
BEHAVIOR EXPRESSION AND OMDD 

Yunming WANG 
INRIA - IRISA, 

Campus de Beaulieu, 

35042 Rennes, France 
ywang<!!irisaJr 

Abstract We propose a new synchronous language called Behavior Expression, its seman­
tics and compilation mechanism. We also present OMDD as intermediate code 
for its compilation. Dependency cycle, determinism arid composability can be 
checked directly by analyzing OMDDS. Consequently, it allows partial com­
pilation and automatie distribution. Based on these benefits, we propose a new 
methodology for the development ofreal-time distributed systems by integrating 
behavior expression into UML. 

Keywords: Behavior expression, OMDD, real-time system, distributed system 

Introduction 

The Unified Modeling Language (UML) [8] has rapidly become a hot topic 
of the software design community. It is composed of different kinds of di­
agrams which describe different views. These views represent our comple­
mentary and orthogonal cognitions of the desired system. By specifying one 
cognition in one diagram, UML eases system modeling, and induces less mis­
understandings. Having a set of benefits, it becomes a standard framework for 
object -oriented methodologies. 

However, when it comes to consistency check for UML, or formal verifi­
cation, or code generation etc., it is somehow hard to grasp a uniform and 
mathematically well-founded semantics from these varlous different diagrams. 
And without a formal semantics, formal verification becomes a hard work. 

Meanwhile, the concept of synchronous programming [2] has been pro­
posed and widely accepted in the development of real-time systems, circuits, 
and embedded systems. Based on their mathematical foundation, synchronous 
languages have strict semantics and efficient approaches for their compilation 
and optimization [5, 1, 3]. Formal techniques for verification and validation 
have also been proposed. 

http://dx.doi.org/10.1007/978-0-387-35520-7_21


286 

Our aim in this paper is to take advantage of the rich background of syn­
chronous model and UML by providing a new synchronous language called 
BE (Behavior Expression) and a new methodology for the development of 
real-time distributed systems. Thanks to the flexibility of BE, we can easily 
integrate it into UML. And with this integration, we have the benefits of easy 
system modeling (from UML), automatie code generation and system distribu­
tion (from BE) at the same time. 

We will present the syntax and semanties of BE in seetion 1 and 2. Then 
we will provide a mechanism of compilation in section 3. In seetion 5, we will 
present OMDD as intermediate code for compilation. Partial compilation and 
automatie system distribution are concisely sketched in section 6 and 7. At 
last, we discuss the integration of BE into UML in section 8. 

1. SYNTAX OF BEHAVIOR EXPRESSION 

1.1. PRINCIPLES OF SYNCHRONOUS 
PROGRAMMING 

In the concept of synchronous programming, we assurne a real-time system 
reacts according to its environment step by step. Suppose the system has data 
elements Xl, X2,· .. ,Xn , then its behavior may be described as Figure 1. At 
instant 0, the values represent the initialization of the system. At each instant 
i > 0, the system generates new values for these data elements according to 
the environment and previous state. A data element u{ay have no value at some 
instants (e.g. X3 at instant 2). 

Xl X2 X3 X4 xn 

instant 0 2 7 

instant I 2 f. 

instant 2 5 f .; 

instant 3 7 5 6 3 

Figure 1 Principles of synchronous programming 

For a certain instant i > 0, denote the current value of x with x.set, and 
its previous value with x.get. Then, the principles of synchronous languages 
are to describe how Xi.set can be calculated from Xi.get and inputs for every 
instant. In the next sections we will propose a new language called Behavior 
Expression (BE). 



Behavior Expression and OMDD 287 

1.2. GRAMMAR 
The behavior of an object is specified by a Behavior Expression E, whose 

grammaris: 

e ::= 
I integer 
I truelfalse 
I z.get 
I z.set 
I fa(e ... · .e) 
I fb(e ... ·.e) 

/levent 
l/integer constant 
Ilboolean constant 

/I fa is an arithmetic function 
/I fb is a boolean function 

C::= 
I 
I 
I 
I 

z.get(e) 
z.set(e) 
-,z.get(e) 
-,z.Bet(e) 
CAC 

Figure 2 Grammar of behavior expression 

E::= z.set(e) 
I CI-E 
I EilE 
I EvE 

In this figure, e is an expression of a certain type (integer, boolean, event 
etc.). A data element x has two channels: x.get and x.set, they can be used in 
e (like a variable). Cis a condition1 used to trigger a BE E. 

1.3. COMMON SENSE 
Each BE E describes a behavior, or, vaguely speaking, a ''task'' we have to 

do. We have four ways to specify it: 

• Assign a set-channel with a value (x.set(e». 

• Divide the ''task'' into several parts, each corresponds to a "sub-task". 
Specifyeach sub-task with a BE, and then compose them (E 11 E'). 

• The "task" can be done in some different ways. Each is specified by a 
BE, and then make a choice between them (E V E'). 

• The "task" will be performed only on some condition C, it is specified 
as C I- E. 

1.4. EXTENSIONS 

• Inputs 

Input events or values are necessary to control a system interactively. 
They are represented by parameters. A parameter p has only a channel 
p.get whose value comes from the environment or user input. 

• Guards 

lItresembles boolean expression. x.get(e) can be regarded as "if the value of x.get equals e". A careful 
reader may ask why we do not use disjunetion in its definition. and why we use -,x.set(e) and -,x.get(e) 
instead of -,C. The reasons are: 11 The restrietion of einthis form avoids transforming a boolean expres­
sion in Disjunctive Normal Form (which is NP-complete) while constructing OMODS. 21 This is already 
enough for specification since pure boolean expression can be used as a guard (cf. section 1.4). 



288 

Suppose b is a boolean expression. b I- E is introduced for convenience: 
bl- E = (e.set(b) 11 e.set(true) I- E) 

• Initial state 

We can also provide the initial state for a BE as shown in the following 
syntax. 

E ::= /* defined in 1.2 */ 
1 bl- E /* guard extension */ 
1 E "initial" I /* initialization */ 

1"= x.set(e) 
1 1',' x.set(e) 

• Name 
We can give a BE a name, and then use the name for clearer representa­
tion. 

E "= /* defined above */ 
1 name ":=" E /* give E a name */ 
1 name /* recall a named BE */ 

• Priority 
p 

We uses EI V E2 to describe a "choice with priority". When the choice 
is not exclusive, we choose EI as it has higher priority than E2 (See 3.3 
for more detail). 

1.5. EXAMPLES 
Example 1 This is a simple example mimicking the function of a dock. It is divided into 
three parts: second, minute and hour. For every instant, the behavior of second is to increase 
byone. 

E. := S.set«S.get + 1) mod 60) initial S.set(O) 

The behavior of minute is to increase by one whenever a new minute passes (S is set to 0), 
or to keep the same value otherwise. 

Ern := p initial M.set(O) ( 
S.set(O) I- M.set«M.get + 1) mod 60) ) 

V M.set(M.get) 

Similarly, the behavior of hour is to increase by one whenever a new hour passes (S and M 
are set to 0 at the same time), or to keep the same value otherwise. 

Eh := p initial H.set(O) ( 
S.set(O) A M.set(O) I- H.set«H.get + 1) mod 24) ) 

V H.set(H.get) 

As a result, the behavior of the total system is the composition of these three: Eclock = 
E.IIErn liEh. 



Behavior Expression and OMDD 289 

Example 2 Suppose we have a vinual system with a boolean input C. When C is true, we 
let X increase by 1 and Y be X * 2. Otherwise, we let X decrease by 1 and Y be X/2. Initially, 
X and Y are O. The behavior expression ofthis system is: 

C.get(true) I- ( 11 

C.get(false)1- ( 11 

Y.set(Xset * 2) 
X.set(X.get + 1) ) 

initial X.set(O), Y.set(O) 
X.set(X.get - 1) 
Y.set(X.set/2) 

2. SEMANTICS OF BE 

• Apre-assignment P of a BE is to associate each get-channel with a value 
in its corresponding domain. 

• An assignment A of a BE is to associate each set-channel with a value 
in its extended domain2• 

2.1. MAP 
Given a pre-assignment P and an assignment A, we define a map f : E U 

C -+ {T, F, -} corresponding to grammar items illustrated in Figure 2. 

f(x.get(e)) = (x.get == e) 
f(x.set(e)) = (x.set == e) 

f(-,C) = -,f(C) 

f(Cl /\ C2) = f(C1) /\ f(C2) 
f(C I- E) = f(C) I- f(E) 

f(El 11 E2) = f(EÜ 11 f(E2) 
f(El V E2) = f(E1) V f(E2) 

In addition, -,T = F; -,F = T; /\, 1-, 11 and V are defined in Figure 3. 

1 /\ 11 T 1 F 1 11- 11 T 1 F 1 _ 1 1 11 11 T 1 F I - 1 1 V 11 T I F I - I 
T T F T T T T T 

1 11 1 : 11 11 1 1 = 1 
F F F F 
- T F -

F T F F 
- T F -

Figure 3 Map definition for A, 1-. 11. V 

2 As stated in section 1.1. a data element may have no value at some instants. this is called absence. We 
extend the domain with an "absent" value "1." denoting its absence. 



290 

Example 3 As a continuation of Example 2, P = {C.get = true, X.get = 3, Y.get = 6} 
is a pre-assignment, and A = {X. set = 4, Y.set = 8} is an assignment. Let's demonstrate 
the definition ofmap step by step: 

I(X.set(X.get + 1» = (X. set == X.get + 1) = T 

I(Y.set(X.set * 2)) = (Y.set == X.set * 2) = T 

I(C.get(true» = (C.get == true) = T 

I ( X.set(X.get+1) ) =TIIT=T 
11 Y.set(X.set * 2) 

( ( x.set(X.get + 1) )) 
I C.get(true) I- 11 Y.set(X.set * 2) = T I- T = T 

I(C.get(false» = (C.get == lalse) = F 

I (c (I 1 ) I- ( X.set(X.get - 1) )) - F I- ?-
.get a se 11 Y.set(X.set/2) - . - -

I ( C.get(true) I- (11 ) = T 11_ = T 

( x.set(X.get - 1) ) 
V C.get(false) I- 11 Y.set(X.set/2) 

In (7), we used a trick: for any value "? ", F I- ? = -. 

2.2. SEMANTICS 

(1) 
(2) 
(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Given a BE E, a pre-assignment P and an assignment A, A is called a 
solution of E with respect to (w.r.t) P iff: 

• f(E) = T 

• for all x.set, if \lC f- x.set(e) appear in E, f(C) = F, then x.set is 
assigned with 1. in A. 

In Example 3, A is a solution w.r.t P, while A' = {X.set = 4, Y.set = 7} 
is not. 

Given an object whose behavior is described by E with initialization Ao, its 
behavior is the trace: 

Ao, Al, A2 ,'" 

where Ai is a solution of E w.r.t Ai-I, i = 1,2,3,' ". Note that when shifting 
from instant (i - 1) to i, a data element moves the value in x.set to x.get. 
Which means that Ai- l (together with the input values) is actually the pre­
assignment for Ai' 

2.3. DETERMINISM 

Given an expression E and an initial state, it is deterministic iff for all i = 
1,2, 3, .. " there is only one solution Ai of E w.r.t Ai-I. 



Behavior Expression and OMDD 291 

2.4. COMMENTS 
According to the syntax and semantics, we can see that BE is simply an 

expression that must be satisfied at every instant. It is flexible in the sense 
of "choice" and "activation". Suppose we have already described two behav­
iors in BE EI and E2. Now we have a new system which behaves as EI on 
condition Cl and as E2 on conditions C2. Then we can easily write the BE 
(Cl r Ed V (C2 r E2) for the new system. Some earlier synchronous lan­
guages [2] do not share these flexibilities however. 

3. COMPILATION OF BE 

3.1. SIMPLIFYING BE 

Theorem 1 According to the map defined in section 2.1, we can easily prove: 

C r (EIIIE2) = (C r EI)II(C r E2) 
C r (EI V E2) = (C r Ed V (C r E2) 
C r (Cf r E2) = (C 1\ Cf) r E2 

We simplify a BE by repeatedly substituting the left part of these equations by 
the right part, until for any C r E, E is a set-channel. Such C rEis called a 
primitive BE. A simplijied BE is then composed of a set ofprimitive BES with 
operations V and 11 . 

Example 4 Let us consider the BE in example 2. After simplijication it becomes: 

C.get(true) f- X.set(X.get + 1) ) 
C.get(true) f- Y.set(x.set * 2) 

C.get(false) f- x.set(X.get - 1) ) 
C.get(false) f- y.set(X.set/2) 

3.2. WELL-FORMED BE 

) init;a! X ... '(O), Y. .. ,(O) 

A simplified BE Eis well{ormed iff: for all EI 11 E2 appears in E, there 
doesn't exist Cl r xI.set(ed in EI and C2 r X2.set(e2) in E2 such that 
xI.set and x2.set are actually the same set-channeI3 . 

In this paper, we consider only well-formed BE. A BE not well-formed is 
something like a C program with syntax error. 

Theorem 2 A well{ormed BE E is deterministic iJJ jor all EI V E2 appears 
in E, Cl r xI.set(ed in EI and C2 r X2.set(e2) in E2, j(CI 1\ C2) == F. 
(prooj omitted) 

3This is similar with SIGNAL, we don't accept (IX := 1 when Cl IX := 2 when C21) in SIGNAL. This 
is to say, if a system 8 is a composition of two sub-systems 81 and 82, then 81 and 82 are supposed to do 
different things. 



292 

3.3. NON-DETERMINISM 
If a well-formed BE is not deterministic, we do not know which one of EI or 

E2 should be chosen when Cl and C2 are both true. We will give two remedies 
for this problem. 

• U sing priority 
p 

EI V E2 is introduced as a "choice with priority". Whenever we have 
Cl I- xl.set(ed in EI, C2 I- X2.set(e2) in E2, Cl and C2 are not 
exclusive, suppose Cl = Ai Cli (cf. its grammar in Figure 2), then 
C2 I- X2.set(e2) is substituted by: (where -+..,C) = C) 

C2 /\ ""Cn I- X2.set(e2) 
V C2 /\ Cn 1\ ""C12 I- X2.set(e2) 
V 
V C2 /\ Cn /\ ... /\ Cl,n-l /\ ""Cln I- X2.set(e2) 

• User indication 

Introduce a new parameter to control the choice between EI and E2: 
I- Ed V I- E2). 

Example 5 After this process, the BE in Example 1 is changed to: 

S.set«S.get + 1) mod 60) initial S.set(O) 

11 ( S.set(O) I- M.set«M.get + 1) mod 60) ) ... IM t(O) mltla .se 
V ...,S.set(O) I- M.set(M.get) 

11 
( 

S.set(O) /\ M.set(O) I- H.set«H.get + 1) mod 24) ) 
V ...,S.set(O) I- H.set(H.get) initial H.set(O) 
V S.set(O) /\ ...,M.set(O) I- H.set(H.get) 

3.4. ORGANIZING BE 

Both C I- x.set(e) and Vi Ci I- x.set(ei) are called a single choices on x, 
denoted by V x. We will re-organize a BE to "compositions of single choices", 
that is, of the form 11 iV xi· 

For any minimal occurrence of: 

we can re-write it as: 

11 (Vxi) V (Vyj) 
11 Vxi 
11 Vyj 

where xi = yj 
ßyj : xi = yj 
ßxi : xi = yj 

(9) 

(10) 



Behavior Expression and OMDD 293 

Theorem 3 On condition ofwell-formed deterministic BE, (9)=(10). 

By repeatedly applying this rule, we can gain our aim. 

Example 6 The BE in example 4 is a well-formed deterministic BE. After re-organization, 
it becomes: 

C.get(true) I- X.set(x.get + 1) ) 
V C.get(false) I- X.set(x.get - 1) 

C.get(true) I- Y.set(X.set * 2) 
V C.get(false) I- Y.set(X.set/2) ) 

) Initial X."t(O), Y.set(O) 

3.5. CODE GENERATION 
• Generating SIGNAL code 

SIGNAL was proposed in [2] and its compilation has already been im­
plemented. An advantage of generating SIGNAL code is to re-use the ex­
isting dock calculus and causality analysis procedures of SIGNAL com­
piler. 

After the re-organization, a BE looks like a SIGNAL process. A "sin­
gle choice" is an equation in SIGNAL (probably) with "default", and 
composition of "single choices" is just like composition of equations in 
SIGNAL. However, if we re-write a BE in SIGNAL directly like this, we 
will usually get dock constraints. The main reasons are: 

- X and X$ (correspond to X.set and X.get in this paper) have the 
same dock in SIGNAL. 

- for an equation X := f(X1,···, X n ), X, Xl> ... , X n have the 
same dock. 

However, in BE, we do not have these constraints. A solution is to create 
a set of new variables in SIGNAL carrying the wanted values with the 
"most frequent" dock. As these variables have the same dock, they can 
be used in every expression as we like. More details are omitted in this 
paper, please refer to appendix for examples. 

A prototype of translating a BE into SIGNAL is already implemented. 
The generated signal processes of Example 1 and 2 are provided in the 
appendix. 

• Using OMDD as intermediate code 

This will be presented in section 5. 



294 

4. DEPENDENCY AND VIRTUAL ORDER 
The compilation of synchronous languages usually requires dependency 

(causality) analysis [1,5]. Let's consider the BE in example 2, we must know 
the value of X.set and C.get before the calculation of Y.set, so we have de­
pendency X.set Y.set and C.get -+ Y.set. Surely, dependencies cannot 
have cycle. So there exists a total order which covers all the dependencies. We 
call it virtual order. Figure 4 gives an algorithm to calculate a virtual order 
from a re-organized BE E = 11 i V xi· 

Let Si be the set of channels other tban Xi .set appearing in V",i 

Let B be the set of all get-channels of E 
Let N = 0 IIchannels already ordered 
Let V = () lIempty virtual order 
while (E is not empty) { 

} 

if 3i such that Si B then { 
append a random order of (Si \ N) to V 
append Xi .set to V 
N = NU Si U {Xi.set} 
B = B U {Xi.set} 
remove V",i from E 
} 

else report error 11 due to dependency cyde 

return V 

Figure 4 Algorithm of virtual order 

Example 7 The virtual orders o/the BE in Example 5 is: 

< 8.get, 8.set, M.get, M.set, H.get, H.set > 

and that 0/ Example 6 is: 
< C.get, X.get, X.set, Y.set > 

5. OMDD 
Binary Decision Diagram (BDD) [6,9] has been proposed as a date struc­

ture to represent boolean functions. Reduced ordered BDD (ROBDD) [7] in­
troduces further restrictions on the order of decision variables in the graph. 

In this section, we will present a date structure called Ordered Multiple De­
cision Diagram (OMDD) on a similar principle as an intermediate code for the 
compilation of behavior expressions. 

5.1. DEFINITION 

Given the channels totally ordered, we define OMDD as: 

1 Anode (x.set, x.set(e)) is an OMDD 



Behavior Expression and OMDD 295 

2 Given a set of ÜMDDs M l , M 2 ,' .• ,Mn, the structure of figure 5 is also 
an ÜMDD, where: 

(a) Cis a channel 

(b) if C is a set-channel, A is an (possibly empty) action C(e). (A 
must be empty if Cis not a set-channel. ) 

(c) Li are mutually exclusive restrictions of the value of channel C 

(d) for any channel C' in M l , M 2 ,"', Mn, C < C' 

(C, A) 

A 
Figure 5 Base structure of OMDD 

We are somehow indifferent to the strict form of the "restriction" of values. 
We can use "e", "# e" (e is a constant like 0, true, etc.), "any" or even sub­
ranges such as [3, +00). What's important is to be able to perform the union, 
intersection, subtraction of "restrictions". 

The structure in figure 5 means, we will do action A (if there is one) when 
arriving at node (C, A). Then we check the value of C, if it satisfies L k , then 
we leave for M k . So, code generation from ÜMDD is very simple. 

5.2. CODE GENERATION FROM üMDD 

1) For a leaf node N = (x.set, x.set( e)), it is translated to a procedure: 

PflO{x.set = e;} 

2) For an ÜMDD M as Figure 5, it is translated to a procedure: 

P..MO{ 

} 

A; // if Ais empty, we do nothing here. 
if (C is in LI> then P..Ml 0; 
else if (C is in L 2) then P ..M20; 

else if (C is in Ln) then P ..Mn 0; 



296 

5.3. CONSTRUCTING OMDD 

In this subsection, we will discuss the construction of OMDD for a BE. Af­
ter the simplification, determinism check, and re-organization, a BE can be 
described as: 

• E ij 

E = 11 iEi 

Ei = VjEij 

Eij = ÄkCijk(eijk) f-

(11) 

(12) 

(13) 

Without 10ss of generality, we suppose Cij1 < Cij2 < ... < Cijn . Then 
the OMDD of Eij is4: 

• Ei = VjEij 

The ÜMDD Mi of Ei can be obtained from Mij by choice function given 
in Figure 6. 

• E = 11 iEi 

The OMDD M of E is obtained fram Mi by comp function illustrated in 
Figure 7. 

5.4. EXAMPLES 
Example 8 Let us consider the expression in Example 6, and use the virtual order in example 
7, the Jour base OMDDs are: 

(C.get, X.set(x.get + 1)) 

(C.get, X.set(X.get - 1)) 

(C.get, Yset(X.set * 2)) 

(C.get, Yset(X.set/2)) 

When they are bound together, the result OMDD and its corresponding code are presented in 
Figure 8. 

4 A careful reader may ask how about if eij k is not a constant. This is not a fatal problem, however. We can 
simply substitute Cijk (eijk) by and compose Eij with == eijk)' 



OMDD choice(OMDD m1, OMDD m2) 
( 

if (m1.c==m2.c) 
( 

Behavior Expression and OMDD 297 

if (m1.a is not empty && m2.a is not empty) then 
raise errori // nondeterministic 

else 
( 

if (m1 has no subtree) raise error; // nondeterministic 
if (m2 has no subtree) raise error; // nondeterministic 
suppose the subtrees of m1 are m11, m12, m1n with label 111, 11n; 
suppose the subtrees of m2 are m21, m22, ... m2m with label 121, 12m; 
NODE tmp; 
tmp.c=m1.c; 
tmp.a=union of m1.a and m2.a // the non-empty action if there is one 
11=union of 111,112, ... ,11n; 
12=union of 121,122, ... ,12m; 
for(i=l;i<=n;i++)add m1i as a subtree of tmp with label 11i\12; 
for(j=l;j<=m;j++)add m2j as a subtree of tmp with label 12j\11; 
for(i=l;i<=n;i++)for(j=l;j<=m;j++) 

add choice(m1i,m2j) as a subtree of tmp with label 12j'11i; 
return tmp; 

else if (m1.c<m2.c) 
( 

NODE tmp; 
tmp.c=m1.c;tmp.a=empty; 
add subtree m2 to tmp with lab1e "any"; 
return choice(m1,tmp); 

else 
( 

NODE tmp; 
tmp.c=m2.c;tmp.a=empty; 
add subtree m1 to tmp with lab1e "any"; 
return choice(tmp,m2); 

Figure 6 Choice operation for two OMDDS 



298 

OMDD comp (OMDD m1, OMDD m2) 
{ 

if (m1.c==m2.c) 
{ 

if (m1.a is not empty && m2.a is not empty) then 
raise error; //OMDDs can not be composed 

else 
{ if (m1 has no subtree) 

m2.a=m1.a; //m1.a is not empty because it is a 1eaf node 
return m2; 

if (m2 has no subtree) ( 
m1.a=m2.a; //m2.a is not empty because it is a 1eaf node 
return ml; 

suppose the subtrees of m1 are m11, m12, 
suppose the subtrees of m2 are m21, m22, 
NODE tmp; 
tmp. c=m1. C; 

m1n with label 111, 
m2m with label 121, 

tmp.a=union of m1.a and m2.a // the non-empty action if there is one 
11=union of 111,112, ... ,lln; 
12=union of 121,122, ... ,12m; 
for(i=l;i<=n;i++)add m1i as a subtree of tmp with label 11i\12; 
for(j=l;j<=m;j++)add m2j as a subtree of tmp with label 12j\11; 
for(i=l;i<=n;i++)for(j=l;j<=m;j++) 

add comp(m1i,m2j) as a subtree of tmp with label 12j A 11i; 
return tmp; 

else if (m1.c<m2.c) 
( 

NODE tmp; 
tmp.c=m1.c;tmp.a=empty; 
add subtree m2 to tmp with lable "any"; 
return comp(m1,tmp); 

else // m2.c < m1.c 
( 

NODE tmp; 
tmp.c=m2.c;tmp.a=empty; 
add subtree m1 to tmp with 1ab1e "any"; 
return comp(tmp,m2); 

Figure 7 Composition operation for two OMDDS 

Un; 
12m; 



Behavior Expression and OMDD 299 

if c.get=true then 
{X.set=X.get+ 1; Yset=X.set*2;} 

else if C.get==false then 
{X.set=X.get-l; Yset=X.seU2;} 

(C.get,O) 

(Y.set, Y.set(Xset'2)) 

(X.set, x,sF;get.!)) 

(Y.set, Y.set(X.setl2)) 

Figure 8 Bound OMDD and generated code of Example 8 

Example 9 Let us consider the BE in Example 5, and virtual order in example 7, the base 
OMDDs, the bound OMDD, and the generated code are: 

(S.set, S.set(5.get + 1 mod 60)) 
o 

(5.set, 0)--+(M.set, M.set(M.get + 1 mod 60)) 

(S.set, M.set(M.get)) 

(S.set, H.set(H.get + 1 mod 24)) 

(S.set, H.set(H.get)) 

(S.set, H.set(H.get)) 

(H.set, H.sel(H.gel+! mod 24)) (H.sel, H.set(H.gel)) (H.sel, H.sel(H.gel) ) 

S.set=S.get+l mod 60; 
if S.set==O then 
{ M.set=M.get+ 1 mod 60; 

} 

if M.set==O then H.set=H.get+ 1 mod 24; 
else if M.set!=O then H.set=H,get; 

else if S.set!=O then 
{ M.set=M.get; 

H.set=H.get; 
} 

6. PARTIAL COMPILATION 
In section 3, we presented the compilation of BE by way of SIGNAL. One 

benefit of this compilation is the re-use of SIGNAL compiler. In section 5, 
we presented OMDD as intermediate code. Besides the efficiency of generated 



300 

code, this has two other advantages: partial compilation and automatie system 
distribution. We discuss partial compilation in this section. 

Suppose we have a system E consisting of sub-systems Ei with 11 and 
V operations. In section 3 and 5, we compile E directly. So, if there is a 
sub-system reused several times, it will be integrated and compiled several 
times. This is not satisfying when re-use is highly demanded. Can we com­
pile sub-systems Ei so that the compilation of E is simply an integration of 
pre-compiled codes? Unfortunately, it is shown in [4] that, brote-force pre­
compilation and their simple combination have some problems. 

ActuaIly, in order for partial compilation, we must be able to do following 
things from the pre-compiled codes for system integration: 

1 Check if the integration of sub-systems will introduce dependency cy­
eIes. 

2 Check the composability of subsystems. For example, if two sub-systems 
assign different values to the same channel on the same condition, they 
can not be composed. 

3 Check the determinism of the integrated system. 

These are easy when ÜMDD is used as intermediate codes. For 1, we need 
only to check if their virtual orders are confiiet. And the algorithms given in 
Figure 6 and 7 contain already check 2 and 3. 

ActuaIly, in the total compilation presented in section 3 and 5, we have 
already checked these properties from BE: virtual order is generated, compos­
ability and determinism are already assured. So, when constructing ÜMDD, 

they do not need the checks in "choiee" and "comp" operation any more. 
This result is satisfying: Partial compilation ensures re-usability. Sub-systems 

and eIasses can be designed and compiled into OMDDS and stored in a library. 
We are able to reuse the compiled üMDDS as weIl as existing eIasses. This is 
helpful for large-scale systems. 

7. SYSTEM DISTRIBUTION 
Although the concept of synchronous model has been widely accepted, it is 

also argued that, very frequently, real-life architectures do not obey the ideal 
model of perfect synchrony. Consequently, when a synchronous system is 
distributed to several sites with an asynchronous communieation, its behavior 
will probably change. 

Fortunately, some technieal results on this issue have been presented in [4, 
3]. As an inference of these results, we can safely distribute a synchronous 
system without changing its behavior if the OMDDS of sub-systems are all 
sub-trees of the ÜMDD of the total system. 



Behavior Expression and OMDD 301 

Suppose, for instance, the total system E is composed of sub-systems Ei. 
If for all i, the OMDD of Ei is a subtree of that of E, then we can safely 
distribute Ei into different sites. However, suppose the OMDD of EI is not a 
sub-tree of that of E, we can find a small E{ (by analyzing OMDDS) such that 
the OMDD of (E{ 11 EI) is a sub-tree and E has the same behavior when EI 
is substituted by (E{ 11 Et}. Then we can use (E{ 11 Et} instead of EI in the 
distribution. This is not a magie, essentially, adding E{ to EI actually means 
adding a protocol of communieation. 

8. METHODOLOGY OF DEVELOPMENT 

In this section, we aim to integrate BE into UML in order to take both the 
advantages of synchronous concept and that of object oriented concept, and 
to present a new methodology of the development for real-time distributed 
systems. 

In this methodology, a dass of reactive objects will be represented by a 
graph as : 

Class name 
Interface 

Behavior 
expression 

So, we will use UML dass diagrams and deployment diagrams to describe 
the architecture of the desired system; and use state machines, MSC, and BE 
to define its reactive behavior. 

In the beginning, we may have only vague ideas and the system is highly 
abstracted. Thanks to the flexibility of BE, it allows us to specify premature 
systems when we have only vague ideas in early stages. As development pro­
ceeds through the life cyde, these high-level abstract elements are expanded 
into low-Ievel concrete elements; and the maturity level of element increases 
as it is corrected, polished, and optimized. 

The choiee ofusing state-machine, MSC or BE depends on the characteristie 
of the described object. Although BE fits the specification for lots of objects, 
state-machine may fit better for some other objects. But, by the end of the 
design process, other diagrams are translated to behavior expressions automat­
ieally. For example, we have already developed a prototype to translate state 
machines into BE. At the last stage, we will use the techniques stated in pre­
vious sections to simplify the BE, check and enforce determinism, re-organize 
it, and at last, OMDDS are constructed, codes are generated and distributed 
correctly over different sites. 

Let us consider a simple example: a dock with time-set operation. It has 
three buttons. "Mode" button (denoted with M_b) is used to change the mode 
ofthe dock to vision-mode, set-minute-mode, set-hour-mode and again vision-



302 

mode. An "Add" button and a "Sub" button (denoted with +_b and -_b re­
spectively) are used to increase or decrease the value when the clock is in 
set-minute-mode or set-hour-mode. Pressing "Add" button and "Sub" button 
when the clock is in vision-mode will do nothing. 

After analysis of this requirement, we can decompose the system into three 
parts. One is to run the time normally in vision-mode as stated in the example 
1, one is to manipulate the mode, and the other is to increase or decrease the 
value of minute or hour when necessary. So this system can be drawn as a class 
diagram in the following figure. 

Clock+Setter 
M_b, + _b, -_b 

S,M,H 

E clock I E mode I E set 

'> 

I I 
Clock Mode controler setter 

S,M,H M_b,mode mode, + _b, -_b 
M,H 

Eclock Emode Eset 

9. CONCLUSION 
In this paper, we proposed a new synchronous language called BE to de­

scribe behavior of reactive objects. Essentially, it is simply an expression that 
must be satisfied at every instant. It is a declarative language and it is flexible in 
the sense of activation and choice. As a result, it is suitable even in early stages 
of development when we have only vague cognition of the desired system. 

Based on its mathematical semantics and mathematical form, we presented 
a set of mechanisms to simplify BE; to remove non-determinism by priority or 
user indication; to re-organize well-formed deterministic BE; and to compile 
BE by way of SIGNAL. We provided also an approach to build a total order of 
channels covering all the dependencies. 

We also proposed OMDD as an inter-mediate structure for the compilation 
of BE. Constructing OMDD from BE and generating code from OMDD are 
presented. The "choice" and "comp" operations on OMDDS allow partial com­
pilation and facilitate automatic system distribution. 

By integrating BE into UML, we get an ideal approach for the development 
of real-time distributed systems. We have at the same time the advantages of 
easy system modeling and formal techniques. We use UML class diagram and 



Behavior Expression and OMDD 303 

deployment diagram to describe the architecture; use state machine, MSC, and 
BE to define the behavior. State-machines and MSCs can be translated into BE 
to take advantages of partial compilation and system distribution mechanism. 
Till now, a prototype of translating from state-machines into BE, and another 
from BE into SIGNAL have been implemented with satisfying results. 

Appendix: SIGNAL processes for Example 1 and 2 

process result = 
( ? 

integer S; 
integer M; 
integer H 

(I sys := 1 
1 S_val := S default (S_val$ init 0) when 'sys 
1 S-pre:= (S_val$ init 0) when 'sys 
1 S-pre '= sys '= S_val 
1 := M default init 0) when 'sys 
1 M-Pre:= (M_val$ init 0) when 'sys 
1 M-Pre '= sys '= 
1 H_val := H default (H_val$ init 0) when 'sys 
1 H-pre:= (H_val$ init 0) when 'sys 
1 H-pre '= sys '= H_val 
1 S := «S-pre+l) module 60) when 'sys 
1 M := «M-Pre+l) modulo 60) when S_val=O when ·s 

default M-pre when 'sys 
H := «H-pre+l) module 24) when S_val=O when when 'M when ·s 

default H-pre when 'sys 
I) 

process result = 
( ? boolean C 

integer X; 
integer Y 

(I sys := 1 
1 sys '= C 

Figure A.l The SIGNAL process of Example 1 

1 X_val := X default (X_val$ init 0) when 'sys 
1 X-pre:= (X_val$ init 0) when 'sys 
1 X-pre '= sys '= X_val 
1 Y_val := Y default (Y_val$ init 0) when 'sys 
1 sys '= Y_val 
1 C_val := C default C_val$ when 'sys 
1 sys '= C_val 
1 X := (X-pre+l) when C_val=true when ·c 

I) 

default (X-pre-l) when C_val=false when ·c 
Y := (X_val*2) when C_val=true when 'X when ·c 

default (X_val/2) when C_val=false when ·x when ·c 

Figure A.2 The SIGNAL process ofExample 2 



304 

Acknow ledgments 

The author wishes to thank Guy Leduc sincerely for his valuable cornrnents. 

References 

[1] T. Amagbegnon, L. Besnard, and P. Le Guernic. Arborescent canonical 
form ofboolean expressions. Technical Report 2290, Inria, June 1994. 

[2] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous program­
ming with events and relations: the SIGNAL language and its semantics. In 
Science of Computer Programming, 16, 1991. 

[3] A. Benveniste, B. Caillaud and P. Le Guernic. From synchrony to asyn­
chrony. In J.C.M. Baeten and S. Mauw, editors, CONCUR'99, Concur­
rency Theory, 10th International Conference, vol. 1664 of Lecture Notes 
in Computer Science, 162-177. Springer V., 1999. 

[4] Albert Benveniste, Paul Le Guernic, and Benoit Caillaud. Composition­
ality in dataftow synchronous languages: specification & code generation. 
Information and computation, 1999. 

[5] LOIc Besnard. Compilation de SIGNAL:horloges, dependances, environ­
ment. PhD thesis, l'Universite de Rennes I, IFSIC, Jan. 1993. 

[6] C. Y.Lee. Representation of switching circuits by binary decision pro­
grams. Bell. Syst. Thch. J., 38:985-999, July, 1959. 

[7] R.E.Bryant. Graph-based algorithm for boolean function manipulation. 
IEEE trans. Comput., C-35(8), Aug. 1986. 

[8] J. Rumbaugh, I. Jacobson, and G. Booch. The unified modeling language 
reference manual. Addison-Wesley object technology series, 1999. 

[9] S.B.Akers. Binary decision diagrams. IEEE Trans. Comput., C-27:509-
516, June 1978. 


	BEHAVIOR EXPRESSION AND OMDD
	Introduction
	1. SYNTAX OF BEHAVIOR EXPRESSION
	1.1. PRINCIPLES OF SYNCHRONOUS PROGRAMMING
	1.2. GRAMMAR
	1.3. COMMON SENSE
	1.4. EXTENSIONS
	1.5. EXAMPLES

	2. SEMANTICS OF BE
	2.1. MAP
	2.2. SEMANTICS
	2.3. DETERMINISM
	2.4. COMMENTS

	3. COMPILATION OF BE
	3.1. SIMPLIFYING BE
	3.2. WELL-FORMED BE
	3.3. NON-DETERMINISM
	3.4. ORGANIZING BE
	3.5. CODE GENERATION

	4. DEPENDENCY AND VIRTUAL ORDER
	5. OMDD
	5.1. DEFINITION
	5.2. CODE GENERATION FROM
	5.3. CONSTRUCTING
	5.4. EXAMPLES

	6. PARTIAL COMPILATION
	7. SYSTEM DISTRIBUTION
	8. METHODOLOGY OF DEVELOPMENT
	9. CONCLUSION
	Appendix: SIGNAL processes for Example 1 and 2
	Acknowledgments

	References




