
ON A TEMPORAL LOGIC FOR OBJECT-BASED
SYSTEMS

Dino Distefano, Joost-Pieter Katoen, and Arend Rensink
Faculty 0/ Computer Science, University 0/ Twente

P.O. Box 217, 7500 AE Enschede, The Netherlands

{ddino, katoen, rensink} @cs.utwente.nl

Abstract This paper presents a logic, ealled BOTL (Objeet-Based Temporal Logic), that
faeilitates the speeifieation of dynamie and static properties of objeet-based sys­
tems. The logie is based on the branehing temporallogic CTL and the Objeet
Constraint Language (OCL), an optional part of the UML standard for expressing
statie properties over dass diagrarns. The formal semanties of BOTL is defined
in terms of a general operational model that is aimed to be applieable to a wide
range of objeet-oriented languages. A mapping of a large fragment of OCL onto
BOTL is defined, thus providing a formal semanties to OCL.

Keywords: formal verifieation, Object Constraint Language (OCL), objeet-based system,
property speeifieation, temporallogie.

1. INTRODUCTION

Due to the ever increasing complexity of forthcoming systems, attempts to
assess their correctness by engineering "mIes of thumb" do not work: they
easily lead to wrong conclusions and may cause costly redesigns. Instead, a
systematie and rigorous method for checking their correctness is needed. For
the specification and verification of reactive systems, the use of temporal log­
ies has been thoroughly investigated. The availability of software tools that
support the automatie verification of systems with respect to logieal formu­
lae has become popular and very successful. This applies in partieular to the
model checking approach [7, 8]. For object-oriented systems, however, such
automated verification techniques have received scant attention.

In OUf project we aim at applying the model checking approach to object­
oriented systems. As a first step, this paper presents a temporallogie, referred to
as BOTL, that is suited for specifying static and dynamic properties of object­
based systems. The dynamie properties are related to the behaviour of the

306

system when time evolves, while the static properties refer to the relations
between syntactical entities such as dasses. The logic is an object-based exten­
sion of the branching temporallogic CTL [6], a formalism for which efficient
model checking algorithms and tools do exist. The object-based ingredients
in our logic are largely inspired by the Object Constraint Language (OCL)
[17,22,23], an optional part ofthe Unified Modeling Language (UML) [5,20]
standard which allows expressing static properties over dass diagrams in a tex­
tual way. The precise relationship with OCL is defined by means of a mapping
of a large fragment of OCL onto BOTL.

The semantics of the logic is defined in terms of a general operational model
that is aimed to be applicable to a rather wide range of object -oriented program­
ming languages. The operational model is a Kripke structure, in which states
are equipped with information concerning the status of objects and method in­
vocations. The mapping of BOTL onto these Kripke structures is defined in a
formal, rigorous way. We believe that such a formal approach is indispensable
for the construction of reliable software tools such as model checkers. Besides,
the semantics of BOTL together with the aforementioned translation of OCL
provides aformal semantics of OCL. This approach resolves several ambigu­
ities and undarities in OCL that have been recently reported [10]. See also
the related work section below for other formalizations of OCL. Our proposal
covers a rather large fragment of OCL induding, amongst others, invariants,
pre- and postconditions, navigations and iterations.

Object-based systems. In this paper we confine ourselves to object-based
systems, i.e., object-oriented systems in which inheritance and subtyping are
not (yet) considered. Object-based systems are composed by objects. An object
contains internal data that can only be accessed from the outside by invoking
one of the object's methods. Objects run concurrently and communicate by
means of message passing; i.e., an object that invokes a method (of another
object) has to wait until the method has returned its result. Objects are dynamic
and can be created in arbitrary numbers during the computation. On the static
level, the corresponding notion is that of a dass. A dass is a template for
the creation of its instances, i.e., its objects, and specifies the behaviour of the
objects by describing their state (in terms of so-called attributes) and methods.

Class diagrams. Classes and their associations are described by dass dia­
grams, a variant of entity-relationship diagrams. A dass diagram describes the
attributes (with their type) and the methods (with their formal parameters) of
a dass. An example dass diagram in UML notation is depicted in Figure 1,
adopted from [23]: boxes represent dasses and interconnecting lines denote as­
sociations. Each direction of an association has a multiplicity and an optional
name. For instance, a Hotel has a (possibly zero) number of rooms and guests.

On a Temporal Logic for Object-Based Systems 307

Hotel Room

rooms
floorNumber:Integer

addrcss:String
hotel . roomNumber:Integcr

numberOfRooms:lnteger
numbcrOfBeds:Integer

0 .. 1
chcckln(g:Guesl) roorn rent:Rcal

0 .. 1 hotel . guests

Guest
guests

name:String .
age:Intcger

sex: {male. fcmale}

Figure 1 The Hotel Class Diagram

Note that dass diagrams only address the data aspects of the system, not its dy­
namic (i.e., process) aspects. The latter aspects are described by other diagrams
such as UML statecharts. Associations can be traversed - this is referred to
as navigation - to refer to flttributes and methods of a (collection of) object(s)
in the system, e.g., for object h of dass Hotel, the expression (h.guests).name
refers to the collection ofnames ofthe guests of h. Navigations are parsed from
left to right.

Object Constraint Language. Constraints over UML dass diagrams can
be described in OCL [17, 22, 23], an optional part of the UML standard. The
constraints in OCL are invariants (statements that should be valid at any point
in the computation), and pre- and postconditions (statements about the start and
end of a method execution). The invariant

context Hotel invariant
rooms.guests = guests

(1)

states that the collection of guests in the rooms of the hotel should be consistent
with the collection of guests maintained at the hotel. Clearly, this statement
is not valid in every state of the system as, for instance, its validity cannot be
guaranteed while executing a method that changes the number of guests (like
checking a guest in or out). Pre- and posteonditions have a method and a dass
as context. For instance, in

context Hotel:: checkIn(g : Guest)
pre not guests-tincludes(g) (2)
post guests-tsize =(guests@pre-tsize)+l and guests-tincludes(g)

308

the precondition states that the person to be checked in is not a current guest of
the hotel, while the postcondition states that after checking him in, the number
of guests has increased by one and the new guest is one of the current guests. The
@pre-operatorrefers to the number of guests before the check-in. The standard
OCL operation size determines the number of elements of a collection. Note
that invariants and pre/postconditions are safety properties, whereas BOTL also
allows to express liveness properties.

Temporal logic. For the specification of the temporal aspects, BOTL is
based on the branching temporal logic CTL [6]. For CTL efficient model
checking algorithms and tools already exist. A typical disadvantage of CTL is
its weakness in expressing fairness. As the object-based ingredients in BOTL
are quite orthogonal to the temporal aspects, our approach can be applied to other
(more expressive) temporallogics like CTL* or J.L-calculus in a straightforward
manner.

Related work. Logics for reasoning about object-oriented systems have
been mainly based on Hoare-style logics that concentrate on verifying pre- and
postconditions and/or invariants [1,4, 13, 18].

Temporallogics for object-oriented systems have been previously defined.
Amongst others: [3] proposes an algorithmic method to prove properties of con­
current object-oriented systems expressed in propositional LTL. This method
combines model checking and tableaux method. [14] presents the specification
language TROLL for the conceptual modeling of information systems. The for­
mal semantics ofTROLL is given in terms of a translation into a temporallogic.
[21] proposes, in an axiomatic style, a temporallogic for reasoning about object
classes and their instances. The logic supports two levels of reasoning: local
reasoning related to a single object and global reasoning related to a community
of objects.

A modallogic for an object calculus is presented in [2]. Verification tech­
niques based on other techniques have been proposed in [12]. Alternative
formalisations of OCL have been considered in [9, 11, 19]. To our knowledge,
this paper presents the first attempt towards embedding OCL in a temporallogic
setting.

Organisation of the paper. Section 2 introduces the syntax and semantics
of BOTL. Section 3 presents the translation of OCL into BOTL. Throughout
the paper simple examples illustrate the use of the logic. Section 4 presents
some conclusions and discusses future work.

On a Temporal Logicfor Object-Based Systems 309

2. THE DEFINITION OF BOTL
In the following, we assume a set VN AME of variable names; a set MN AME

of method names, ranged over by M; and a set of dass names CN AME, ranged
overby C.

2.1. DATA TYPES AND VALUES
BOTL expressions rely on a language TYPE of data types, defined by the

following grammar:

r(E TYPE) ::= void I nat I bool I r list I C ref I C.M ref

where C E CNAME and M E MNAME are arbitrary. The types have the
following intuitions:

• void is the unit type; it only has the trivial value O.
• nat is the type of natural numbers.

• bool is the type of boolean values tt (true) and ff (false).

• r list denotes the type of lists of r, with elements 0 (the empty list)
and h :: w (for the list with head element h and tail w). For the sake
of readability, we will often write lists as comma-separated sequences
enclosed by square brackets; e.g., 1 :: 2 :: 0 is written [1,2], whereas
[[1], [2]] denotes (1 :: m :: (2 :: m :: D.

• C ref denotes the type of objects of class C.

• C.M ref denotes the type of method occurrences (discussed in more detail
below) of the method M of class C.

Let us specify the data values of these types more precisely. Among others we
will use (references to) objects and events as data values; the latter correspond
to method occurrences, Le., invocations of a given method of a given object.
For this purpose, we introduce the following sets (for all C E CN AME and
ME MNAME):

OIDC = {C} x N

EVTC,M = OIDC x {M} x N .

Thus, object identities e E OIDC correspond simply to numbered instances of
theclass C, whereasevents (e, M,j) E EVTC,M arenumbered instances ofthe
method name M, together with an explicit association to the object e E OIDC
executing the method. We also use OID = Uc OIDC, ranged over by e, and
EVT = Uc UM EVTC,M, ranged over by J.L.

310

The combined universe of values will be denoted VAL; the set of values of a
given type T E TYPE is denoted VAL T. We define:

VALvoid =
VALnat

VALbool

VALT list

VAL C ref

{O}
N

{ff,tt}
{D} U {h:: w I hE VALT,W E VALTlist}

{null} U OIDC
VALC.Mref = EVTC,M .

There exists a large number of standard boolean, arithmetic and list operations
over these values, which we will use when convenient, without introducing
them formally.

Finally, there is a special element ..1 tf. VAL that is used to model the ''unde­
fined" value: we write VAL.l = VAL U {..1}, etc. All operations are extended
to ..1 by requiring them to be strict (meaning that if any operand equals ..1, the
entire expression equals ..1). For instance, for lists we have ..1 :: w = ..1 and
h::..1 = ..1.

2.2. SYNTAX OF BOTL
The syntax of BOTL is built up from two kinds of terms: static expressions

(for a large part inspired by OCL) and temporal formulae (largely taken from
CTL). We also use a set of logical variables LoaVAR.

e(E Sexp) ::= Z I e.a I e.owner I e.return I act(e) I w(e, . .. ,e)

I with Zl E e from Z2 := e do Z2 := e

4Y(E Texp) ::= e I -,4Y I 4Y V 4Y I Vz E T : 4Y I EX4Y I E[4YU4Yll A[4YU4Yl

where T E TYPE, a E VNAME and z E LOaVAR. Apart from this context­
free grammar, we implicitly rely on a context-sensitive type system, with type
judgements of the form e E T, to ensure type correctness of the expressions; its
definition is outside the scope of this paper. We give an informal explanation
of the BOTL constructs.

Static expressions.

• z E LoaVAR is a variable, bound to a value elsewhere in the expression
or formula;

• e.a stands for attribute/parameter navigation. The sub-expression e pro­
vides a reference to an object with an attribute named a or to a method
occurrence with a formal parameter named a; the navigation expression

On a Temporal Logic for Object-Based Systems 311

denotes the value ofthat attribute/parameter. Navigation is extended nat­
urally to the case where e is a list of references; the result of e.a is then
the list of _.a-navigations from the elements of e.

• e.owner denotes the object executing the method e.

• e.return denotes the return value ofthe method denoted by e (in case the
method has indeed returned a value, otherwise the result of the expression
is undefined; see below).

• act(e) expresses that the object or method occurrence denoted by e is
currently active. An object becomes active when it is created and re­
mains active ever thereafter, whereas a method becomes active when it
is invoked and becomes inactive again after it has returned a value. This
is made more precise in the semantic model; see below.

• w(el, ... ,en) (n ;;:: 0) denotes an application of the n-ary operator w.
Thus, w is a syntactic counterpart to the actual boolean, arithmetic and
list operations defined over our value domain. Possible values for w
include at least a conditional expression ("if-then-else") as well as an
(overloaded) equality test =T for all T E TYPE (where the index T is
usually omitted). We will use [w] to indicate the underlying operation of
which w is the syntactic representation.

• The with-from-do expression is inspired by the iterate feature of OCL
-which in turn resembles thefold operation offunctional programming.
The expression binds logical variables and can therefore not be seen as an
ordinary operator. Informally, with Zl E el from Z2 := e2 do Z2 := e3
has the following semantics: first, Z2 is initialised to e2; then e3 is com­
puted repeatedly and its result is assigned to Z2 while Zl successively takes
as its value an element of the sequence el. For instance, the expression

with Zl E [1,2, 3J from Z2 := 0 do Z2 := Zl + Z2

computes the sum ofthe elements ofthe list [1, 2, 3J (= 6). A large group
of OCL queries can be reduced to iterate expressions (and therefore to
with-from-do expressions) [22].

Temporal expressions. A temporal expression rp is buHt by the application
of classical first order logic operators (..." V etc.) and CTL temporal operators
(AX, U, etc.); see [6]. The basic predicates are given by boolean expressions in
Sexp. The temporal operators have the following intuition:

• EXrp expresses that there is a next state in which the formula cp holds.

312

• E[cPU'IjJ] expresses that there exists a path starting from the current state
along which 'IjJ holds at a given state, and cP holds in every state before.
The special case where cP equals tt (true) thus stands for the property that
there is a reachable state where 'IjJ holds; this is sometimes denoted EF'IjJ
("potentially eventually 'IjJ"). The dual of that is denoted AG'IjJ ("invari­
antly'IjJ").

• A[cPU'IjJ] expresses that along every path starting from the current state,
'IjJ holds at a given state and cP holds in every state before. Again, if cP
equals tt we get the special case AF'IjJ ("'IjJ is inevitable") and its dual,
EG'IjJ ("potentially always 'IjJ").

Finally, we have universal (and, byduality,existential)quantification: Vz E -r: cP
expresses that the formula cP must hold for all instances z of the type -r. Note that
VAL T is infinite for most -r E TYPE, making model checking of universally
quantified formulae impossible. When applying model checking to BOlL,
therefore, we will have to restrict quantification to bounded cases; for instance,
all active objects or all integers smaller than a given upper bound. For the
purpose of this paper, however, we need not make such restrictions.

In examples, we often omit the type -r when it is dear from the context.
Moreover, apart from the usual abbreviations such as Vz =1= e: cP for Vz: (z =1=

e) =? cP, we also use

• Vz E act(-r): cPforVz E -r: act(z) =? cP, toquantifyoverallactiveobjects
or methods in-r;

• Vz E e.M ref: cP (where e E C ref) forVz E C.M ref: (z.owner = e) =?

cP, to quantify over all method occurrences of a given object.

Example 2.1. Consider the OCL invariant (1). In BOlL, the same property
would be expressed by

AG[Vz E act(Hotel ref) : ("'Im E z.checkIn ref : -,act(m)) =?

sort(flat(z.rooms.guests)) = sort(z.guests)].
(3)

The function flat flattens nested lists; we need it because z.rooms.guests is a
list of lists, whereas z.guests is a simple list. The function sort orders lists.
Note that the condition -,act(m) on the occurrence m of the method checkIn
is essential: during the execution of acheckIn, it is not possible to guarantee
the validity of the invariant.

As another example, consider the following OCL invariant:

context Guest invariant
age 18

In BOTL, this will be expressed by: AG[Vz E act(Guest ref): z.age 18] .

On a Temporal Logicfor Object-Based Systems 313

2.3. THE UNDERLYING OPERATIONAL MODEL
In the design of our logic we have concentrated on the essential features of

an object-based system. By this we mean that the logic can only address fea­
tures, such as object attributes, that are likely to be available in any reasonable
behavioural model of an object system. Accordingly, we will define the se­
mantics of BOTL using an operational model that is as "poor" as possible, i.e.,
includes those features addressable by the logic but no more than those. We do
not go into the question how such a model is to be generated. For instance, the
degree of parallelism or the way of method invocation is part of the translation
of an object-oriented language to the model. Any richer kind of model can be
abstracted to a BOTL model; thus, hopefully, the logic can be used to express
properties of behaviour models generated by a wide range of formalisms.

We first need to give the notions of classes, methods and variables more
substance. Consider the following partial functions:

VDECL VN AME TYPE

MDECL = MN AME VDECL X TYPE

CDECL = CN AME VDECL X MDECL

A variable declaration in VDECL is a partial function mapping variable names
to the corresponding (image) types. MDECL does the same for method names,
taking into account that these are actually functions with formal parameters and
areturn value. Finally, each D E CDECL is a class declaration mapping class
names to the corresponding attribute and method declarations.

Let us assume the class declaration D E CDECL to be given. For any
class C E dom(D), we denote C.attrs (E VDECL) for its attribute declara­
tion function, and C. meths (E MDECL) for its method declaration function;
thus, D (C) = (C. attrs , C. meths). Furthermore, if the class C of a method
M is clear from the context then we use M.fpars (E VDECL) to denote the
formal parameters of M and M.retty (E TYPE) for the return type; hence
C.meths(M) = (M.fpars, M.retty).

Our models are Kripke structures, i.e., tuples MD = (Gonf ,-+) where Gonf
is the set of configurations (or states) over which-+ Gonf x Gonf defines
a transition relation. D E CDECL is the global class declaration, whereas the
elements of Gonf are pairs of the form (0", 1') where:

• 0" E E = 010 VNAME VAL;

• l' E r = EVT (VNAME VAL) X VALl...

We discuss these briefly.

• 0" describes the currently active objects: for each active object e E
dom(O"), O"(e) denotes the local state of e, i.e., it records the values

314

of the attributes of rJ has to be consistent with D in the sense that
= l with E OIDC implies dom(l) = dom(C.attrs) and l(a) E

VALC.attrs(a) for all a E dom(l).

rJ is extended pointwise to lists of objects; thus rJ(O)(a) = [] and rJ(h ::
w)(a) = rJ(h)(a) :: rJ(w)(a).

• , describes the currently active method occurrences; namely, an event
is active if it belongs to the domain of,. The images of, consist of
a (partial) mapping of variable names to values, representing the valu­
ation of the formal parameters of the method invocation, as weIl as the
value returned by the method. The latter becomes defined only when
the method has terminated; therefore the value can be J... , also has to
be consistent with D: if,(J,L) = (l,v) for a given method occurrence
J,L E EVTC,M then dom(l) = dom(M.Jpars) and l(p) E VALM.fpars(p)

for all p E dom(l), and v E VAL

• The transition relation -T satisfies the following property regarding the
termination of method invocations: if an active method occurrence J,L
becomes inactive then is has a well-defined return value (i.e., not J..).
Formally: if (rJ,,) -T (rJ',,') then J,L E dom(r) \ dom(r') => :3v ::j:.
J..:,(J,L) = (l,v). Furthermore, we assume that Gon! contains no ter­
rninated or deadlocked configurations; i.e., there is at least one outgoing
transition from every element of Gon!. (This property is imposed only
for the sake of simplifying the definitions later on; it can be satisfied
easily by adding a self-Ioop to every deadlocking configuration.)

2.4. SEMANTICS OF BOTL

We are now in a position to define the semantics of our logic. We assume
the class declaration D to be fixed and given. Let 8 = LOGVAR --'- VAL,

ranged over by 0, be the set of maps that assign values to (some of) the logical
variables. The semantics of expressions is given by the function [_]: Sexp -T

(E x r x 8) -+ VAL.l. Let (rJ,,) be a configuration of MD.

[z]u,'}',o

[e.a]u,'}',o

[e.owner]u,'}',o

O(z)
= f(a)

= l(a)

where e E C ref and rJ([e]u,'}',o) = f
or e E C.M ref and ,([e]u,'}',o) = (f, v)
where e E C ref list and rJ([e]u,'}',o) = l
or e E C.M ref list and ,([e]u,'}',o) = (l, iJ)

where [e]u,'}',o =

[e.return]u,'Y,O

[act(e)]u,'Y,O

[w(el, ... ,en)]u,'Y,O

On a Temporal Logic for Object-Based Systems 315

= v where 'Y([e]u,'Y,O) = (l, v)

= ([e]u,'Y,O E dom(a) U dom(-y))

= [w]([el]u,'Y,O'···' [en]u,'Y,O)

[with Zl E el from Z2 := e2 do Z2 := e3]u l' 0
= [for Zl E do Z2 := e3]u,'Y,0{[e21c','Y,t!lz2}

where [for Zl E n do Z2 := e]u,'Y,o
= [Z2]u,'Y,0

[for Zl Eh:: w do Z2 := e]u'Y 0
= [for Zl E w do ;2 ':= e]u'" O{[e] /Z2}

,,, u,'Y,8{h/zIJ

Given the discussion of the operational model, the semantics should be self­
explanatory, with the possible exception of the "with-from-do" -expression.
This is evaluated by means ofthe ''far-do'' meta-expression, which successively
re-computes the "do" -expression for every value of Zl out of the "for" -list. 1

Figure 2 An instance of the Hotel Class Diagram

Example 2.2. Consider the object diagram in Figure 2, and suppose we want to
compute z. rooms . guests in the configuration (a, 'Y) with variable interpretation
(): Z I-t h. Skipping some details, we obtain

[z.rooms .guests]u,'Y,o = a([z.rooms]u,'Y,o)(guests)

= a(a([z]u,'Y,O)(rooms))(guests)

IFor those familiar with functional prograrnrning: with ZI E el from Z2 := e2 do Z2 := e3 may
altematively be translated to foldl [el]u,'Y,8 [e2]u,'Y,9 >. v h.[ea]u,'Y,9{h/Zl,V/Z2}·

316

= a(a(h)(rooms))(guests)

= a(h, r2, r3]) (guests)

[[gl,g2], [g3,g4,g5], [g6]]

As expected the result is a list of lists.

The semantics of BOTL formulae is now straightforward. It is defined by a
satisfaction relation between the model MD defined by the transition system,
a reference configuration (a, 'Y), a valuation 0 and a formula cjJ. To define it, we
need an auxiliary definition of paths through a transition model. Some notation
first: if s E AW is an (infinite) sequence, we write s[i] to denote the (i + 1)-th
element of s; hence s = s [0] s [1] . ". Given a model MD = (Gon!,), a path
is an infinite sequence of configurations "., E Gon! W such that ".,[i] ".,[i + 1]
for aIl i O. The set of paths starting in (a, 'Y) E Gon! is defined by

The semantics of temporal formulae is then given by a relation 1= (E x r x
8) x Texp •

Let (a, 'Y) be a configuration of MD and let 0 E 8.

a, 'Y, 0 1= e {::::::} [elr ,7,8 = tt
a, 'Y, () 1= -,cjJ {::::::} -,(a, 'Y, 0 I=cjJ)

a, 'Y, 0 1= cjJ V 'I/J {::::::} (a,'Y,O 1= cjJ) V (a,'Y,O 1= 'I/J)

a,'Y,O 1= \fz E T: cjJ {::::::} a,'Y,O{v/z} 1= cjJforaIl v E VALT

a, 'Y, ° 1= EXcjJ {::::::} 3"., E PMD(a,'Y):".,[l],O 1= cjJ

a, 'Y, 0 1= E[cjJU'I/J] {::::::} 3"., E PMD (a, 'Y):
O:".,[j],O 1= 'I/J 1\ 1= cjJ

a, 'Y, 0 1= A[cjJU'I/J] {::::::} 'I"., E PMD(a,'Y):
O:".,[j],O 1= 'I/J 1\ 1= cjJ .

3. TRANSLATING OCL TO BOTL
In this section we will give a translation of OeL into BOTL and investigate

differences as weIl as relations between them. First note that BOTL is not
primarily intended to be the exact formal counterpart of OeL. In defining BOTL
we were concemed with some issues derived mostly from our aim to do model
checking of object-oriented programs. On the other hand, since OeL is not
yet very "stable" in the sense that there are many proposals to improve it, see
e.g. [10], our logic can be seen as one of the many "opinions" on how to give
asound foundation to OeL. At the same time, the translation provides us with
a feeling above the expressiveness of BOTL.

On a Temporal Logic tor Object-Based Systems 317

3.1. OCL SYNTAX
The set of OCL constraints and OCL expressions is given by the following

grammar

(X E)GOCL

(e E)SOCL

context Ginvariant e I context G :: M(ji) pre e post e

self I z I result I e@pre I e.a I w(e, .. . ,e)

I e.w(e, ... ,e) I ... , e) I Z2 =e I e)

As for BOTL we assurne that OCL terms are type correct (with, however some
differences in the possible types; see below). At the top level, a constraint X can
either be an invariant or a pre/postcondition (see Section 1). The context of a
constraint is a dass G in case of an invariant or a method M E dom (G. meths)
in case of pre/postconditions. The context can be referred to by the expression
in the constraint. For instance, in an OCL navigation expression self.a, we
describe a route starting from an object of the context dass G.

Many of the expressions e E S OCL have their direct counterpart in BOTL.

• self refers to the context object of the dass G.

• z represents either an attribute of the context object, or a formal parameter
of the context method, or a logical variable.

• result refers to the value returned by the context method. @pre is a suffix
that refers to the value of its operand at the time of the method invocation.
These two operators can be used in postconditions only (see below).

• e.a and w(eI, ... ,en) are the same as in BOTL.

• e.w(el,"" en) represents an operator w on basic types that is applied
on e, el, ... ,en . Ifthe expression eis a collection (Le., a set, bag or list),
we have the special case en).

• el Z2 = e2 leg) has the same meaning as with Zl E
el from Z2 := e2 do Z2 := eg. The difference is only in the type that can
be returned, namely sets and bags (see Section 3.2).

Particular OCL features not induded in the previous syntax are expressions of
the kind M(e, ... ,e) and e.M(e, ... , e) where M is a so-called query method;
i.e., M is a method whichretums a value without side effects. Nevertheless, also
constraints where query methods appear can be translated in terms of another
OCL expression that does not contain them but that describes the function
implemented by the query method2 . Thus, as in other related works [11, 19],
we do not treat query methods explicitly.

2Provided the function is not defined recursively.

318

3.2. TRANSLATION ISSUES
Before proceeding with the fonnal translation of OeL into BOTL, let us give

the intuition, in a rather infonnal way, of the solutions to the issues involved.

Data types. One of the differences between BOTL and OeL is their type
system: rather than arbitrary lists, OeL allows sets, bags and lists of primitive
data values; i.e., nested lists are not included. There are two reasons why in
BOTL we consider only arbitrary lists. On the one side, lists have sufficient
expressive power to represent sets and bags; on the other side, by using only
lists we avoid the problem of nondeterministic behavior in the BOTL expression
with-do-from (this problem is present in OeL, see [19]).

In order to have a more rigorous comparison, let us define OeL types. Then
we will show how to encode them using BOTL types. We omit strings, reals and
enumerations which are absent in BOTL but could be added without problems.

p ::= nat I bool I C ref

T(E TYPEOCL) ::= p I p list I p set I p bag

p set are sets of elements of type p, while p bag are multisets whose elements
have type p. The semantics of the sorts included in TYPE is unchanged, while
for the new types we have:

VALPset = P(VALP)

VALPbag = VALP --+ N

where P(·) represents the set of all finite subsets. The set of values in OeL is:

VALOCL = u
TETYPEoCL

Now let us discuss how we will translate OeL operations on sets and bags,
say el--+w(e2,' .. ,en). For OeL types p set and p bag, we define a function
O::set and O::bag on BOTL values. These functions abstract from the order of the
elements in a list and return a set or a bag. Fonnally O::set : VAL --+ VALOCL

is given by

{
0 ifv=D

O::set (v) = { h} U O::set (w) if v = h :: w
v otherwise.

Using . fr as notation forbags and l±J for their union, O::bag : VAL --+ VALOCL

is given by

{
ifv=[]

O::bag(V) = l±J O::bag(W) ifv = h:: W

v otherwise.

On a Temporal Logicfor Object-Based Systems 319

For each operation el --+w (e2, ... , en) on sets or bags, there exists a correspond­
ing operation in BOTL, say w(el, e2,'" ,en), such that the diagram in Figure 3
commutes. This shows in which sense the translation of OCL into BOTL is
faithful.

[w]
VALÖCL----- VALOCL

VA Ln _____ VAL

[w]

Figure 3 Commutative diagram.

Example 3.1. Consider the OCL expression el -+union(e2). The intended se­
mantics [union] is the mathematical union on sets. In BOTL, there will be an
appropriate operator with semantics [union] : VAL T list x VAL T list ---+ VAL T list.

According to the commutative diagram, we have that aset ([union(vl, V2)]) =
[union] (aset (vI) , a set(v2)). That is, the result on lists is equal, up to abstrac­
tion from sets, to the corresponding union on sets. The operator union can be
defined for instance as union(wl,W2)g, concat(wl,w2) where Wl and W2 are
lists.

Example 3.2. Consider now equality on sets in OCL: el = e2 where el and
e2 have type set. The corresponding BOTL expression will have semantics
[==] : VAL T list X VAL T list ---+ VAL bool. The operator == is defined as follow:

==(wl, W2) g, EqList(sort(del_duplicates(Wl)), sort(del_duplicates (W2)))'

Apart from del_duplicates, the same argument applies to bags.

Invariants. The key issue for the translation of context C invariant e, con­
cems the identification of the states in which the invariant expression e has to
hold. In particular we have to ensure that none of the methods in dom (C. meths)
is active. In fact, during the execution of methods, there can be some interme­
diate configurations in which e does not hold (see Example 3.3).

Pre/postconditions. The translation of pre/postconditions is more involved.
In particular, the OCL operator @pre has to be handled in a special way as it
forces us to consider two different moments in time, viz. the start and end of
a method invocation. We use the following strategy. Consider the constraint:

320

context C :: M(f) pre epre post epost. By definition, e@pre subexpressions
occur a finite number of times, say n 2: 0, only in epost. We first enumerate
all the occurrences of e@pre subexpressions in epost. We write e@jpre for
1 ::; i ::; n. Then when we translate epost, by means of the function 0 that
we will define in the next subsection, we substitute terms e@j pre with new
fresh logical variables Ui E Ti for 1 ::; i ::; n. The value of the variable Ui

is bound to the appropriate value in the translation of epre . We "add" to the
translated precondition 0 (epre) a binding term Ui = 0 (e) for all Ui and e@jpre.
Thus, the variables Ui are associated to the value of e in e@jpre at the beginning
of the method execution, and therefore can be used instead of e@jpre in the
posteondition. Note that the judgment Ui E Ti can be inferred by the type of e
in e@jpre.

3.3. TRANSLATING OeL EXPRESSIONS TO BOTL
We will now define a syntactic mapping of OCL into BOTL. First we will

give a partial function 0 that translates OCL expressions. Then by means of
o we will address the issues involved in the translation of OCL constraints.
The function 0 takes three parameters: 0, m, p. Given a X E eOCL, the first
parameter 0 represents a variable bound to an object of the context class C. In
case of pre/postconditions, the value of parameter m is a method occurrence
of the context method M and pis the list of its formal parameters. In case of
invariants, m has an arbitrary value whereas pis the empty list. The translation
function 0: SOCL --'- (LOGVAR X LOGVAR X VNAME*) --+Sexp is given by

oo,m,p(self) = 0

{
o.z

oo,m,p(z) = r;.z
if 0 E C ref and z E dom(C. attrs)
if z E p
otherwise

Oo,m,p(result) = m.return

oo,m,p(e@jpre) = Ui

o -(e a)={ftat(Oo,m,p(e).a) if e E C ref list and C.attrs(a)=T list
o,m,p· 0 -(e).a otherwise o,m,p

Oo,m,p(w(el, . .. ,en)) = w(oo,m,p(ed,··· ,oo,m,p(en))

oo,m,p(e.w(el, .. . ,en)) = w(oo,m,p(e), oo,m,p(ed,··· ,oo,m,p(en))

oo,m,p(e-tw(el, . .. ,en)) = W(Oo,m,p(e) , oo,m,p(ed,··· ,oo,m,p(en))

oo,m,p(el-titerate(zl; Z2 = e2 I e3)) =

with Zl E oo,m,p(el) from Z2 := 0o,m,p(e2) do Z2 := oo,m,p(e3)

On a Temporal Logicfor Object-Based Systems 321

The translation of S GCL is straightforward for almost every operator.

• A variable z is prefixed by the context object if it is one of its attributes;
it is prefixed by m if it is among m's formal parameters.

• As discussed in the previous section, in translating e@pre, we assume
an enumeration of their occurrences, say e@jpre for 1 :S i :S n. Each
numbered expression is then replaced by a fresh variable Ui.

• In case of attributes or navigation e.a we apply the definition recursively
on the prefix. Ifboth e and a are lists then the resulting BOTL expression
has to be fiattened since the result would produce a nested list that is not
admitted by OCL. This is done explicitly with the operation flat.

• The expressions e--+w(el, ... ,en) and e.w(el, ... , en) are translated us­
ing the corresponding BOTL (n + 1)-ary operation w.

3.4. TRANSLATING OCL CONSTRAINTS TO BOTL
In this section we will complete the translation ofOCL into BOTL by defining

a map ..6. : C GCL ---t Texp-

Invariants. In case of an invariant, the translation has the typical prefix AG.
The invariant must hold for all active objects of the dass C when none of their
methods is active. Let y E LOGVAR and dom(C.meths) = {MI, ... , M k }.

We define:

..6.(context C invariant e) =
AG[V'z E act(C ref) : V'ml E z.MI ref : ... : 'Vmk E Z.Mk ref :

(-.act(ml) 1\ ... 1\ -.act(mk)) => dz,y,O(e)].

The reader is invited to check that the BOTL equivalent of OCL invariant (1)
is indeed the expression (3) when the collection guests is a bag.

Pre/postconditions. As discussed above, we augment the precondition with
some extra information that is used to evaluate the postcondition.

Consider the OCL constraint context C :: M(Pl pre epre post epost. The
extended translated precondition w.r.t. the object 0 and the method occurrence

o,m,p. . b m, epre ,IS glven y

eo,m,p 6 .r () 1\ pre = uo,m,p epre
e@ipreEepost

where Ui for 1 :S i :S n are fresh logical variables.

Here the symbol E means "occurs syntactically in". Thus, given a precondition
epre we can build an extended precondition using a new variable Ui for

322

each subexpression e@jpre involved in the postcondition, which ''freezes'' the
value of e while evaluating the precondition and can be used instead in the
postcondition. Now we are ready to map OCL pre/postconditions to BOTL.

ß (context C :: M (f/) pre epre post epost) =
'iul E Tl, ... ,Un E Tn : Vz E act(C ref): 'im E z.M ref:

/\ -,act(m)) =?

AX[act(m) =? A[act(m)U(term(m) /\ 6z,m,p(epost))]]

where term(m) == act(m) /\ EX[-,act(m)].

The expressions and epost are embedded in a kind of "template" scheme.
Intuitively, a pre/postcondition holds if and only if for all invocations m of M
executed by an object of the class C we have that: if the (extended) precondition
holds at the moment of the method call, then the postcondition holds when the
method execution terminates. This must be true for all active objects of C and
all possible executions of the method M. In other words, a pre/postcondition
is actually an invariant on method calls.

Example 3.3. Suppose we want to translate pre/postcondition (2) in Section 1.
Again, let us call the precondition epre and the postcondition epost. Consider
two logical variables z and m. The former will be instantiated with an object of
class Hotel and the latter with an occurrence of the method checkIn. Applying
6 to epre yields:

6 z ,m,g (not guests -+ includes (g)) -,6z,m,g (guests-+includes(g))
-,includes(z.guests, m.g)

where includes is a BOTL operation that, given a list w and an element l,
returns tt if and only if the element l belongs to w. The extended precondition
becomes:

ez,m,g = pre -,includes (z.guests, m.g) /\ Ul = 6z,m,g (guests)
-,includes(z.guests, m.g) /\ Ul = z.guests

After some calculations, the translation of the postcondition yields:

6z,m,g(epost)= 6z,m,g(guests-+size) = 6z,m,g(guests@pre-+size) + 1
/\ 6z,m,g (guests-+includes (g))

= (size (z.guests) = size(ud + 1/\ includes(z.guests, m.g)).

The translation of (2) now yields:

'iul : 'iz E act(Hotel ref) : 'im E z.checkIn ref : /\ -,act(m))
=? AX[act(m) =? A[act(m)U(term(m) /\ 6z,m,g(epost))].

On a Temporal Logic Jor Object-Based Systems 323

Figure 4 describes the configurations of the transition system during the exe­
cution of the method checkIn and indicates how the validity of the pre/postcon­
dition changes. The second and the third column describe how the components
er and 'Y evolve w.r.t the configuration (first column). In configuration 1 object
91 does not belong to the guests of h. The set of method calls is empty. In this
state -,act(checkIn) and the precondition epre are valid. In configuration 2, the
method is active and, as a first step, 91 is inserted among z guests. Thus, epre

does not hold anymore. However, from this state epost becomes valid. In con­
figuration 3, 91 is assigned to room rand the method execution ends. Finally
in configuration 4, checkln is not active anymore, and the postcondition epost

still holds. Notice how in this example it becomes clear why the invariant (1)
does not hold during the execution of check/no

(h : Hotel) (r : Room 1 -.act(checkT n)

(91 : Guest) [92 : Guest) -,epO.$t

I

2

1 h : Hotel r: Room I
I-' : h .checkln

I 9 -_ ... ---- I

rcturn ..L i···· ···· ··- 191 : Guest I [92 : Guest)

3ct(checkTn)

epoS(

1
1 h : Hotel r: Room I

I-' : h .checkln

9 I
rcturn 0 1.·········- 191 : Guest I [92 : Guest)

act(checkTn)

epoS(

3

1
[h : Hotel r: Room) -.act(checkT n)

4 I
[91 : Guest 1 (92 : Guest)

Conf Valid formulae

Figure 4 Configurations during the execution of checkIn(gl).

324

4. CONCLUDING REMARKS
The temporallogic BOTL developed in this paper, facilitates the specification

of static properties (similar to OCL) and dynamic properties (using CTL) of
object-based systems. The syntax and semantics of the logic were formally
defined, and a translation of OCL into BOTL has been presented, thus providing
a formal semantics to a large sub set of OCL. In the future we plan to extend our
approach towards subtyping and inheritance, and to work towards an effective
model checking approach for BOTL. The latter issue requires a treatment of the
potentially infinite number of active objects and events (method invocations).

References

[1] M. Abadi and K.R.M. Leino. A logic of object-oriented programs. In
Theory and Practice 0/ Software Development (TAPSOFT), LNCS 1214,
pp. 682-696, 1997.

[2] D.S. Andersen, L.H. Pedersen, H. Hüttel and J. Kleist. Objects, types and
modal logics. In Foundations o/Object-Oriented Languages (FOOL),
1997.

[3] J.-P. Bahsoun, R. EI-Baida, and H.-O. Yar. Decision procedure for tem­
porallogic of concurrent objects. In EuroPar'99, LNCS 1685, pp. 1344-
1352, Springer, 1999.

[4] ES. de Boer. A proof system for the parallel object-oriented language
POOL. In Automata, Languages, and Programming (ICALP), LNCS 443,
pp. 572-585, Springer 1990.

[5] G. Booch, J. Rumbaugh, andI. Jacobson. The UnifiedModeling Language
User Guide. Addison-Wesley, 1998.

[6] E.M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Logic 0/ Programs,
LNCS 131, pp. 52-71, Springer, 1981.

[7] E.M. Clarke and R. Kurshan. Computer-aided verification. IEEE Spec­
trum, 33(6):61-67, 1996.

[8] E.M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press,
1999.

[9] M. Gogolla and M. Richters. On constraints and queries in UML. In
The Unified Modeling Language - Technical Aspects and Applications,
Physica-Verlag, 1998.

[10] A. Hamie, E Civello, J. Howse, S. Kent, and R. MitchelI. Reflections
on the Object Constraint Language. In The Unified Modeling Language
(UML), LNCS, pp. 137-145, Springer, 1998.

On a Temporal Logic Jor Object-Based Systems 325

[11] A. Hamie, J. Howse, and S. Kent. Interpreting the Object Constraint
Language. In Asia Pacific Software Engineering Conference, pp. 288-
295. IEEE CS Press, 1998.

[12] S.J. Hodges and C. B. Jones. Non-interference properties of a concUf­
rent object-based language: Proofs based on an operation al semantics. In
Object Orientation with Parallelism and Persistence, pp. 1-22, Kluwer,
1996.

[13] K. Huizing and R. Kuiper and SOOP. Verification of object-oriented
programs using c1ass invariants. In Fundamental Approaches to Software
Eng. (FASE), LNCS 1783, Springer 2000.

[14] R. Jungc1aus, G. Saake, T. Hartmann, and C. Semadas. TROLL - a
language for object-oriented specification of information systems. ACM
Trans. on In! Sys., 14(2):175-211, 1996.

[15] L. Mandel and M. V. Cengarle. On the expressive power of the Object
Constraint Language OCL. Technical report, Forschungsinstitut für ange­
wandte Software-Technologie (FAST e.V.), 1999.

[16] B. Meyer. EijJel: The Language. Prentice Hall, 1992.

[17] Rational Software Corporation. Object Constraint Language Specijica­
tion, version 1.1,1997. (available from www.rational.com/uml).

[18] A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object­
oriented languages. In Programming Concepts and Methods (PRO­
COMET), pp. 404-424, Kluwer, 1998.

[19] M. Richters and M. Gogolla. On formalizing the UML object constraint
language OCL. In Conceptual Modeling (ER '98), LNCS 1507, pp. 449-
464, Springer, 1998.

[20] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language
Reference Guide. Addison-Wesley, 1998.

[21] A. Semadas, C. Semadas, and J.F. Costa. Object specification logic. J. of
Logic and Computation, 5(5):603-630, 1995.

[22] J. Warmer and A. Kleppe. The Object Constraint Language: Precise
Modeling with UML. Addison-Wesley, 1998.

[23] J. Warmer and A. Kleppe. OCL: The constraint language ofthe UML. J.
ofObj.-Or. Progr., 12(1):10--13&28, 1999.

	ON A TEMPORAL LOGIC FOR OBJECT-BASED SYSTEMS
	1. INTRODUCTION
	2. THE DEFINITION OF BOTL
	2.1. DATA TYPES AND VALUES
	2.2. SYNTAX OF BOTL
	2.3. THE UNDERLYING OPERATIONAL MODEL
	2.4. SEMANTICS OF BOTL

	3. TRANSLATING OCL TO BOTL
	3.1. OCL SYNTAX
	3.2. TRANSLATION ISSUES
	3.3. TRANSLATING OCL
EXPRESSIONS TO BOTL
	3.4. TRANSLATING OCL CONSTRAINTS TO BOTL
	4. CONCLUDING REMARKS
	References

