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Abstract Inheritance is one of the key features in object-oriented design and analysis. 
It especially supports an incremental development by allowing to stepwise add 
new functionality to an existing system design. 
When using a subclass which is a specialisation of a certain superclass, the ques­
tion arises which of the superclass' properties still hold for the subclass. We 
investigate this topic for three behavioural subtyping relations, which formalise 
the subtype - supertype relationship among classes on the basis of process al­
gebra correctness relations. According to the degree of change allowed by the 
subtyping relations, safety and liveness properties of the superclass are preserved 
up to different extents. 

Keywords: Behavioural subtyping, process algebra, refinement, inheritance. 

1. INTRODUCTION 
Inheritance is the one of the key issues for the success of object-oriented 

analysis and design methods as weH as programming languages. The main 
purpose of inheritance is to support the structuring of specifications and code, 
and to allow re-use of already written parts. Inheritance can furthermore be 
applied in the incremental development of large systems, starting with a small 
basic system description on which additional functionality is stepwise added 
until the complete system has been designed. Such a development process 
would start with a superclass, capturing the basic requirements on the system, 
and derive new subclasses by inheritance which stepwise add new features to 
the existing functionality. However, this approach is in general not error-free: 
the addition of new features may interfere with the old ones in an undesired 
way. In the telecommunications area this phenomenon is known as feature in­
teraction. Inheritance in general does not provide any help in avoiding feature 
interactions; in fact, in many applications of inheritance, as for instance simple 
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code re-use, it is not desired to restrict the changes allowed in the subclass in 
any way (see [13] for a classification of different forms of inheritance). 

A relationship among subclass and superclass which requires the subclass to 
reflect the behaviour of the superclass to a certain degree is subtyping. Sub­
typing in object-oriented formalisms lifts the usual notion of subtype to the 
level of objects. Subtypes should always fulfil the principle of type substi­
tutability [19]: any changes in the subtype should be transparent to users of 
the supertype. This is also the requirement that we have on an incremental 
design: any addition of a new feature to a class should keep the old func­
tionality unchanged. Simple code-reuse often does not fulfil the principle of 
substitutability, and in fact this is most often not even intended. The impor­
tance of subtyping concepts for object-oriented formalisms is witnessed by an 
increasing concern in this topic: as an example, the new UML version 1.3 [15] 
discusses a special subtyping category for statechart refinement; and Sun's new 
TINI architecture [18] explicitly builds on a notion of subtype, which fixes the 
correctness of services: any request for a special interface type may be granted 
by returning a subtype. 

Subtyping definitions are usually signature-based, Le. compare operations 
of sub- and supertype according to their signatures. However, signatures alone 
cannot guarantee substitutability since the semantics of methods may change 
completely while retaining the signature. Behavioural subtyping as introduced 
by for instance [12, 7, 1] overcomes this problem by comparing methods of 
sub- and supertype according to their pre- and postconditions and their preser­
vation of global constraints on the type. A second, different, approach, which 
we follow in this paper (also with the name behavioural subtyping), is taken by 
directly comparing the dynamic behaviour (ordering of method execution) of 
classes, not their methods in isolation. This approach takes a view on classes 
as being active entities. In concurrent object-oriented languages active objects 
have their own thread of control and often have to obey particular protocols in 
order to behave properly. A number of authors have proposed such behavioural 
subtyping relations [6, 14, 4, 3, 17, 2, 9, 8] for object-oriented formalisms, 
most often based on some process algebra correctness relation. These relations 
sometimes come with an alternative testing characterisation, which formalises 
the degree of substitutability obtained by subtypes. The testing characterisa­
tions can be used to figure out the appropriate application domain of the par­
ticular subtyping relation: is it only sufficient for objects with a single client at 
a moment or also correct for shared mutable objects. 

Valid subtyping is so far defined as "obtaining a sufficient degree of substi­
tutability". A different view on correctness of subtypes is taken when instead 
the preservation of properties of supertypes in their subtypes is considered. In 
this paper we will be concerned with this view on behavioural subtyping: we 
will investigate up to which extent properties of a superclass are preserved un-
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der behavioural subtyping. Properties may for instance be safety requirements 
on the methods of the superdass, or liveness requirements, guaranteeing the 
availability of certain services to dients of the dass. Ideally, such properties 
should still hold for subdasses, extending the superclass with additional fea­
tures. This would allow us to avoid the re-verification of properties on a sub­
type which have already been proven to hold on the supertype. We will study 
the preservation of safety and liveness properties under three behavioural sub­
typing relations, two already appearing in [8], the third a new one. 

As it turns out, the class of preserved properties of a particular subtype can 
be seen as a characteristic of the subtyping relation. This, together with the 
testing characterisations of [8], gives a second view on subtyping relations, and 
thus sheds some more light on the question of which subtyping relation is the 
most appropriate one for a given application domain. 

We envisage the following use of subtyping relations in the development 
process: for every dass, on which we intend to further add some functionality 
by means of inheritance, we figure out its area of application: dass with single 
access or with shared access, and depending on this, the appropriate subtyping 
relation guaranteeing substitutability for the application area can be chosen. 
Afterwards all subclasses derived from this dass have to be checked whether 
they are correct with respect to the chosen behavioural subtype. The contribu­
tion of this paper is to show which properties of the supertype now also hold 
for the subtype. This avoids re-verification of properties for every new subtype 
which is created and thus supports modular reasoning. 

The paper is structured as follows: The next section defines the technical ba­
sis (labelled transition systems and refinement relations), Section 3 introduces 
behavioural subtyping and gives some examples. The following section then 
starts the discussion on property preservation and Section 5 finally gives the 
results. 

2. DEFINITIONS 
Most of the behavioural subtyping relations focusing on the dynamic be­

haviour of classes are based on some process algebra correctness relation, like 
failures refinement or bisimulation. The application area for process algebras 
is the description of distributed communicating processes, thus they are a rea­
sonable choice as a basis for behavioural subtyping for active objects. The 
three relations we consider in this paper are all based on CSP theory [10, 16]. 

We start with the definition of the relevant concepts underlying our sub­
typing relations and correctness criteria. Labelled transition systems (short 
LTS) are used for describing the behaviour of an object (or more precise: of 
its class), the methods that are called on and by the object and their order of 
execution. We view an LTS as describing the behavioural type of an active 
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object. The semantical basis for the behavioural subtyping relations and the 
correctness checks is the /ailures model of the process algebra CSP. For this 
the communication events of CSP are identified with method invocations. 

We assume E to be a set of methods, in the following also referred to as actions. 
We furthermore have two special invisible actions: T, v f/. E and let ETV = 
E U {T, v}. Both actions stand for unobservable entities: the symbol T plays 
the usual role of an intemal action of an object, whose execution is under the 
control of the object alone; the symbol v stands for an action which is iIWisible 
to a particular dient of an object, but is not under control of the object alone. 
It may have to be executed together with another dient of the object. 

Definition 2.1 A labelled transition system (LTS) is a tuple T = qo) 
such that 

• Q is a set 0/ states, 

• --+ Q X ETV X Q is a transition relation and 

• qo E Q is the initial state. 

A labelled transition system of an object describes the possible states of an 
object (identified by particular values of its attributes), the transitions between 
states (which methods are enabled in astate and how the state changes with an 
execution of a method) and its initial state. 

We write q .!4 q' if (q, a, q') E --+. Let a E E;v be a sequence of actions 
and A E a set of actions. The projection 0/ a on A, a -l- A, is the trace where 
all occurrences from events not in A are removed. The alphabet of an LTS T, 
a(T), is the set of actions occurring as labels in the transition relation. 

An LTS describes the behaviour of an object. When we compare two ob­
jects with respect to their behaviour, we look at the traces they may execute 
(sequences of methods) and their /ailures (what methods are blocked after a 
particular trace). Traces and failures are derived from transition systems. 

Definition 2.2 Let T = (Q, --+, qo) be a labelIed transition system, q, q' E 
Q,ai E ETV and a E E*. 

• q al ... an) q' iffthere are states qo, ql, .. . ,qn such that q = qo, qi a i+l ) 

qi+1 and qn = q'. 

• q 4> q' iff there is a trace t E E;v such that q 4 q' and a = t -l- E. 

• The set 0/ traces 0/ T is 

traces(T) := {a E E* 13q E Q: qo 4> q} . 

• Astate is stable ifno T transitions are possible: q stahle iff q 
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The set of enabled actions of astate q E Q is 

next(q) := {a E E I :3q' E Q: q q'} , 

its maximal refusals are refusals(q) := E \ next(q) 

• The set offailures ofT is 

failures(T) := ((a,X) E E* x 21: l:3q E Q: qo =* q 1\ 
q stahle 1\ X refusals(q)}. 

Note, that failures always have subset-closed refusal sets. Failure sets only 
record the refusals at stable states since T actions (whose execution is under 
control ofthe object alone) might lead to states which refuse something differ­
ent. Refinement relations of CSP relate transition systems with respect to their 
traces and failures. 

Defiilition 2.3 A IahelIed transition system I is a trace-refinement of an LTS S 
(denoted S !;;;;r I) ifftraces(I) traces(S), it is a failures-refinement (S I) 
ifffailures(I) 

Some remark concerning the notation: in CSP, the symbol!;;;; is used in a some­
what unusual direction, since on the left hand side we find the specification, i.e. 
the more nondeterministic whereas on the right hand side the more re­
fined implementation is found. The subtyping relations defined later in the 
paper are all based on refinement, therefore we also use this direction there: 
the subtype will always stand on the right band side. 

These two refinement relations are the basis for the subtyping relations in­
troduced in the next section and the correctness criteria defined in Section 4. 
We will not treat divergence (livelocks) in this paper, but it can be easily incor­
porated into the subtyping relations presented here. 

Besides the two refinement concepts, we will furthermore need two opera­
tors on labeUed transition systems: restrietion and concealment. Restrietion is 
a standard process algebra operator (from CeS), concealment is a form of hid­
ing, which however just makes some set of actions invisible, but not internal. 

Definition 2.4 Let T = (Q, -+, qo) be a IahelIed transition system and A E. 

• The restrietion of A in T, T \r A, is defined as (Q, -+', qo) with 

-+' = {(q,a,q') E -+ I a 

• The concealment of A in T, T\cA, is defined as (Q, -+', qo) with 

-+' = {(q,a,q') E -+ I a 
U {(q, v, q') I :3 a : A • (q, a, q') E -+} . 
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Note that concealment renames actions into /1- not r-actions. The concealed 
actions are afterwards not intemal to the object but simply invisible. Thus 
concealment differs from elassical hiding in process algebras, which assurnes 
that the hidden actions are afterwards under control of the object alone. Hiding 
may usually introduce new non-stable states, whereas concealment does not. 

3. BEHAVIOURAL SUBTYPING RELATIONS 
We start the introduction into subtyping relations with a discussion of three 

examples. For all three examples we give a labelled transition system of a 
superelass describing the basic behaviour of the system (in solid lines) and af­
terwards look at some possible extension made in a subelass (in dashed lines). 
The initial state of the LTS is marked by a cirele. Due to the augmentation 
of the alphabet of the LTS during extension (new methods), traces or failures 
refinement cannot be direct1y used as a subtyping relation; instead we have to 
find a reasonable way of hiding the new methods during the comparison. 

The first example is from the telecommunication area: the LTS of the super­
elass describes the basic behaviour of a (simplified) telephone interface to a 
single user, starting with off JlOok followed by a diaLtone and the dialing of 
a number. Afterwards a response or nOJesponse from the called side follows, 
in case of a response the user of the telephone will talk to someone (and the 
telephone has to transmit this). At all times, the user is free to hang up the 
telephone (onJzook). 

The solid states and arrows in Figure 1 show the LTS of the elass for a 
basic telephone interface. This elass can be the basis for further extensions 
with different features, as for instance call forwarding, call screening or voice­
mail. The extension we look at here is concemed with call screening, namely 
the possibility of entering telephone numbers of people from which the user 
does not want to accept calls: the new feature has to be chosen after off Jzook 
(screen_call), the number has to be entered (typeJlumber), is again displayed 
and has to be acknowledged in order to be inserted in the list of screened num­
bers. The new feature is shown in Figure 1 in dashed lines. 

No feature interactions occur in this extension: the telephone company can 
be sure that all users are able to use the old service as before, without noticing 
any difference. The basic requirement for this extension ''no new behaviour 
on the old service" is fulfilled l . This is the fundamental requirement for all 
subtyping relations, and can be formalised with the help of the restriction op­
erator: 

1 Not a11 kind of features in the telecommunication area have this correctness requirement; a lot of features 
intentionally want to change the old behaviour (e.g. teen-Iine) and then a feature interaction occurs when 
the old service remains available. 
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Figure 1 Basic telephone service (+ call screening input) 

Definition 3.1 (Weak subtyping) Let U, 0 be LTS' and N = a( U) \ a( 0). U 
is a weak subtype of 0 (denoted 0 U) iff 

o U\rN and 
U\r N . 

Weak subtyping compares sub- and superclass by completely neglecting to 
look at the new service. The extension in the above example is a weak subtype 
of the superclass. 

The next example and its extension seems to be of a similar kind but reveals the 
need for a different subtyping relation. Figure 2 shows the transition system of 
a simple till: the customer inserts a card into the till and may then choose to 
stop the interaction or make some withdrawal of money. Then (s)he has to type 
herlhis pin (personal identification number); when it is correct, the amount of 
money can be chosen and is delivered, when incorrect, another try can be made 
or the transaction can be stopped. The new feature which is added to the basic 
till is the printing of the balance. Once the card has been inserted, the user 
may choose to print the balance and in this case no pin has to be given (the 
data on the card is sufficient for this). After printing the user may stop the 
transaction or make some withdrawal. The (dashed-line) extension in Figure 2 
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for this additional feature is obviously wrong: the typing of the pin can now be 
circumvented when the printing is chosen first. 

With regard to the above defined subtyping relation, the extended till is a 
valid weak subtype, although the new feature interacts with the old service in 
an undesired way. This leads us to the definition of a second subtyping relation, 
which mIes out such undesired extensions: 

Definition 3.2 (Safe subtyping) Let U, 0 be LTS' and N = a(U) \ a(O). U 
is a safe sub type of 0 (denoted 0 U) iff 

o U\cN and 
o U\r N . 

This relation requires that even if a dient uses a new service, no new pos si­
bilities of using the old service arise (condition on traces). Furthermore, like 
before, we require that the old service still works correct. The above extension 
of the simple till is not a safe, only a weak subtype. In this safety critical ap­
plication, especially in the case, where the interface explicitly informs the user 
about the new service (this is what tills do), weak subtyping is not sufficient. 

A last example shows why we are still not at the end of defining relations. The 
following example is different from the previous ones in that it allows more 
than one client to access the services of the class at one moment. The example, 
given in Figure 3, is the interface to a simple printer, which accepts requests 
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Figure 3 Black-and-white (+ colour) printer 

for printing black-and-white pictures, bWJequest (up to a certain amount de­
pending on its internal store), and successively prints them (prinLbw). 

The new feature to be added is the printing of colour pictures. The (dashed 
line) extension is incorrect in that it might at some times block requests for 
black-and-white prints (after some colour prints have been requested but not 
yet printed). Thus, as soon as another dient is additionally using the new fea­
ture of the interface, users of the old service might indeed notice a difference. 
The extension is however both a weak and a safe subtype. Instead, for shared 
objects the following subtyping relations is necessary to capture the desired 
substitutability: 

Definition 3.3 (Optimal subtyping) Let U, 0 be LTS' and N = a( U) \ a( 0). 
U is an optimal subtype of 0 (denoted 0 U) iff 

o U\cN and 
o U\c N . 

This definition defines a comparison which additionally involves an inspection 
of the refusals in the new part of the LTS. For the users of the old service, no 
new refusals (corresponding to a blocking of requests) are allowed. A correct 
extension of the printer interface would have to serve the requests for black­
and-white and colour prints concurrently. 
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Figure 4 Correct extension of printer 

Optimal subtyping is the strongest of the three behavioural subtyping rela­
tions. 

Proposition 3.1 Let U, 0 be LTS', N = a(U) \ a(O). Then 

o U 0 U and 
o U 0 U . 

A correct extension of the printer is shown in Figure 4: the new feature can 
be concurrently executed with the old one. For a dient of the black-and-white 
printing feature the same service as before is possible. 

Summarising, we now have three subtyping relations for extension of func­
tionality: two for dasses with single access, the first one guarantees a minimal 
correctness on the old service, the second one also guarantees that the new ser­
vice cannot be used to achieve new effects on the old features, and the third 
subtyping relation guarantees this also for shared mutable objects. 

For two of the subtyping relations (weak and optimal), corresponding testing 
characterisations can be found in [8]. The definition of safe subtyping is new2• 

2 A subtyping relation with the same name appears in [81, but we prefer 10 call the relation defined here 
"safe", since it is safe in the sense of preserving all safety properties. 
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4. PROPERTIES AND INHERITANCE 
The main issue of this paper is the relationship between properties which 

hold for a superclass and for its subtypes. Ideally, subtypes should preserve all 
properties of the superclass. 

In the sequel, we take a CSP-like view on property specification: in CSP 
theory properties are expressed as CSP processes (or direct1y LTS') and are 
checked on some specification by a comparison of property and specification 
with respect to their traces (then we speak of a safety property) or their failures 
(a liveness property). A property is therefore a process or an LTS describing 
every allowed behaviour and it is checked whether the behaviour of the imple­
mentation is a subset of this allowed behaviour: We check whether 

P or 
S 

holds for safety or liveness properties P, respectively, and objects S. Since all 
refinement relations are transitive, we can always make the following deduc­
tion: 

P S I ::::} P I or S I ::::} P I , 

that is, all properties proven for S also hold for some refinement I. 
It would be highly desirable to have a similar reasoning for superclasses and 

their subtypes: prove a property for a superclass and know that it also holds 
for all of its subclasses, which are behavioural subtypes. This is especially 
important for an incremental design, which uses inheritance to subsequently 
add new features to already existing and provably correct superclasses. How­
ever, before we can find out, which kind of properties are preserved for which 
subtype, we have to make clear what we mean by "a subclass has the same 
properties". Again, the usual refinement relations cannot be plainly used here 
since inheritance usually introduces new methods in the subclass (extension 
of functionality). A subclass may have traces over a larger alphabet than the 
superclass and may therefore fail to be a trace or failures refinement of some 
property process of which the superclass was a correct refinement. Neverthe­
less, the subclass may in a broader sense have the same property. 

We explain this idea on the till example of the last section. The basic till is 
correct with respect to the safety property "money is only delivered when the 
correct pin has been typed in". Formalised in CSP, the property on the simple 
till can be formulated by a process, whose traces involve all possible orderlngs 
of actions from E in which every method deliver ..money is preceded by an 
action correcLpin (interleaving, 1 1 I, of the correct order with all possible 
orderings of the other actions, CHAOS): 

Prop = correct_pin -> deliver_money -> Prop 
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The simple till is a trace refinement of such a safety tester process, the wrang 
extension is not. This so far is a first observation on property preservation in 
weak subtypes. Now consider a correct extension (as shown in Figure 5). 
This correct extension is a safe subtype of the basic till and also a trace refine­
ment of P. Is it now a trace refinement of all processes P, of which the basic till 
is? The answer is no, since we mayaiso use tester processes, which already fix 
orderings between new methods of the subclass, for instance: print...balance 
always before balance. The basic system trivially fulfils this requirement since 
none of these actions occur. Nevertheless, the property does not hold for the 
extended till, thus we have no property preservation here. 

Hence we have to be more precise about what the subclass is expected to 
preserve, and what it means for a subclass to have the same properties as the 
superclass. What it should preserve are all restrictions formulated on "old" 
methods, i.e. those of the superclass. Any property talking about methods not 
present in the superclass clearly cannot be inherited, although the superclass 
may trivially fulfil it. There are two possibilities of formulating the instead 
needed "preservation on old methods": we only check the property on traces 
over the old methods or we check it on all traces, but by only looking at old 
methods. We call the former type of preservation "weak" and the more general 
form "strong fulfilment". The first extension of the till only weakly preserves 
the safety property (as long as the old service is used, usage is safe), the second 
extension also strongly fulfils the safety requirement. 
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Definition 4.1 (Safety) Let P, S be LTS', P describing some safety property, S 
an arbitrary object, and let A E be a set 0/ actions (the "old" methods). 
S weakly fulfils the safety properties of P on A (P S) ijJ 

traces{S) nA * traces{P) nA * . 

S strongly fulfils the safety property of P on A (P S) ijJ 

traces{S) .J.. A traces{P) .J.. A . 

Strong fulfilment guarantees that the restrietions on orderings of actions as 
specified by the safety property P are met in an object S, which possibly has 
more methods than those of A. Similarly fulfilment of liveness properties can 
be defined. 

Definition 4.2 (Liveness) Let P, S be LTS', P describing some liveness prop­
erty, San arbitrary object, and let A E be a set 0/ actions (the "old" meth­
ods). 
S weakly fulfils the liveness properties of P on A (P S) ijJ 

(a,X) E/ailures{S), a E A* 
::} 3{a,Y) E/ailures{P) suchthatXnA = YnA. 

S strongly fulfils the liveness properties of P on A (P S) ijJ 

(a,X) E/ailures{S) 
::} 3{a', Y) E/ailures{P) such that a.J.. A = a' .J.. A 

andXnA = YnA. 

The condition on refusal sets guarantees that, with respect to A, the same set 
of actions are blocked. Strong preservation always implies weak preservation. 

Proposition 4.1 Let P, 0 be LTS', A E. 

P CA 0 ::} P CA 0 and -sr -WT 

P 0 ::} P 0 

The above question "does subtyping preserve properties" can now be formu­
lated as: if P 01 and 02 is a subtype of 01, does 02 weakly or strongly 
fulfil property P on a{ 01)? 

5. RESULTS 

Next we investigate whether our three subtyping relations weakly or strongly 
preserve safety and liveness properties. Afterwards we discuss property preser­
vation as another characterisation of subtyping relations. 
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5.1. PROPERTY PRESERVATION 

In the following we always assurne N = a( U) \ a( 0) to be the set of new 
methods, and often omit N as an index to the subtyping relations. We start 
with the treatment of safety properties. Weak subtypes weakly preserve safety 
properties. 

Theorem 1 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a safety property. Then 

P CO=} P CQ(O) U. 
-7 -w7 

Proof: Assurne (i) P 1:7 0, i.e. traces( 0) traces(P) and (ii) 0 1:.r U \r N, 
i.e. in particular traces( U \r N) traces( 0). By definition of \r' we get the 
following: traces( U \r N) = traces( U) n a( 0)*. Hence traces( U) n a( 0)* 
traces(P), and thus also traces(U) n a(O)* traces(P) n a(O)*. 0 

For the simple till and its first extension (a weak subtype), we therefore obtain 
the result that the subc1ass weakly preserves all safety properties of the simple 
till. As the example has also shown, weak subtyping does not guarantee strong 
preservation of safety properties. But safe and optimal subtyping do: 

Theorem 2 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a safety property. Then 

P CO=} P C Q( 0) U . 
-7 -s7 

Proof: Assurne (i) P 0, i.e. traces( 0) traces(P) and (ii) 0 1:sst 

U, i.e. traces(U\cN) traces(O). By definition of concealment we get 
traces(U\cN) = traces(U) {. a(O) andhencetraces(U) {. a(O) traces(P). 
Since traces( 0) = traces( 0) {. a( 0), we gettraces( 0) {. a( 0) traces(P) {. 
a(O), which all in one gives the desired result. 0 

The analogous result for optimal subtypes is a corollary of the last theorem and 
Proposition 3.1. With respect to safety properties, safe and optimal subtyping 
are thus equally suitable. The second (correet) extension of the simple till is a 
safe subtype and therefore strongly preserves all safety properties. 

Considering liveness properties, we get the following two results. Weak sub­
typing weakly preserves liveness properties: 

Theorem 3 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a liveness property. Then 

P CO=} P C Q( 0) U . _.r -w.r 

Proof: Assurne (i) failures( 0) failures(P) and (ii) 0 U, i.e. 0 
U \ N. By definition of \r we have 
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jailures( U \, N) = {(O", X) I 3 Y : (0", Y) E jailures( U), 0" E a( 0)*, X 
YUN}. 
The rest follows by a simple application of definitions: 

(O",X) Ejailures(U), 0" E a(O)* 
..u- Definition of \, 

(0", X U N) E jailures( U \, N) 
..u- 0 U 

(0", X U N) E jailures( 0) 
..u- P 0 

(0", X U N) E jailures(P) 

and furthermore X n a( 0) = (X U N) n a( 0) holds. 0 

With a similar kind of reasoning we can prove weak preservation of liveness 
properties for safe subtyping. 

Optimal subtyping also strongly preserves liveness properties: 

Theorem 4 Let 0, U be LTS' such that 0 U and let P be an LTS describ­
ing a liveness property. Then 

P c:: 0 =} P c::Q(O) U . _F -sF 

Proof: Assume (i) jailures( 0) jailures(P) and (ii) 0 U, i.e. 0 
U \c N. By the definition of \c ' we have 

jailures(U\cN) = ((O"+ a(O),X) 13(0",Y) Ejailures(U) YUN}. 
The rest follows again by a simple application of definitions: 

(0", Y) Ejailures(U) 
..u- Definition \c 

(0" + a(O),X) Ejailures(U\cN) 
..u- 0 U 

(0" + a(O),X) Ejailures(O) 
..u- P 0 

(0" + a(O),X) Ejailures(P) 
..u- for X = Y 

(0" + a(O), Y) Ejailures(P) 

andfurthermore yna(O) = (YUN) na(O) holds. o 

The table in Figure 6 summarises the results on property preservation for the 
three subtyping relations. 
Coming back to our example: since the second extension of the till is a safe 
subtype, it strongly preserves safety and weakly preserves liveness properties 
of the simple till. It does not strongly preserve liveness, since we now have 
traces after which all of the old methods are blocked. However, as long as the 
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Safety Liveness 

weak strong weak strong 

weak subtyping J J 
safe subtyping J J J 
optimal subtyping J J J J 

Figure 6 Inheritance of properties 

old features are used, the same liveness is ensured. Since a client of a till is 
free to choose himself what to do and since no-one else may simultaneously 
use the till, this is sufficient for a correct till. 

5.2. CHARACTERISATION 
Last we address the characterisation of subtyping relations by the properties 

they preserve from supertypes. Since the definitions of restrictionlconcealment 
and weak/strong preservation have already been quite close, tight connections 
are to be expected. 

Theorem 5 Let 0, U be LTS' such that N = o:(U) \ 0:(0). Then 

• 0 U if and only if 0 U and 0 u, 

• 0 U if and only if 0 0) U and 0 u, 

• 0 U if and only if 0 0) U and 0 0) U. 

Proof: The direction "*" in all cases follows direct1y from the theorems about 
property preservation (by choosing P = 0). 
Direction There are four implications to be proven here. 

o U * 0 U\r N • 
By definition of restriction traces( U \r N) = traces( U) n 0:( 0)* and by 
weak preservation of safety traces( U)no:( 0)* traces( O)nalpha( 0)* = 
traces(O). 

o Ca(O) U * 0 c U\ N. -ff -7 c 
By definition of concealment traces( U \c N) = traces( U) .} 0:(0) and 
by strong preservation of safety traces( U) .} 0:( 0) traces( 0) .} 
0:(0) = traces(O). 

o Ca(O) U * 0 c U\ N. -wF _F r 
Assume (0", Y) E failures(U\rN), that is, by definition of restriction 
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a E 0(0)* and there exists some (a,X) E jailures(U) such that Y 
X U N. By weak preservation of liveness we know that there is also some 
(a, Y') Ejailures(O) such thatXno(O) = Y'no(O). By sub set closure 
of refusal sets it suffices to show that Y y'. Without loss of generality 
we assurne that E \ o( 0) y' (supertype 0 refuses all events outside its 
own alphabet anyway and we assume y' to be maximal with respect to 
those events). Then Y y' holds since all events in E \ 0(0) are in y' 
anyway and events from o( 0) which are in Y are also in X and therefore 
in y'. 

o U =? 0 U \c N. 
Assume (p, Y) E jailures( U \c N), Le. there is some (a, X) E jailures( U) 
such that p = a {. 0(0) and Y X U N. By strong preservation of live­
ness, we know that there is also some (a, Y') E jailures(O) such that 
X n 0(0) = y' n 0(0). We the same argument as in the last item it can 
be shown that Y Y holds which completes the proof. 0 

6. DISCUSSION 
In this paper, we have investigated the preservation of properties under be­

havioural subtyping. We have considered both safety and liveness properties 
and defined weak and strong preservation with respect to methods of the su­
perclass. At first sight, it seems that the overhead of defining preservation with 
respect to some set of methods is due to the formalism used, CSP. However, 
the same issues also arise when using for instance temporallogic for the spec­
ification of safety and liveness properties. The superclass may trivially satisfy 
some formula which talks about methods not present in the superclass, and the 
subclass may then fail to satisfy the same formula. 

The results can now be applied in an incremental design with inheritance: 
check what kind of subtype a subclass is and then deduce what properties of 
the superclass are preserved. We aim at developing syntactic conditions on 
subclasses which help in checking subtyping relationships. 

Furthermore we have shown that the type of preserved properties can be 
seen as another characterisation of the subtyping relations (beside the defini­
tions and testing characterisations), and may additionally aid in finding the 
most appropriate behavioural subtyping relation for the application under con­
sideration. 

Related Work. A lot of proposed subtyping relations are based on failures 
and traces of classes [6, 14,4,3,2]. They can be distinguished by the degree of 
substitutability obtained. The relation most often used is extension, originally 
defined as one correctness relation for LOTOS [5]. On the one hand extension 
is different from our subtyping relation since its underlying concept is not re-
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finement, rather it allows more traces (even on old methods) in the subtype. On 
the other hand, extension, like weak subtyping, is also only sufficient for a sin­
gle client. For none of the above cited relations the preservation of properties 
under subtyping is discussed. 

The only work we are aware of which discusses behavioural subtyping and 
verification, however, in a somehow different area, is the work of Leavens and 
Weihl [11]. They view classes as defining abstract data types and consequently 
behavioural subtyping compares the methods of sub- and supertype with re­
spect to their pre- and postconditions. This is a state-based view as opposed 
to the behavioural view on classes which we have taken here. Verification in 
their work is concemed with showing the correctness of implementations with 
respect to abstract specifications of operations via pre- and postconditions. For 
object-oriented programs they propose a verification technique called super­
type abstraction: prove the soundness of an implementation with respect to 
the supertype specification and conclude the soundness also for all subtypes. 
Similar to our approach this allows to omit the re-verification for every new 
subtype which is created. 
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