
BEHAVIOURAL SUBTYPING AND
PROPERTY PRESERVATION

Heike Wehrheim
Universitflt Oldenburg

Fachbereich Informatik

Postfach 2503, D-261 I I Oldenburg, Germany

wehrheim @informatik.uni-oldenburg.de

Abstract Inheritance is one of the key features in object-oriented design and analysis.
It especially supports an incremental development by allowing to stepwise add
new functionality to an existing system design.
When using a subclass which is a specialisation of a certain superclass, the ques­
tion arises which of the superclass' properties still hold for the subclass. We
investigate this topic for three behavioural subtyping relations, which formalise
the subtype - supertype relationship among classes on the basis of process al­
gebra correctness relations. According to the degree of change allowed by the
subtyping relations, safety and liveness properties of the superclass are preserved
up to different extents.

Keywords: Behavioural subtyping, process algebra, refinement, inheritance.

1. INTRODUCTION
Inheritance is the one of the key issues for the success of object-oriented

analysis and design methods as weH as programming languages. The main
purpose of inheritance is to support the structuring of specifications and code,
and to allow re-use of already written parts. Inheritance can furthermore be
applied in the incremental development of large systems, starting with a small
basic system description on which additional functionality is stepwise added
until the complete system has been designed. Such a development process
would start with a superclass, capturing the basic requirements on the system,
and derive new subclasses by inheritance which stepwise add new features to
the existing functionality. However, this approach is in general not error-free:
the addition of new features may interfere with the old ones in an undesired
way. In the telecommunications area this phenomenon is known as feature in­
teraction. Inheritance in general does not provide any help in avoiding feature
interactions; in fact, in many applications of inheritance, as for instance simple

http://dx.doi.org/10.1007/978-0-387-35520-7_21

214

code re-use, it is not desired to restrict the changes allowed in the subclass in
any way (see [13] for a classification of different forms of inheritance).

A relationship among subclass and superclass which requires the subclass to
reflect the behaviour of the superclass to a certain degree is subtyping. Sub­
typing in object-oriented formalisms lifts the usual notion of subtype to the
level of objects. Subtypes should always fulfil the principle of type substi­
tutability [19]: any changes in the subtype should be transparent to users of
the supertype. This is also the requirement that we have on an incremental
design: any addition of a new feature to a class should keep the old func­
tionality unchanged. Simple code-reuse often does not fulfil the principle of
substitutability, and in fact this is most often not even intended. The impor­
tance of subtyping concepts for object-oriented formalisms is witnessed by an
increasing concern in this topic: as an example, the new UML version 1.3 [15]
discusses a special subtyping category for statechart refinement; and Sun's new
TINI architecture [18] explicitly builds on a notion of subtype, which fixes the
correctness of services: any request for a special interface type may be granted
by returning a subtype.

Subtyping definitions are usually signature-based, Le. compare operations
of sub- and supertype according to their signatures. However, signatures alone
cannot guarantee substitutability since the semantics of methods may change
completely while retaining the signature. Behavioural subtyping as introduced
by for instance [12, 7, 1] overcomes this problem by comparing methods of
sub- and supertype according to their pre- and postconditions and their preser­
vation of global constraints on the type. A second, different, approach, which
we follow in this paper (also with the name behavioural subtyping), is taken by
directly comparing the dynamic behaviour (ordering of method execution) of
classes, not their methods in isolation. This approach takes a view on classes
as being active entities. In concurrent object-oriented languages active objects
have their own thread of control and often have to obey particular protocols in
order to behave properly. A number of authors have proposed such behavioural
subtyping relations [6, 14, 4, 3, 17, 2, 9, 8] for object-oriented formalisms,
most often based on some process algebra correctness relation. These relations
sometimes come with an alternative testing characterisation, which formalises
the degree of substitutability obtained by subtypes. The testing characterisa­
tions can be used to figure out the appropriate application domain of the par­
ticular subtyping relation: is it only sufficient for objects with a single client at
a moment or also correct for shared mutable objects.

Valid subtyping is so far defined as "obtaining a sufficient degree of substi­
tutability". A different view on correctness of subtypes is taken when instead
the preservation of properties of supertypes in their subtypes is considered. In
this paper we will be concerned with this view on behavioural subtyping: we
will investigate up to which extent properties of a superclass are preserved un-

Behavioural Subtyping and Property Preservation 215

der behavioural subtyping. Properties may for instance be safety requirements
on the methods of the superdass, or liveness requirements, guaranteeing the
availability of certain services to dients of the dass. Ideally, such properties
should still hold for subdasses, extending the superclass with additional fea­
tures. This would allow us to avoid the re-verification of properties on a sub­
type which have already been proven to hold on the supertype. We will study
the preservation of safety and liveness properties under three behavioural sub­
typing relations, two already appearing in [8], the third a new one.

As it turns out, the class of preserved properties of a particular subtype can
be seen as a characteristic of the subtyping relation. This, together with the
testing characterisations of [8], gives a second view on subtyping relations, and
thus sheds some more light on the question of which subtyping relation is the
most appropriate one for a given application domain.

We envisage the following use of subtyping relations in the development
process: for every dass, on which we intend to further add some functionality
by means of inheritance, we figure out its area of application: dass with single
access or with shared access, and depending on this, the appropriate subtyping
relation guaranteeing substitutability for the application area can be chosen.
Afterwards all subclasses derived from this dass have to be checked whether
they are correct with respect to the chosen behavioural subtype. The contribu­
tion of this paper is to show which properties of the supertype now also hold
for the subtype. This avoids re-verification of properties for every new subtype
which is created and thus supports modular reasoning.

The paper is structured as follows: The next section defines the technical ba­
sis (labelled transition systems and refinement relations), Section 3 introduces
behavioural subtyping and gives some examples. The following section then
starts the discussion on property preservation and Section 5 finally gives the
results.

2. DEFINITIONS
Most of the behavioural subtyping relations focusing on the dynamic be­

haviour of classes are based on some process algebra correctness relation, like
failures refinement or bisimulation. The application area for process algebras
is the description of distributed communicating processes, thus they are a rea­
sonable choice as a basis for behavioural subtyping for active objects. The
three relations we consider in this paper are all based on CSP theory [10, 16].

We start with the definition of the relevant concepts underlying our sub­
typing relations and correctness criteria. Labelled transition systems (short
LTS) are used for describing the behaviour of an object (or more precise: of
its class), the methods that are called on and by the object and their order of
execution. We view an LTS as describing the behavioural type of an active

216

object. The semantical basis for the behavioural subtyping relations and the
correctness checks is the /ailures model of the process algebra CSP. For this
the communication events of CSP are identified with method invocations.

We assume E to be a set of methods, in the following also referred to as actions.
We furthermore have two special invisible actions: T, v f/. E and let ETV =
E U {T, v}. Both actions stand for unobservable entities: the symbol T plays
the usual role of an intemal action of an object, whose execution is under the
control of the object alone; the symbol v stands for an action which is iIWisible
to a particular dient of an object, but is not under control of the object alone.
It may have to be executed together with another dient of the object.

Definition 2.1 A labelled transition system (LTS) is a tuple T = qo)
such that

• Q is a set 0/ states,

• --+ Q X ETV X Q is a transition relation and

• qo E Q is the initial state.

A labelled transition system of an object describes the possible states of an
object (identified by particular values of its attributes), the transitions between
states (which methods are enabled in astate and how the state changes with an
execution of a method) and its initial state.

We write q .!4 q' if (q, a, q') E --+. Let a E E;v be a sequence of actions
and A E a set of actions. The projection 0/ a on A, a -l- A, is the trace where
all occurrences from events not in A are removed. The alphabet of an LTS T,
a(T), is the set of actions occurring as labels in the transition relation.

An LTS describes the behaviour of an object. When we compare two ob­
jects with respect to their behaviour, we look at the traces they may execute
(sequences of methods) and their /ailures (what methods are blocked after a
particular trace). Traces and failures are derived from transition systems.

Definition 2.2 Let T = (Q, --+, qo) be a labelIed transition system, q, q' E
Q,ai E ETV and a E E*.

• q al ... an) q' iffthere are states qo, ql, .. . ,qn such that q = qo, qi a i+l)

qi+1 and qn = q'.

• q 4> q' iff there is a trace t E E;v such that q 4 q' and a = t -l- E.

• The set 0/ traces 0/ T is

traces(T) := {a E E* 13q E Q: qo 4> q} .

• Astate is stable ifno T transitions are possible: q stahle iff q

Behavioural Subtyping anti Property Preservation 217

The set of enabled actions of astate q E Q is

next(q) := {a E E I :3q' E Q: q q'} ,

its maximal refusals are refusals(q) := E \ next(q)

• The set offailures ofT is

failures(T) := ((a,X) E E* x 21: l:3q E Q: qo =* q 1\
q stahle 1\ X refusals(q)}.

Note, that failures always have subset-closed refusal sets. Failure sets only
record the refusals at stable states since T actions (whose execution is under
control ofthe object alone) might lead to states which refuse something differ­
ent. Refinement relations of CSP relate transition systems with respect to their
traces and failures.

Defiilition 2.3 A IahelIed transition system I is a trace-refinement of an LTS S
(denoted S !;;;;r I) ifftraces(I) traces(S), it is a failures-refinement (S I)
ifffailures(I)

Some remark concerning the notation: in CSP, the symbol!;;;; is used in a some­
what unusual direction, since on the left hand side we find the specification, i.e.
the more nondeterministic whereas on the right hand side the more re­
fined implementation is found. The subtyping relations defined later in the
paper are all based on refinement, therefore we also use this direction there:
the subtype will always stand on the right band side.

These two refinement relations are the basis for the subtyping relations in­
troduced in the next section and the correctness criteria defined in Section 4.
We will not treat divergence (livelocks) in this paper, but it can be easily incor­
porated into the subtyping relations presented here.

Besides the two refinement concepts, we will furthermore need two opera­
tors on labeUed transition systems: restrietion and concealment. Restrietion is
a standard process algebra operator (from CeS), concealment is a form of hid­
ing, which however just makes some set of actions invisible, but not internal.

Definition 2.4 Let T = (Q, -+, qo) be a IahelIed transition system and A E.

• The restrietion of A in T, T \r A, is defined as (Q, -+', qo) with

-+' = {(q,a,q') E -+ I a

• The concealment of A in T, T\cA, is defined as (Q, -+', qo) with

-+' = {(q,a,q') E -+ I a
U {(q, v, q') I :3 a : A • (q, a, q') E -+} .

218

Note that concealment renames actions into /1- not r-actions. The concealed
actions are afterwards not intemal to the object but simply invisible. Thus
concealment differs from elassical hiding in process algebras, which assurnes
that the hidden actions are afterwards under control of the object alone. Hiding
may usually introduce new non-stable states, whereas concealment does not.

3. BEHAVIOURAL SUBTYPING RELATIONS
We start the introduction into subtyping relations with a discussion of three

examples. For all three examples we give a labelled transition system of a
superelass describing the basic behaviour of the system (in solid lines) and af­
terwards look at some possible extension made in a subelass (in dashed lines).
The initial state of the LTS is marked by a cirele. Due to the augmentation
of the alphabet of the LTS during extension (new methods), traces or failures
refinement cannot be direct1y used as a subtyping relation; instead we have to
find a reasonable way of hiding the new methods during the comparison.

The first example is from the telecommunication area: the LTS of the super­
elass describes the basic behaviour of a (simplified) telephone interface to a
single user, starting with off JlOok followed by a diaLtone and the dialing of
a number. Afterwards a response or nOJesponse from the called side follows,
in case of a response the user of the telephone will talk to someone (and the
telephone has to transmit this). At all times, the user is free to hang up the
telephone (onJzook).

The solid states and arrows in Figure 1 show the LTS of the elass for a
basic telephone interface. This elass can be the basis for further extensions
with different features, as for instance call forwarding, call screening or voice­
mail. The extension we look at here is concemed with call screening, namely
the possibility of entering telephone numbers of people from which the user
does not want to accept calls: the new feature has to be chosen after off Jzook
(screen_call), the number has to be entered (typeJlumber), is again displayed
and has to be acknowledged in order to be inserted in the list of screened num­
bers. The new feature is shown in Figure 1 in dashed lines.

No feature interactions occur in this extension: the telephone company can
be sure that all users are able to use the old service as before, without noticing
any difference. The basic requirement for this extension ''no new behaviour
on the old service" is fulfilled l . This is the fundamental requirement for all
subtyping relations, and can be formalised with the help of the restriction op­
erator:

1 Not a11 kind of features in the telecommunication area have this correctness requirement; a lot of features
intentionally want to change the old behaviour (e.g. teen-Iine) and then a feature interaction occurs when
the old service remains available.

Behavioural Subtyping and Property Preservation 219

Figure 1 Basic telephone service (+ call screening input)

Definition 3.1 (Weak subtyping) Let U, 0 be LTS' and N = a(U) \ a(0). U
is a weak subtype of 0 (denoted 0 U) iff

o U\rN and
U\r N .

Weak subtyping compares sub- and superclass by completely neglecting to
look at the new service. The extension in the above example is a weak subtype
of the superclass.

The next example and its extension seems to be of a similar kind but reveals the
need for a different subtyping relation. Figure 2 shows the transition system of
a simple till: the customer inserts a card into the till and may then choose to
stop the interaction or make some withdrawal of money. Then (s)he has to type
herlhis pin (personal identification number); when it is correct, the amount of
money can be chosen and is delivered, when incorrect, another try can be made
or the transaction can be stopped. The new feature which is added to the basic
till is the printing of the balance. Once the card has been inserted, the user
may choose to print the balance and in this case no pin has to be given (the
data on the card is sufficient for this). After printing the user may stop the
transaction or make some withdrawal. The (dashed-line) extension in Figure 2

220

,-.
- -

",,"
SIOP , I .

" I pnnl
, , balance jI ,

ejecI

",

- J-
deliver mone

choose -r -)
amount cOlTecl

... _------

v.:rong
pm

, , , , , , , ,
\

Figure 2 Till (+ balance printing)

\

\
\ , , ,

I withdrawal
I
I , ,

for this additional feature is obviously wrong: the typing of the pin can now be
circumvented when the printing is chosen first.

With regard to the above defined subtyping relation, the extended till is a
valid weak subtype, although the new feature interacts with the old service in
an undesired way. This leads us to the definition of a second subtyping relation,
which mIes out such undesired extensions:

Definition 3.2 (Safe subtyping) Let U, 0 be LTS' and N = a(U) \ a(O). U
is a safe sub type of 0 (denoted 0 U) iff

o U\cN and
o U\r N .

This relation requires that even if a dient uses a new service, no new pos si­
bilities of using the old service arise (condition on traces). Furthermore, like
before, we require that the old service still works correct. The above extension
of the simple till is not a safe, only a weak subtype. In this safety critical ap­
plication, especially in the case, where the interface explicitly informs the user
about the new service (this is what tills do), weak subtyping is not sufficient.

A last example shows why we are still not at the end of defining relations. The
following example is different from the previous ones in that it allows more
than one client to access the services of the class at one moment. The example,
given in Figure 3, is the interface to a simple printer, which accepts requests

color
., request

I) ___ _

", ,-_ ..
print
color

Behavioural Subtyping and Property Preservation 221

print
color

•
bwl request

print
color

•

Figure 3 Black-and-white (+ colour) printer

for printing black-and-white pictures, bWJequest (up to a certain amount de­
pending on its internal store), and successively prints them (prinLbw).

The new feature to be added is the printing of colour pictures. The (dashed
line) extension is incorrect in that it might at some times block requests for
black-and-white prints (after some colour prints have been requested but not
yet printed). Thus, as soon as another dient is additionally using the new fea­
ture of the interface, users of the old service might indeed notice a difference.
The extension is however both a weak and a safe subtype. Instead, for shared
objects the following subtyping relations is necessary to capture the desired
substitutability:

Definition 3.3 (Optimal subtyping) Let U, 0 be LTS' and N = a(U) \ a(0).
U is an optimal subtype of 0 (denoted 0 U) iff

o U\cN and
o U\c N .

This definition defines a comparison which additionally involves an inspection
of the refusals in the new part of the LTS. For the users of the old service, no
new refusals (corresponding to a blocking of requests) are allowed. A correct
extension of the printer interface would have to serve the requests for black­
and-white and colour prints concurrently.

222

Q - ---f)

1:', , Jl.
1
, , -- , , ,

\ \ , ,
I I

Cl)1';- --
\. ... _... \

\ I , ,
color I

. A-equest
, I - - --
.. ;I

print
color

Q - --- -0 - --- ...
JI. ;I) ! ' --' ,\.. -' 1 \ I bw " r request

: , 4 - - - _ ' t, 4 - - - -
.. " Il', ;I
! '--- I '--- I
!

print
color

print
color

Figure 4 Correct extension of printer

Optimal subtyping is the strongest of the three behavioural subtyping rela­
tions.

Proposition 3.1 Let U, 0 be LTS', N = a(U) \ a(O). Then

o U 0 U and
o U 0 U .

A correct extension of the printer is shown in Figure 4: the new feature can
be concurrently executed with the old one. For a dient of the black-and-white
printing feature the same service as before is possible.

Summarising, we now have three subtyping relations for extension of func­
tionality: two for dasses with single access, the first one guarantees a minimal
correctness on the old service, the second one also guarantees that the new ser­
vice cannot be used to achieve new effects on the old features, and the third
subtyping relation guarantees this also for shared mutable objects.

For two of the subtyping relations (weak and optimal), corresponding testing
characterisations can be found in [8]. The definition of safe subtyping is new2•

2 A subtyping relation with the same name appears in [81, but we prefer 10 call the relation defined here
"safe", since it is safe in the sense of preserving all safety properties.

Behavioural Subtyping and Property Preservation 223

4. PROPERTIES AND INHERITANCE
The main issue of this paper is the relationship between properties which

hold for a superclass and for its subtypes. Ideally, subtypes should preserve all
properties of the superclass.

In the sequel, we take a CSP-like view on property specification: in CSP
theory properties are expressed as CSP processes (or direct1y LTS') and are
checked on some specification by a comparison of property and specification
with respect to their traces (then we speak of a safety property) or their failures
(a liveness property). A property is therefore a process or an LTS describing
every allowed behaviour and it is checked whether the behaviour of the imple­
mentation is a subset of this allowed behaviour: We check whether

P or
S

holds for safety or liveness properties P, respectively, and objects S. Since all
refinement relations are transitive, we can always make the following deduc­
tion:

P S I ::::} P I or S I ::::} P I ,

that is, all properties proven for S also hold for some refinement I.
It would be highly desirable to have a similar reasoning for superclasses and

their subtypes: prove a property for a superclass and know that it also holds
for all of its subclasses, which are behavioural subtypes. This is especially
important for an incremental design, which uses inheritance to subsequently
add new features to already existing and provably correct superclasses. How­
ever, before we can find out, which kind of properties are preserved for which
subtype, we have to make clear what we mean by "a subclass has the same
properties". Again, the usual refinement relations cannot be plainly used here
since inheritance usually introduces new methods in the subclass (extension
of functionality). A subclass may have traces over a larger alphabet than the
superclass and may therefore fail to be a trace or failures refinement of some
property process of which the superclass was a correct refinement. Neverthe­
less, the subclass may in a broader sense have the same property.

We explain this idea on the till example of the last section. The basic till is
correct with respect to the safety property "money is only delivered when the
correct pin has been typed in". Formalised in CSP, the property on the simple
till can be formulated by a process, whose traces involve all possible orderlngs
of actions from E in which every method deliver ..money is preceded by an
action correcLpin (interleaving, 1 1 I, of the correct order with all possible
orderings of the other actions, CHAOS):

Prop = correct_pin -> deliver_money -> Prop

224

aBrint

r / balance . ,,' ,

e
eard J withdra

deliver mone

er type! ehoose pm
amount

e ­
eorreet

pin

wrong
pin

Figure 5 Correet extension of till

P = I I I Prop)

The simple till is a trace refinement of such a safety tester process, the wrang
extension is not. This so far is a first observation on property preservation in
weak subtypes. Now consider a correct extension (as shown in Figure 5).
This correct extension is a safe subtype of the basic till and also a trace refine­
ment of P. Is it now a trace refinement of all processes P, of which the basic till
is? The answer is no, since we mayaiso use tester processes, which already fix
orderings between new methods of the subclass, for instance: print...balance
always before balance. The basic system trivially fulfils this requirement since
none of these actions occur. Nevertheless, the property does not hold for the
extended till, thus we have no property preservation here.

Hence we have to be more precise about what the subclass is expected to
preserve, and what it means for a subclass to have the same properties as the
superclass. What it should preserve are all restrictions formulated on "old"
methods, i.e. those of the superclass. Any property talking about methods not
present in the superclass clearly cannot be inherited, although the superclass
may trivially fulfil it. There are two possibilities of formulating the instead
needed "preservation on old methods": we only check the property on traces
over the old methods or we check it on all traces, but by only looking at old
methods. We call the former type of preservation "weak" and the more general
form "strong fulfilment". The first extension of the till only weakly preserves
the safety property (as long as the old service is used, usage is safe), the second
extension also strongly fulfils the safety requirement.

Behavioural Subtyping and Property Preservation 225

Definition 4.1 (Safety) Let P, S be LTS', P describing some safety property, S
an arbitrary object, and let A E be a set 0/ actions (the "old" methods).
S weakly fulfils the safety properties of P on A (P S) ijJ

traces{S) nA * traces{P) nA * .

S strongly fulfils the safety property of P on A (P S) ijJ

traces{S) .J.. A traces{P) .J.. A .

Strong fulfilment guarantees that the restrietions on orderings of actions as
specified by the safety property P are met in an object S, which possibly has
more methods than those of A. Similarly fulfilment of liveness properties can
be defined.

Definition 4.2 (Liveness) Let P, S be LTS', P describing some liveness prop­
erty, San arbitrary object, and let A E be a set 0/ actions (the "old" meth­
ods).
S weakly fulfils the liveness properties of P on A (P S) ijJ

(a,X) E/ailures{S), a E A*
::} 3{a,Y) E/ailures{P) suchthatXnA = YnA.

S strongly fulfils the liveness properties of P on A (P S) ijJ

(a,X) E/ailures{S)
::} 3{a', Y) E/ailures{P) such that a.J.. A = a' .J.. A

andXnA = YnA.

The condition on refusal sets guarantees that, with respect to A, the same set
of actions are blocked. Strong preservation always implies weak preservation.

Proposition 4.1 Let P, 0 be LTS', A E.

P CA 0 ::} P CA 0 and -sr -WT

P 0 ::} P 0

The above question "does subtyping preserve properties" can now be formu­
lated as: if P 01 and 02 is a subtype of 01, does 02 weakly or strongly
fulfil property P on a{ 01)?

5. RESULTS

Next we investigate whether our three subtyping relations weakly or strongly
preserve safety and liveness properties. Afterwards we discuss property preser­
vation as another characterisation of subtyping relations.

226

5.1. PROPERTY PRESERVATION

In the following we always assurne N = a(U) \ a(0) to be the set of new
methods, and often omit N as an index to the subtyping relations. We start
with the treatment of safety properties. Weak subtypes weakly preserve safety
properties.

Theorem 1 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a safety property. Then

P CO=} P CQ(O) U.
-7 -w7

Proof: Assurne (i) P 1:7 0, i.e. traces(0) traces(P) and (ii) 0 1:.r U \r N,
i.e. in particular traces(U \r N) traces(0). By definition of \r' we get the
following: traces(U \r N) = traces(U) n a(0)*. Hence traces(U) n a(0)*
traces(P), and thus also traces(U) n a(O)* traces(P) n a(O)*. 0

For the simple till and its first extension (a weak subtype), we therefore obtain
the result that the subc1ass weakly preserves all safety properties of the simple
till. As the example has also shown, weak subtyping does not guarantee strong
preservation of safety properties. But safe and optimal subtyping do:

Theorem 2 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a safety property. Then

P CO=} P C Q(0) U .
-7 -s7

Proof: Assurne (i) P 0, i.e. traces(0) traces(P) and (ii) 0 1:sst

U, i.e. traces(U\cN) traces(O). By definition of concealment we get
traces(U\cN) = traces(U) {. a(O) andhencetraces(U) {. a(O) traces(P).
Since traces(0) = traces(0) {. a(0), we gettraces(0) {. a(0) traces(P) {.
a(O), which all in one gives the desired result. 0

The analogous result for optimal subtypes is a corollary of the last theorem and
Proposition 3.1. With respect to safety properties, safe and optimal subtyping
are thus equally suitable. The second (correet) extension of the simple till is a
safe subtype and therefore strongly preserves all safety properties.

Considering liveness properties, we get the following two results. Weak sub­
typing weakly preserves liveness properties:

Theorem 3 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a liveness property. Then

P CO=} P C Q(0) U . _.r -w.r

Proof: Assurne (i) failures(0) failures(P) and (ii) 0 U, i.e. 0
U \ N. By definition of \r we have

Behavioural Subtyping and Property Preservation 227

jailures(U \, N) = {(O", X) I 3 Y : (0", Y) E jailures(U), 0" E a(0)*, X
YUN}.
The rest follows by a simple application of definitions:

(O",X) Ejailures(U), 0" E a(O)*
..u- Definition of \,

(0", X U N) E jailures(U \, N)
..u- 0 U

(0", X U N) E jailures(0)
..u- P 0

(0", X U N) E jailures(P)

and furthermore X n a(0) = (X U N) n a(0) holds. 0

With a similar kind of reasoning we can prove weak preservation of liveness
properties for safe subtyping.

Optimal subtyping also strongly preserves liveness properties:

Theorem 4 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a liveness property. Then

P c:: 0 =} P c::Q(O) U . _F -sF

Proof: Assume (i) jailures(0) jailures(P) and (ii) 0 U, i.e. 0
U \c N. By the definition of \c ' we have

jailures(U\cN) = ((O"+ a(O),X) 13(0",Y) Ejailures(U) YUN}.
The rest follows again by a simple application of definitions:

(0", Y) Ejailures(U)
..u- Definition \c

(0" + a(O),X) Ejailures(U\cN)
..u- 0 U

(0" + a(O),X) Ejailures(O)
..u- P 0

(0" + a(O),X) Ejailures(P)
..u- for X = Y

(0" + a(O), Y) Ejailures(P)

andfurthermore yna(O) = (YUN) na(O) holds. o

The table in Figure 6 summarises the results on property preservation for the
three subtyping relations.
Coming back to our example: since the second extension of the till is a safe
subtype, it strongly preserves safety and weakly preserves liveness properties
of the simple till. It does not strongly preserve liveness, since we now have
traces after which all of the old methods are blocked. However, as long as the

228

Safety Liveness

weak strong weak strong

weak subtyping J J
safe subtyping J J J
optimal subtyping J J J J

Figure 6 Inheritance of properties

old features are used, the same liveness is ensured. Since a client of a till is
free to choose himself what to do and since no-one else may simultaneously
use the till, this is sufficient for a correct till.

5.2. CHARACTERISATION
Last we address the characterisation of subtyping relations by the properties

they preserve from supertypes. Since the definitions of restrictionlconcealment
and weak/strong preservation have already been quite close, tight connections
are to be expected.

Theorem 5 Let 0, U be LTS' such that N = o:(U) \ 0:(0). Then

• 0 U if and only if 0 U and 0 u,

• 0 U if and only if 0 0) U and 0 u,

• 0 U if and only if 0 0) U and 0 0) U.

Proof: The direction "*" in all cases follows direct1y from the theorems about
property preservation (by choosing P = 0).
Direction There are four implications to be proven here.

o U * 0 U\r N •
By definition of restriction traces(U \r N) = traces(U) n 0:(0)* and by
weak preservation of safety traces(U)no:(0)* traces(O)nalpha(0)* =
traces(O).

o Ca(O) U * 0 c U\ N. -ff -7 c
By definition of concealment traces(U \c N) = traces(U) .} 0:(0) and
by strong preservation of safety traces(U) .} 0:(0) traces(0) .}
0:(0) = traces(O).

o Ca(O) U * 0 c U\ N. -wF _F r
Assume (0", Y) E failures(U\rN), that is, by definition of restriction

Behavioural Subtyping and Property Preservation 229

a E 0(0)* and there exists some (a,X) E jailures(U) such that Y
X U N. By weak preservation of liveness we know that there is also some
(a, Y') Ejailures(O) such thatXno(O) = Y'no(O). By sub set closure
of refusal sets it suffices to show that Y y'. Without loss of generality
we assurne that E \ o(0) y' (supertype 0 refuses all events outside its
own alphabet anyway and we assume y' to be maximal with respect to
those events). Then Y y' holds since all events in E \ 0(0) are in y'
anyway and events from o(0) which are in Y are also in X and therefore
in y'.

o U =? 0 U \c N.
Assume (p, Y) E jailures(U \c N), Le. there is some (a, X) E jailures(U)
such that p = a {. 0(0) and Y X U N. By strong preservation of live­
ness, we know that there is also some (a, Y') E jailures(O) such that
X n 0(0) = y' n 0(0). We the same argument as in the last item it can
be shown that Y Y holds which completes the proof. 0

6. DISCUSSION
In this paper, we have investigated the preservation of properties under be­

havioural subtyping. We have considered both safety and liveness properties
and defined weak and strong preservation with respect to methods of the su­
perclass. At first sight, it seems that the overhead of defining preservation with
respect to some set of methods is due to the formalism used, CSP. However,
the same issues also arise when using for instance temporallogic for the spec­
ification of safety and liveness properties. The superclass may trivially satisfy
some formula which talks about methods not present in the superclass, and the
subclass may then fail to satisfy the same formula.

The results can now be applied in an incremental design with inheritance:
check what kind of subtype a subclass is and then deduce what properties of
the superclass are preserved. We aim at developing syntactic conditions on
subclasses which help in checking subtyping relationships.

Furthermore we have shown that the type of preserved properties can be
seen as another characterisation of the subtyping relations (beside the defini­
tions and testing characterisations), and may additionally aid in finding the
most appropriate behavioural subtyping relation for the application under con­
sideration.

Related Work. A lot of proposed subtyping relations are based on failures
and traces of classes [6, 14,4,3,2]. They can be distinguished by the degree of
substitutability obtained. The relation most often used is extension, originally
defined as one correctness relation for LOTOS [5]. On the one hand extension
is different from our subtyping relation since its underlying concept is not re-

230

finement, rather it allows more traces (even on old methods) in the subtype. On
the other hand, extension, like weak subtyping, is also only sufficient for a sin­
gle client. For none of the above cited relations the preservation of properties
under subtyping is discussed.

The only work we are aware of which discusses behavioural subtyping and
verification, however, in a somehow different area, is the work of Leavens and
Weihl [11]. They view classes as defining abstract data types and consequently
behavioural subtyping compares the methods of sub- and supertype with re­
spect to their pre- and postconditions. This is a state-based view as opposed
to the behavioural view on classes which we have taken here. Verification in
their work is concemed with showing the correctness of implementations with
respect to abstract specifications of operations via pre- and postconditions. For
object-oriented programs they propose a verification technique called super­
type abstraction: prove the soundness of an implementation with respect to
the supertype specification and conclude the soundness also for all subtypes.
Similar to our approach this allows to omit the re-verification for every new
subtype which is created.

Acknowledgments
Thanks to Clemens Fischer for reading and commenting on an earlier version of this pa­

per.

References

[1] P. America. Designing an object -oriented programming language with
behavioural subtyping. In lW. de Bakker, W.P. de Roever, and G. Rozen­
berg, editors, REX Workshop: Foundations ofObject-Oriented Languages,
number 489 in LNCS. Springer, 1991.

[2] C. Balzarotti, F. De Cindio, and L. Pomello. Observation equivalences
for the semantics of inheritance. In P. Ciancarini and R. Gorrieri, editors,
FMOODS '99, Formal methods for open object-based distributed systems,
1999.

[3] H. Bowman, C. Briscoe-Smith, J. Derrick, and B. Strulo. On behavioural
subtyping in LOTOS. In H. Bowman and J. Derrick, editors, Formal meth­
ods for open object-based distributed systems, pages 335 - 351. Chapman
& Hall, 1997.

[4] H. Bowman and J. Derrick. A junction between state based and be­
havioural specification. In P. Ciancarini, F. Fantechi, and R. Gorrieri, edi­
tors, Formal methods for open object-based distributed systems FMOODS
'99, pages 213 - 239. Kluwer, 1999.

[5] E. Brinksma, G. Scollo, and Ch. Steenbergen. LOTOS specifications, their
implementations and their tests. In B. Sarikaya and G. v.Bochmann, edi-

Behavioural Subtyping and Property Preservation 231

tors, Protocol Specijication, Testing and Verijication VI, pages 349 - 358.
Elsevier, 1987.

[6] E. Cusack. Refinement, conformance and inheritance. Formal Aspects of
Computing, 3:129 - 141, 1991.

[7] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral sub­
typing through specification inheritance. In Proceedings of the 18th In­
ternational Conference on Software Engineering, Berlin, Germany, pages
258-267. IEEE Computer Society Press, March 1996. A corrected version
is Iowa State University, Dept. of Computer Science TR #95-20c.

[8] C. Fischer and H. Wehrheim. Behavioural subtyping relations for object­
oriented formalisms. In T. Rus, editor, AMAST 2000: International Con­
ference on Aigebraic Methodology And Software Technology. Springer,
2000. to appear.

[9] D. Harel and O. Kupferman. On the inheritance of state-based object be­
haviour. Technical Report MCS99-12, The Weizmann Institute of Science,
Israel, 1999.

[10] c. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

[11] G.T. Leavens and W.E. Weih!. Specification and verification of object­
oriented programs using supertype abstraction. Acta Informatica, 32:705-
778,1995.

[12] B. Liskov and J. Wing. A behavioural notion of subtyping. ACM Transac­
tions on Programming Languages and Systems, 16(6):1811 -1841, 1994.

[13] B. Meyer. Object-Oriented Software Construction. ISE, 2. edition, 1997.
[14] O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and

D. Tsichritzis, editors, Object-oriented software composition, pages 99 -
121. Prentice Hall, 1995.

[15] Object Management Group. OMG Unijied Modeling Language Speciji­
cation, June 1999. version 1.3.

[16] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1997.

[17] W.M.P. van der Aalst and T. Basten. Life-cyc1e inheritance - a Petri­
net-based approach. In P. Azema and G. Balbo, editors, Application and
Theory ofPetri Nets, number 1248 in LNCS, pages 62-81. Springer, 1997.

[18] J. Waldo. The Jini architecture for network-centric computing. Commu­
nications ofthe ACM, 42(7):76-82, 1999.

[19] P. Wegner and B. Zdonik. Inheritance as an incremental modification
mechanism or What like is and isn't like. In ECOOP'88: European Con­
ference on Object-Oriented Programming, volume 322 of Lecture Notes
in Computer Science. Springer, 1988.

	BEHAVIOURAL SUBTYPING AND PROPERTY PRESERVATION
	1. INTRODUCTION
	2. DEFINITIONS
	3. BEHAVIOURAL SUBTYPING RELATIONS
	4. PROPERTIES AND INHERITANCE
	5. RESULTS
	5.1. PROPERTY PRESERVATION
	5.2. CHARACTERISATION

	6. DISCUSSION
	Acknowledgments
	References

