
Peter030200 M 26-40 7 3033 184 620 

Uli030200 M 26-40 7 3551 252 972 
Dave030200 M 41+ 7 2513 216 537 

Manabu M 26-40 7 4274 331 1340 
Dan M 26-40 7 3677 195 1062 

F 26-40 8 3221 464 484 
Zaher020200 M 26-40 8 2746 271 488 

Andy R M 26-40 8 2601 229 816 
Thoma• M 26-40 8 4388 393 1692 
Edward M 26-40 9 7108 436 1642 
Neil G M 18-25 9 2786 189 672 

Nic:ola040200 M 26-40 10 5219 360 675 
Andy B030200 M 41+ 10 3655 306 787 

Hugh M 41+ 11 3655 340 1248 
Chee M 26·40 13 6816 208 756 

Pieter M 41+ 14 4797 552 1088 
Julie F 18-25 14 6882 347 644 
Enric M 36-40 16 5127 210 494 

Table A - Sequence Properties. 

The table shows that there is a considerable variety in the number of 
taps people choose, not obviously dependent of gender or age. 

7. RESULTS 
Our primary concern during this preliminary investigation was to iden­

tify the key characteristics of a pressure sequence. In doing so our aim 
was a reduction of the raw data sequence to a small manageable key, 
which we hoped could be used as a unique identifier. 

With the key characteristics identified, we would look at the consis­
tency with which people entered their pressure sequence, and make a 
first attempt at characterising the performance of our system. 

7.1. KEYFEATURESOFAPRESSURESEQUENCE 
As a first discriminant in a sequence of pressure pulses we use the 

number of pulses because it separates participants in the scheme into 
different sub-groups, making the processing more manageable. However, 
a rhythm is easily overheard, and copied by an imposter, and we do 
not rely on this number as a distinguishing feature - see below. The 
distribution and consistency with which people entered their sequence is 
shown in Table B. 
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No. Name Modal Pulse Samples Total 
No.(MPN) With MPN Sequences With MPN 

1 ThomasF090200 2 26 30 87 

2 Pea.ul 3 30 30 100 

3 Mauricio 3 30 30 100 

4 Yavuz 3 30 30 100 

5 Marcus030200 3 29 31 94 

6 Bob030200 4 30 30 100 

7 Da.n030200 4 29 33 88 

8 Jeff030200 4 30 30 100 

9 J a.mes030200 4 29 31 94 

10 Lesley040200 4 26 35 74 

11 Danny030200 5 28 31 90 

12 Ya.lin030200 5 27 30 90 

13 Yean030200 6 30 30 100 

14 Marijke 6 27 30 90 

15 Mark030200 6 27 31 87 

16 Peter030200 7 30 30 100 

17 Dave030200 7 26 30 87 

18 Msna.bu 7 30 30 100 

19 Dan 7 28 30 93 

20 Theo040200 7 27 30 90 

21 Uli030200 7 28 30 93 

22 Za.her020200 8 30 30 100 

23 AndyR 8 20 30 67 

24 Thomas 8 27 32 84 

25 Alexa040200 8 30 30 100 

26 Edward 9 22 31 71 

27 NeiiG 9 23 30 77 

28 Andy030200 10 28 31 90 

29 Nicola040200 10 27 31 87 

30 Hugh 11 29 30 97 

31 Chee 12 24 30 80 

32 Julie0200 14 26 30 87 

33 Pieter 14 26 30 87 
34 En ric 16 5 30 17 

Table B - Distribution and Consistency of pulses. 

Table B shows that approximately 85% of people entered their modal 

number of pulses, more than 80% of the time. One person in our trial per­

formed particularly badly, entering his most common number of pulses 
only 17% of the time. We expect that consistency in real word use would 
be lower than suggested in these controlled measurements, but hopefully 
not as low as demonstrated by our worst volunteer. 

The main features of a pressure sequence are Pulse Height, Pulse 
Width and Interval Duration. Each pressure sequence of (n) pulses can 

then be reduced to the form: 

Pulse(l)Height, Pulse(l)Width, Interval(!), 
Pulse(2)Height, Pulse(2)Width, Interval(2), 

Pulse(n)Height, Pulse(n)Width. 

All recorded sequences were reduced to this form, and an average se­
quence template generated for each person. Averages from the beginning 
(ie. First pulse and interval) of each person's template are shown in Table 
C. 
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No. Name Hei1ht Name Name Interval 
(V) (mS) 

1 En ric 0.36 Pieter • En ric 109 
2 Thoma.a 0.37 Jamea030200 • Neil G 118 
3 Edward 0.40 Mark030200 9 Jamea030200 119 
4 Juli.e080200 0.49 Thomaa F090200 10 Chee 122 • .Jeff030200 0.5 Nieola040200 11 Andy R 1>3 
6 Theo040200 0.6 Andy 8030200 13 Ma.rk030200 142 
7 Andy R 0.6 Paul 16 Lealey040200 149 
8 Thomaa F090200 O.li4 Hugh 20 Andy 8030200 164 
9 Paul 0.56 Mauricio 21 Yean030200 165 

10 Nicola040200 0.58 Juli.e080200 22 Julie080200 180 
11 Hugh 0.58 Theo040200 23 Danny030200 182 
12 Lealey040200 0.59 Neil G 23 Dave030200 189 
13 Yalin030200 0.65 Mana.bu 23 Yavuz 192 
14 Ma.rk030200 0.67 Dan 24 Thomas F090200 194 
15 Pieter 0.69 Thomas 24 Theo040200 202 
16 M•uricio 0.70 Bob030200 25 Yalin030200 206 
17 Uli030200 0.74 Edward 26 Mauricio 212 
18 Jamea030200 0.74 Yean0302DO 27 Edward 224 
19 Alexa040200 0.76 Zaher020200 29 Jeff030200 238 
20 Dan030200 0.76 Alexa040200 29 Marijke 238 
21 Yean030200 0.77 Yalin030200 33 Alexa040200 240 
22 Chee 0.77 Jeff030200 33 Zaber020200 244 
23 Manabu 0.78 Marcua030200 33 Uli030200 248 
24 Marcus030200 0.82 Lealey040200 35 Marcua030200 283 
25 Dave030200 0.87 Marijke 36 Pieter 283 
26 Andy B030200 0.87 Dan030200 40 D•n 297 
27 Peter030200 0.92 Andy R 42 Thom&a 306 
28 Danny030200 0.93 Uli030200 42 Peter030200 310 
29 Neil G 0.94 Peter030200 43 Manabu 314 
30 D&n 0.99 Yavuz 45 Bob030200 333 
31 Bob030200 1.02 Danny030200 48 Nicola040200 338 
32 Marijke 1.09 Chee 50 Hugh 343 
33 Zaher020200 1.14 En ric 63 Dan030200 380 
34 Yavus 1.76 Dave030200 85 Paul 445 

Table C - Section of Sequence Averages. 

Table C (Columns 2 and 3) show the variation in Pulse heights for 
each person. Height values are given in Volts. The lowest average height 
is 0.36V, with approximately 68% of this person's Pulse 1 samples falling 
within the range of 0.23- 0.51V. The highest First Pulse height average 
is 1.76V, with 68% of all samples falling between 1.43 and 2.12V. Pulse 
height exhibits a large variation within our sample and will therefore be 
considered a useful discriminant. 

Columns 4 and 5 show the smallest average first pulse width to be 8mS 
wide, with 68% of this person's samples falling between 3. 7 and 11.3mS. 
The widest first pulse is 85mS long, with 68% of samples falling between 
52 and 118mS. 

Columns 6 and 7 show the variation within the first interval. This 
ranges from the shortest interval being of 109mS duration (with 68% of 
this person's samples lying between 67.5 and 150.5mS) and the longest 
interval of 445mS (with 68% of samples falling between 372 and 518mS). 

From the tables above it can be concluded that each characteristic; 
Pulse Height, Pulse Width and Interval duration, all offer a degree of 
discrimination between sequences. The variation in all characteristics, 
between samples of different people appears to be smooth. Reliance, 
therefore, upon one single feature characteristic, will offer only discrimi­
nation between characteristics at the extremes of variation. Furthermore, 
there is little correlation between the relative positions of a person's char­
acteristics within the table. For example Dan is ranked at positions 30, 
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14 and 26 according to the three characteristics. It should therefore be 
concluded, that a combination of all three characteristics would provide 
greater discrimination potential. 

With the key characteristics; number of pulses, pulse height, pulse 
width and interval duration identified, the next section describes typical 
performance of an identification system using pressure sequences. 

7.2. FALSE REJECTION RATES 
As mentioned above, all sequences collected from each person have 

been combined into an average sequence for that person. This will be 
used as an identifier template for that person. In this section all sequences 
gathered from a person will be compared to their average sequence, under 
a range of acceptance tolerances. The number of legitimate sequences 
rejected, expressed as a percentage of number of tries, is known as the 
False Rejection Rate (FRR). 

The method of comparison was as follows: 

1 The number of features is: (pulse height, pulse width interval) x 
number of pulses. This ranges from 3x2 to 3x14 features. 

2 For each of the 34 volunteers: 

For each percentage between 0 and 100: 

(a) Set the acceptance range to the feature set as the average+/­
the percentage 

(b) For each of the sequences of pulses of the current volunteer 
(the majority have tapped 30 sequences): 

Calculate for how many of the sequences the entire feature 
set is within the acceptance range. This gives the number 
of false rejects on the basis of the range alone. 

ii Since some of the sequences do not have all the required 
features, they are rejected as well. Add this to the number 
of false rejects on the basis of the range alone, giving a 
total number of false rejects. 

Figure 2 shows the FRR (and FAR) for one of the volunteers plotted 
against percentage tolerance. Below a tolerance of 8%, all legitimate se­
quences are rejected; between 8 and 14% FRR decreases rapidly, until, 
15% and above, where all legitimate sequences are accepted. The charac­
teristics of FRR curves from all other volunteers are similar, with FRR 
dropping to a minimum after 9% (Andy R) to 72% (Pieter) tolerance. 
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7.3. FALSE ACCEPTANCE RATES 
The False Acceptance Rate (FAR) describes the proportion of impos­

tor sequences, which are falsely accepted to be another's sequence. The 
method of calculation is similar to that outlined above, the key differ­
ence being that all sequences from other people are compared to the 
template sequence of one person. The acceptance threshold is varied, 
as above. Each impostor sequence which has both the correct number 
of pulses and which passes the threshold comparison is deemed a false 
acceptance. A typical FAR curve is shown Figure 2. The curve labelled 
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Figure 2 Typical FAR and FRR Curves 

'FAR - Threshold Rejections' considers only those sequences with the 
same number of pulses as the template. The number of pulses in a sam­
ple is a discontinuous variable and is a function of the consistancy with 
which people enter their sequences. If sequences with a non-modal num­
ber of pulses is included in the FAR calculation, then the resulting FAR 
will be artificially low. The 'Threshold Rejections' curve was generated 
by the comparison of Peter030200's reference template with all other 
sequences of seven pulses. 

Again this shows an increased FAR beyond a tolerance of 8%. Beyond 
20% almost all other sequences are accepted. 

The curve, labelled 'FAR- Include Non-Modal Rejections', is the result 
of comparing Peter030200's reference template with all other samples, 
irrespective of their number of pulses. All sequences not containing seven 
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pulses were immediately rejected. To further quantify the discrimination 
amongst our entire sample, it was found that approximately 15% of all 
sequences contain seven pulses. 

Since it is relatively straightforward for the number of pulses entered 
by a legitimate user, to be either overheard by a third party or systemat­
ically guessed, we believe that the higher FAR curve is more appropriate. 

7.4. EQUAL ERROR RATES 
The Equal Error Rate (EER) is the point at which FAR equals that of 

FRR. EER gives some indication of a biometric scheme's performance, 
and is inversely proportional to discrimination. Table D shows the EER 
for each of our volunteers. 

Volunteer EER% Tolerance at 
croseover 

Pieter 100 54.5 
Thom1u1 95.3 38.3 
Yavuz 94.6 33 

Ma.na.bu 93.9 25.7 
Mark030200 90.4 47.1 
Bob030200 80.7 19.8 

Edwa.rd 80 24.3 
Da.nny030200 79.8 14.8 
Nicola040200 74 27.9 

Thom&e 090200 66.8 23.3 
Dan 62.2 22.7 

Ma.rijke 57 16.1 
Dan030200 55.9 17.7 

Maro;:us030200 55 25 
Paul 48 27.5 
Hugh 46.3 24 

Peter030200 46.1 12.5 
Uli030200 44.4 13.1 

Dave030200 43.9 12.4 
Mauricio 42.8 24.6 

Zaher020200 41 14.1 
Theo040200 39.4 31.1 

Lesley040200 32.9 15.2 
James030200 27 21.8 
Yalin030200 26 13.9 
Alexa040200 23.6 12.6 

Andy R 23 8.8 
Yean030200 19 14.2 

Chee 15 10.7 
Jeff030200 14 14.7 

Neil G 3 18.8 
Andy B030200 0 25 

Julie080200 0 15 
Enric 0 20 

Table D - Equal Error Rates 

From our data it can be seen that the Equal Error Rates are high. 
This is not necessarily a problem; by reducing threshold tolerance, the 
number of false acceptances will fall, and our system's chance of correctly 
verifying identity will improve. The drawback in doing so is an increase 
in the rate of false rejections. 

The Equal error rates range from 0 to 100, in our volunteer's sequences. 
Low equal error rates, predominantly occurring in sequences with large 
numbers of pulses, arise from the limited number of other sequences 
with comparable pulse numbers. It is expected that EER values for such 
sequences will rise as more sequences are captured. A high value of EER 
arises from the variation with which people entered their chosen sequence. 
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From our data, only one volunteer (Pieter) could not be unambigu­
ously identified. Again, as samples from more people are collected, we 
would expect this number to rise. 

8. CONCLUSIONS AND FURTHER WORK 
Based on the simple idea that you can tell who is knocking on your 

door by the sound alone, we have devised a method to verify the identity 
of a user to a smart card. An inexpensive, screen-printed piezoelectric 
pressure sensor is integrated on a smart card. The signals are measured 
and matched to the templates of a group of volunteers. With a simple 
matching algorithm we are able to identify all but one of our 34 volun­
teers. The EER is high but we have barely scratched the surface of what 
is possible with our apparatus. 

It is commonly accepted that the performance of biometric systems 
steadily improves as the subjects learn to give consistent measurements 
[7]. Our experiment collected a unique set of sequences, from each vol­
unteer. They were given no immediate response on the quality of their 
measurements, and were, thus, unable to demonstrate improvement. This 
is an area for future work. 

Further, our reference templates were crudely constructed - we used all 
sequences from a person, containing their modal number of pulses. Rather 
than taking a blind average of these sequences, we propose discarding any 
statistical outliers before creating reference templates. 

We have performed simple analysis upon a simplified representation of 
our data. Even so, the results show that there are measurable differences 
in the sequences tapped out by each person. We looked at the absolute 
duration of pulses and intervals, rather than the relationship between 
each feature. Since, rhythms have tempo, and tempos can be changed 
whilst retaining the rhythm's overall structure, we aim to use both geo­
metric and time-invariant tools to discover any underlying structure to 
the sequences. 

Our next step is to investigate whether there exist measurable differ­
ences in the 'tap' itself. We will look at both the bio-mechanics of tapping 
(to theoretically assess possible discrimination), and at the detailed data 
already collected using more powerful analysis and matching techniques, 
such as hidden Markov Models, and Neural nets (1]. 

To integrate the measurement circuitry with the other components of 
a smart card we envisage a similar approach as that used to build dual 
interface cards [3]. These combine RF rectifier, receiver and transmitter 
with regular smart/memory card circuitry. The antenna is connected to 
the circuit as part of the packaging process. Using the same process we 
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expect to be able to integrate our charge amplifier, and ADC on the 
chip, with the remaining smart card circuitry. It would also interesting 
to investigate how one could exploit the capabilities of current dual­
mode smart cards by replacing the antenna by a suitable (capacitive or 
resistive), screen printed sensor. 

It is easy for an eavesdropper to overhear a sequence of knocks, to 
memorise it and to use the same sequence on a stolen card. Therefore, we 
plan to experiment with a sequence of squeezes, which would be noiseless. 
The current detector is sensitive enough to measure gentle squeezes and 
the dynamic range of the sensor and electronics is adequate. 

Our group of volunteers is just large enough to draw statistically mean­
ingful conclusions. However, we should like to conduct an experiment, 
with a larger randomly selected group of volunteers that is representa­
tive for the population at large. 

The pressure sequence system offers smart cards the ability to verify 
the identity of its user without having to rely on external devices (except 
for power and clock). This is a valuable property because external devices 
could be tampered with. The smart card can thus be confident of user 
proximity. Tampering with the sensor on the smartcard itself is always 
possible. Counter measures would include monitoring electrical proper­
ties of the detector, such as its capacitance, resistance and impedance. 
This is an area of further work. 
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