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interoperability, confonnance testing methodology has been published as 
international standards in ITU-T X.290 Series [6] and ISO/IEC 9646 [5], and 
used world-wide. Protocol confonnance testing is used for confirming 
whether or not the behavior of Implementation Under Test (IUT) confonns 
to its standards and specifications, and promotes the probability of 
interoperation among IUTs. However, even though equipment and services 
successfully passed confonnance testing, they do not often interoperate 
owing to the variety of mandatory parameters, optional parameters and 
control scopes. For this reason, interoperability testing is needed to check the 
interaction behavior among IUTs implemented according to their 
specifications. So far, no accepted common methodology for interoperability 
testing has existed. 

Paper [8] proposed an algorithm for generating the interoperability test 
suite for communication protocols, and [13] and [14] respectively applied it 
to the Internet TCP protocol and the ATMlB-ISDN signaling protocol. The 
derived test cases are based on Finite State Machine (FSM) and the test 
generation methods consider only the control part of the protocols. So far, 
there has been no work on generating the interoperability test suite 
considering the data part of protocols. 

Because most protocols have a variety of data variables, for real protocol 
testing the test suite generation has to deal with the data part as well as the 
control part of them. The size of test suite generated with the test derivation 
method considering the data part of protocols becomes much larger than that 
considering only the control part of them. In order to reduce the size of test 
suite while maintaining a well-defined level of test coverage, we make use of 
experimental design techniques from industrial engineering. They are used 
for planning experiments so that one can extract the maximum possible 
infonnation from as few experiments as possible. Adopting these techniques 
leads to faster detection of non-interoperation of protocols while maintaining 
a well-defined level of test coverage. Experimental design techniques have 
been used for protocol conformance testing but not for interoperability 
testing so far. In this paper, we present an interoperability test suite 
derivation method considering the data part of protocols. It is illustrated with 
the example of TCP connection establishment. We then apply experimental 
design techniques to the test suite and compare the size of the test suite 
generated by the techniques with the size of test suite generated without the 
techniques. 

This paper is organized as follows: in Section 2, as background we 
describe the interoperability test generation method for the control part of the 
TCP in paper [13], experimental design techniques, and the specifications of 
TCP connection establishment. In Section 3, with the experimental design 
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techniques under certain assumptions, we generate the interoperability test 
suite for the data part of TCP connection establishment. Finally in Section 4, 
we discuss the conclusion and the future work. 

2. RELATED WORK 

In this section, we survey the interoperability test suite generation method 
for the TCP control part, explain experimental design techniques to be used 
to reduce the size of the interoperability test suite for the TCP data part, and 
describe the specification of TCP connection establishment. 

2.1 Interoperability Test Suite Generation for the TCP 
Control Part 

Paper [13] implemented the algorithm for testing interoperability for the 
class of communication protocols proposed in paper [8] and applied it to the 
TCP. The implemented program generates the interoperability test suite after 
an FSM is given. Figure 1 represents the connection establishment phase of 
the TCP FSM shown in paper [13]. Input is given by the application program 
running on TCP and output is presented by selecting one or more bits among 
URG, ACK, PSH, RST, SYN, and FIN in the 6-bit control field of TCP 
packet. TCP controls the connection establishment by selecting these bits. 

Figure 1. Connection establishment phase ofTCP FSM. 

As the result of executing the program of which input is TCP FSM in 
Figure 1, twelve interoperability test cases shown in Appendix 1 are derived. 
The following test case is for a three-way handshake and equivalent to item 
< 1> of Appendix 1: 
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(Closed,Listen) active_open_a/[ <,i_SYN"i_SYN_ACK>, 
<established,i_ACK,established,> ] -7 (Estab,Estab) 

(Closed,Listen) is the starting stable state!, 'active_open_a' before '/' is 
an input symbol to IUT A, and '[ <,i_SYN"i_SYN_ACK>, 
<established,ACK,established,> ]' after '/' is a set of output symbols. 
Corresponding to the input symbol with postfix 'a' (or 'b') represents a 
message transmitted by Tester A (or Tester B) via interface A (or interface 
B) respectively. 'i_' is used to indicate internal messages as opposed to 
external messages. As shown in Figure 2, outputs are represented as a vector 
<u1, u2, u3, u4>, where u1, u2, u3, and u4 respectively represent messages 
transmitted by IUT A via interface A, JUT A via interface C, IUT B via 
interface B, and JUT B via interface C respectively. '-7' is the transition 
relation and (Estab,Estab) is the arrival stable state. The test cases like this 
cannot be executed in real testing because they do not have values for the 
data part. 

interface A interface C interface B 

Figure 2. Output symbols of two FSMs. 

<Test A rchHecture I> 

interface A interface C interface B 

<Test A rchitecture II> 

service provider 

<Test A rchitecture III> 

Figure 3. Interoperability test architectures. 

Paper [14] presents three test architectures for the interoperability testing 
as shown in Figure 3. In Test Architecture I, Tester A sends a message to 
IUT A and then JUT A can send messages to JUT B and/or Tester A. If IUT 
B receives the message, it can also send messages to IUT A and/or Tester B. 
Tester C located between JUT A and IUT B can observe/modify messages 

I A stable state is defined in paper [I] as a system state that is reachable from the initial state adhering to 

the single stimulus principle, and from which no change can occur without another stimulus. 
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between IUT A and ruT B. In Test Architecture II, however, Monitor 
located between IUT A and IUT B can only observe messages between IUT 
A and IUT B. In Test Architecture III, it is impossible to read these messages 
owing to the absence of Tester C or Monitor. Architecture III was considered 
in generating the test suite of the control part in paper [13]. In order to 
generate the test suite including data part, we have to observe values of 
internal messages between IUT A and ruT B. Therefore Architecture II is 
considered in this paper. 

2.2 Experimental Design Techniques 

Experimental design is a statistical technique for planning experiments 
and for choosing and analyzing data so that one can extract the maximum 
information from as few experiments as possible [9]. 

After deciding on the purpose of the experiment, we must choose factors 
and levels of the factors. The factors are defined as the various parameters of 
interest and the levels are defined as the values taken for each parameter. For 
example, if the temperature is chosen as a factor, IS0°C or 200°C can be a 
level of the factor. The number of the different levels of the factor is defined 
as the space of the level. 

When too many test cases are derived, we need to reduce the number of 
test cases while achieving the purpose of the experiment. In order to make 
the number of the test cases as small as possible, an assumption is needed 
such that the interactions of three or more factors virtually do not exist in the 
experiment. The assumption is that the risk of an interaction among three or 
more fields is balanced against the ability to complete system testing within 
a reasonable budget. An analysis of field data at Bellcore indicated that most 
field faults are caused by interactions of one or two fields [3, 4]. In the 
protocol world, it is also felt that most problems are caused by the 
interactions of a few state variables [3]. Thus the assumption for the 
experimental design techniques is satisfied in protocol testing area. This 
paper investigates this approach, using the method of orthogonal arrays to 
determine the test suite that cover all two-way interactions. Orthogonal 
arrays are test sets such that, for any pair of factors, all combinations of 
levels occur. The test suite using orthogonal array has more well-defined 
level of test coverage than other test suites with the same size [9, 10]. 

At Bellcore, the Automatic Efficient Test Generator (AETG) [2, 3,4] was 
developed based on ideas of statistical experimental design theory to reduce 
the number of tests. The AETG is a system that generates test suite from user 
defined test requirements. AETG was used in Bellcore for screen testing and 
protocol conformance testing such as ISDN protocol conformance testing: 
call rejection and channel negotiation [1]. 
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Paper [15] presented a guide to the theory and practical application of the 
method of orthogonal Latin squares to generate system test configurations 
that achieve pairwise parameter coverage. 

2.2.1 Orthogonal Arrays 

Orthogonal array design is a method requiring as few experiments as 
possible in an experiment with many factors [10]. Orthogonal array designs 
are test sets such that, for any pair of factors, all combinations of levels occur 
and every pair occurs the same number of times. So orthogonal array designs 
produce a test set of a manageable size that still covers the interactions that 
cause most of the field faults. 

Orthogonal arrays are available with a variety of levels from 2 to 5. 
Depending on the levels, a method for making orthogonal arrays is different. 
For the majority of purposes, orthogonal arrays consisting of two or three 
levels should be sufficient. In this paper, two-level orthogonal arrays are 
referred. 2m is the number of test cases and 2m_1 is not only the number of 
columns but also the maximum factor to enable to arrange. The variable, m, 
is an integer of 2 or above. Thus two-level orthogonal arrays for 2m_1 factors 
as the maximum enable to test out with 2m test cases while covering 
interactions that causes most field faults. 

To elaborate on these designs, consider a situation where three factors 
have two levels per a factor, say 1 and 2. In this case, the exhaustive test set 
has eight test cases, namely, (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2), 
(2,2,1), and (2,2,2). These test cases cover the interactions of three factors. A 
corresponding orthogonal array has four test cases, namely, (1,1,1), (1,2,2), 
(2,1,2), and (2,2,1). These test cases cover pairwise interactions. 

To hi lOth 1 ti 3 f 2 1 I a e . r ogona arra)' or actors, eve s. 

Experimental Column number (factor) 
Number 1 2 3 

1 1 1 1 
2 1 2 2 
3 2 1 2 
4 2 2 1 

To hi 2 N b f a e urn ero test cases an rea t o covera!e. db d h f 

Experimental 
Number of test cases needed Breadth of coverage (%) 

example 
Exhaustive Orthogonal Exhaustive Orthogonal 

testing array testing array 
3 factors, 2 levels 

8 4 100 100 testing 

Table 1 represents the orthogonal array to enable to test three factors as 
the maximum with four test cases, as substituted 2 for m. In orthogonal 
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arrays, the arrangement of factors and levels are randomly chosen. In this 
example, compared to the exhaustive testing, there is a 50% reduction in the 
number of test cases. It is possible to test with only four test cases because in 
the real world most problems are caused by the interactions of two factors as 
illustrated in section 2.2. As shown in Table 1, two columns chosen 
randomly include pairwise interactions: (1,1), (1,2), (2,1), and (2,2), so 
orthogonal array designs include all pairwise combinations of the test 
factors. Table 2 summarizes the number of test cases needed and the breadth 
of coverage for the exhaustive testing and orthogonal array designs. The 
breadth of coverage is defined here as the percentage of all pairwise 
combinations of the test factors. 

2.3 TCP Specification for Connection Establishment 

TCP consists of three phases, i.e., connection establishment, connection 
release, and data transmission. In this paper, since we generate the test suite 
for TCP connection establishment phase, we only give the specification of 
connection establishment phase. Figure 4 shows the format of the TCP 
header [12] . 

16· bit source port number 16-bit destination port number 

32-bit sequence number 

32-bil aClcnowledgment number 

4-bit I Reserved header (6bit) C S S Y I 16-bit window 
lensth 

16·bil TCP checksum 16-bit urgent pointer 

option. (if any) 

Figure 4. TCP header. 

Since TCP is a connection-oriented protocol, a connection must be 
established between two ends before either end can send data to the other. 
TCP establishes connections · with a procedure known as a three-way 
handshake. The TCP packets for this procedure include sequence number 
(seq), acknowledgement number (ack) , window size (win), and maximum 
segment size (mss) as well as the control field. These fields are presented by 
the shadow in Figure 4 and are the factors related to test suite generation for 
the TCP data part. 

Since the sequence number and the acknowledgement number are 32-bit 
fields, their space ranges from 0 to 232_1. Since the space is finite, they cycle 
from 232_1 to 0 again. When each end sends its SYN to establish a 
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connection, it chooses an initial sequence number (ISN) for the connection. 
The ISN should change over time so that each connection has a different 
ISN. The ISN should be viewed as a 32-bit counter that increments by one 
every 4 microseconds because the sequence numbers on the clock are 
increased about every 4 microseconds [11]. 

TCP's flow control begins by each end advertising a 16-bit window size. 
Since the window size is significant only when combined with an 
acknowledgement number, this field is meaningful only when the 
acknowledgement field is valid. When the ACK bit in the control field is set, 
the requesting end sends a SYN segment with the window size. Some 
applications change their buffer sizes to increase performance, but the 
window size need not change its default because any data is not exchanged 
for the connection establishment phase. 

The maximum segment size for option field is a 16-bit field and TCP 
uses this option only during connection setup. The sender advertises the 
maximum segment size and does not want to receive TCP segments larger 
than this value. This is normally to avoid fragmentation. For Ethernet this 
implies the maximum segment size of up to 1460 bytes. 

Figure 5 shows the tcpdump [7] output for the segments for TCP 
connection establishment. 

1 svr4.1037 > bsdi.discard: S 1415531521 : 1415531521(0) win 4096 <mss 1024> 
2 bsdi.discard > svr4.1037: S 1823083521 : 1823083521(0) ack 1415531522 win 4096 

<mss 1024> 
3 svr4.1037 > bsdi.discard: . ack 1823083521 win 4096 

Figure 5. tcpdump output for TCP connection establishment. 

These three TCP segments contain only TCP headers. No data is 
exchanged. For TCP segments, each output line begins with 'source> 
destination: flags' where flags represent the control bits. 
'1415531521:1415531521(0), means the sequence number of the packet is 
1415531521 and the number of data bytes in the segment is O. In line 2 the 
field 'ack 1415531522' shows the acknowledgement number. This is printed 
only if the ACK flag in the header is on. The field 'win 4096' in every line 
of output shows the window size being advertised by the sender. The final 
field '<mss 1024>' in the lines 1 and 2 shows the maximum segment size 
option specified by the sender. 

3. INTEROPERABILITY TEST SUITE 
GENERATION FOR THE TCP DATA PART 

In this section, we describe a method to derive the test suite for the TCP 
data part from the test suite previously generated in paper [13]. Figure 6 
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shows stages for deriving the interoperability test suite for the TCP data part. 
In paper [13], the test suite for the control part was generated as the result of 
giving TCP FSM to the implemented program. The generated test suite for 
the control part has the effect to exclude impossible behavior sequences. In 
this work, the test suite for the data part is based on that for control part. In 
Section 3.1, we lay down some assumptions for test suite generation for the 
data part. In Section 3.2, based on the assumptions of Section 3.1 we 
generate test suite for the data part. In Section 3.3, by using orthogonal 
arrays, we again generate test suite from the test suite derived in Section 3.2. 
In Section 3.4, we calculate and compare the sizes of the test suites generated 
at various stages. 

Test suite Test suite Test suite Test suite 
generation generation 

for data for data 
part part 
(B) (e) 

Figure 6. Stages for generating the test suite for the data part. 

3.1 Assumptions 

We need assumptions for the test purpose to generate test suite for the 
data part based on the test suite for the control part. 

(1) We consider six factors: the sequence numbers, the window sizes, and 
the maximum segment sizes of two TCPs. 

Figure 7. Message sequence chart for the TCP connection establishment. 
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Figure 7 shows the general procedure for TCP connection establishment 
in which each segment has several factors. We need not assign an initial 
value of acknowledgement number because TCP acknowledges the other 
TCP's SYN by ACKing the other's ISN plus one. Since the 
acknowledgement number and the next sequence number are fixed by the 
initial sequence number and the next window size maintains the default, 
each tester sends initial values of three factors to TCP. 

(2) As shown in Figure 7, Tester A (Tester B) assigns initial values of 
factors to TCP A (TCP B) respectively. When 'active_open', 
'passive_open', or 'send_data' message is given by the application 
program running on TCP, values of the three factors in the TCP packets 
are initialized. When the packets between TCPs are exchanged, these 
values are transmitted to the other TCP. 

(3) All factors have two levels and levels of the factors are shown in Table 
3. 
Because the level space is usually very large, it is impossible to sample 
all level values. So in order to provide better sampling coverage, levels 
need to be chosen properly. The method to choose levels follows the 
three principles [9]: (i) for the level space, it is better to choose the 
minimum and maximum values and to partition it into homogeneous 
spaces for middle values, (ii) levels are better to include values used in 
current systems and expected to be the optimal solution, and (iii) the 
suitable size of level space is from 2 to 5 because over 5 level space 
makes the domain of factors be hard to be managed. In this work, for the 
sequence number, we partition the level space into homogeneous spaces 
and then choose values including the minimum and maximum. For the 
window size and the maximum segment size, we choose values used in 
current systems. These values of each factor can be assigned to the tester 
by the implementer through the Protocol Implementation Conformance 
Statement / Protocol Implementation eXtra Information for Testing 
(PICSIPIXIT) . 

Table 3 Levels for factors 
Factor seq of win of mss of seq of win of mss of 

Level TCPA TCPA TCPA TCPB TCPA TCPA 
I 2823083521 2048 1460 1415531521 4096 1024 
2 0 8192 256 4294967295 16384 256 

3.2 Test Suite Generation 

To generate the test suite for the data part, we consider the assumption (1) 
and (2) (Condition 1). Then the derived test suite has two types. For 
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example, the item <1> of Appendix 1 which is an example of test case for 
the message interaction in Figure 7 is the first type and as follows: 

(Closed,Listen) -- (active_open_a,seq,win,mss)/[ <,(i_SYN,seq, win,mss)" 
(i_SYN_ACK,seq,ack, win,mss », <established,(i_ACK,ack, win), 
established,> ] 7 (Estab,Estab) 

Judging from the fact that (Closed,Listen) is the starting stable state, TCP 
B has already received 'passive_open' message and initial values of its 
factors from Tester B. TCP A receives 'active_open' message and initial 
values of it's factors from Tester A. Thus this example of test case is a test 
case with six factors because both TCPs use three factors. Like this, in 
generating the test suite for the data part, eight test cases with six factors are 
represented by the items <1> to <8> of Appendix 1. 

The item <9> of Appendix 1, for example, is the second type. It is an 
example of test case for the message interaction in Figure 8 and as follows: 

(Closed,Closed) -- (active_open_a,seq,win,mss)/[ <,(i_SYN,seq,win, 
mss),,> ] 7 (SYN_Sent,Closed) 

When TCP B is not ready to receive packets from TCP A because of not 
receiving 'passive_open' message from Tester B, TCP B is in state Closed. 
Thus this test case have only three factors. In generating the test suite for the 
data part, four test cases with three factors like this is represented by the 
items <9> to <12> in Appendix 1. 

Let us calculate the size of test suite after choosing all possible values of 
the factors. The 32-bit sequence number field has 232 levels and the 16-bit 
window size and the 16-bit maximum segment size fields have 216 levels. 
The eight test cases with six factors have 2128 (= 232X232X216X216X216X216) 
test cases for the data part respectively and the four test cases with three 
factors have 264 (= 232X216X216) test cases respectively. Thus the total number 
of test cases for the data part is 2131+266 (= 
8x232X232X216X216X216X216 +4X232X216X216). 

Figure 8. Message sequence chart in case of using only factors of one TCP. 
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Let us calculate the size of test suite after considering the assumption (3) 
(Condition 2) as well as the assumptions (1) and (2) (Condition 1). The eight 
test cases with six factors have 64 (= 26) test cases for the data part 
respectively and the four test cases with three factors have 8 (= 23) test cases 
respectively. Thus the total number of test cases is 544 (= 8x26+4x23). 

3.3 Test Suite Generation using Experimental Design 

The size of test suite derived in Section 3.2 can be reduced by using 
orthogonal arrays (Condition 3). Table 4 represents 2-level orthogonal array 
substituting 2 for m and we randomly arrange six factors to the columns. We 
chose the column numbers 1 to 6 for the arrangement of the factors. The 
arrangement of levels of each factor, 1 and 2, is randomly decided and 
follows Table 3 in this paper. Table 4 means that it is possible to test 
interoperability for the TCP data part with only 8 test cases without 64 (= 26) 

with all combinations of test factors. 

T. hi 4 0 h a e . rt ogona array or ac ors, £ 6f t 21 eve s. 

Experiment Column number (factor) 
al number 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 1 1 1 2 2 2 2 
3 1 2 2 1 1 2 2 

4 1 2 2 2 2 1 1 

5 2 1 2 1 2 1 2 

6 2 1 2 2 1 2 1 

7 2 2 1 1 2 2 1 
8 2 2 1 2 1 1 2 

seq of win of mss of seq of win of mss of 
Arrangement TCPA TCPA TCPA TCPB TCPB TCPB 

For the eight test cases with six factors, we arrange their factor levels by 
using the orthogonal array in Table 4 and for the four test cases with three 
factors by using the orthogonal array in Table 1. In case of using Table 1, the 
sequence number, the window size, and the maximum segment size are 
arranged in the column numbers 1,2, and 3 respectively. Therefore the total 
number of test cases is 80 (= 8x8+4x4). Appendix 2 shows eight and four 
test cases respectively from the items <1> and <9> of Appendix 1. This test 
case for the item <1> of Appendix 2 has levels assigned by the experimental 
number 1 of Table 4. 

(Closed,Listen) -- (active_open_a seq=2823083521,win=2048, 
mss= 1460)/[ <,(i_SYN,seq=2823083521, win=2048, mss=1460)" 
(i_SYN_ACK,seq=1415531521,ack=2823083522,win=4096,mss=1024) 



lnteroperability Test Suite Generation/or the TCP Data Part 139 

>, <established,(i_ACK_a,ack= 1415531522, win=2048),established,> ] 
(Estab,Estab) 

TCP A sends SYN segment with its sequence number 2823083521, 
window size 2048, and maximum segment size 1460 to TCP B. TCP B 
responds with its own SYN segment containing TCP B' s sequence number 
1415531521, window size 4096, and maximum segment size 1024. TCP B 
also acknowledges TCP A's SYN by ACKing TCP A's ISN plus one. TCP 
A acknowledges this SYN from TCP B by TCP B's ISN plus one. So this is 
the test case to establish connection by the three-way handshake. 

3.4 Assessment 

Table 5 shows size of test suite for the data part when we add each of 
three conditions in order. By Condition 1, the size of test suite becomes 
2131+266 and by the addition of Condition 2, it becomes 544. Also by 
Condition 3 using orthogonal arrays, the size of it is reduced to 80 while a 
well-defined level of test coverage is maintained in terms of the observation 
illustrated in Section 2.2. Thus compared to (B), there is an 85% reduction in 
the number of test cases and compared to (A), there is a reduction of more 
than 99.999%. Because most field faults are caused by the interactions of 
two factors, 80 test cases covering all pairwise combinations have nearly the 
same test coverage, compared to the 544 test cases. 

To bl 5 C a e f oml anson 0 test SUIte size at eac h sta e. 
Indication Conditions for generating Size of 

Note 
of Figure 6 the test suite for data part test suite 

(A) 
Condition 1. Considering the 

2131+266 
assumptions (1) and (2) (C) : 85% reduction 

Condition 2. Considering the 
compared to (B) 

(B) 544 and reduction of 
assumption (3) more than 99.999% 

(C) 
Condition 3. Using orthogonal 

80 compared to (A) 
arrays of Experimental Designs 

4. CONCLUSION AND FUTURE WORK 

In this paper, we presented the test generation method suitable for testing 
interoperability of the data part for TCP connection establishment. For this 
work, we laid down three assumptions for the data part and considered 
experimental designs in order to reduce the size of the test suite while 
maintaining a well-defined level of test coverage. The 80 test cases were 
finally generated for testing the data part. Thus compared to the case of 
choosing all possible values as the level space, there is a reduction of more 
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than 99.999% in the number of test cases and compared to the case of 
reducing the level space, there is an 85% reduction. This method leads to a 
faster detection of non-interoperation, which would help to get a higher 
quality of products in a shorter development interval. 

As further work, this method will be applied to the TCP connection 
release and data transmission phases. We need to develop an algorithm for 
generating the test suite for the data part and to implement the algorithm. 
Also we will demonstrate the feasibility of the algorithm by comparing its 
application result with the test suite derived manually in this paper and the 
generality of the algorithm by applying it to the other protocols. 
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Appendix 1. Test suite related to the control part of TCP connection establishment. 

<1> (Closed,Listen) active_open_al[ <,i_SYN"i_SYN_ACK>, 
<established,i_ACK,established,> ] (Estab,Estab) 

<2> (Listen,Closed) active_open_b/[ <,i_SYN_ACK"i_SYN>, 
<established"established,i_ACK> ] (Estab,Estab) 

<3> (Closed,SYN_Sent) active_open_al[ <,i_SYN"i_SYN_ACK>, 
<established,i_ACK,established,> ] (Estab,Estab) 

<4> (SYN_Sent,Closed) active_open_b/[ <,i_SYN_ACK"i_SYN>, 
<established"established,i_ACK> ] (Estab,Estab) 

<5> (Listen,Listen) send_data_al[ <,i_SYN"i_SYN_ACK>, 
<established,i_ACK,established,> ] (Estab,Estab) 

<6> (Listen,Listen) send_data_b/[ <,i_SYN_ACK"i_SYN>, 
<established"established,i_ACK> ] (Estab,Estab) 

<7> (Listen,SYN_Sent) send_data_al[ <,i_SYN"i_SYN_ACK>, 
<established,i_ACK,established,> ] (Estab,Estab) 

<8> (SYN_Sent,Listen) send_data_b/[ <,i_SYN_ACK"LSYN>, 
<established"established,i_ACK > ] (Estab,Estab) 

<9> (Closed,Closed) -- active_open_al[ <,LSYN,,> ] (SYN_Sent,Closed) 
<10> (Closed,Closed) -- active_open_b/[ <",i_SYN> ] (Closed,SYN_Sent) 
<11> (Listen,Closed) -- send_data_al[ <,i_SYN,,> ] (SYN_Sent,Closed) 
<12> (Closed,Listen) -- send_data_b/[ <",i_SYN> ] (Closed,SYN_Sent) 

Appendix 2. Test suite for the TCP data part from the items <1> and <9> in 
Appendix 1. 

<1> (Closed,Listen) -- (active_open_a,seq=2823083521, win=2048,mss=1460)1 
[ <,(i_SYN,seq=2823083521, win=2048,mss= 1460),,(i_SYN_ACK, 
seq= 1415531521,ack=2823083522, win=4096,mss= 1 024 », <established, 
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{i_ACK,ack=1415531522, win=2048),established,> ] -7 (Estab,Estab) 
<2> (Closed,Listen) -- (active_open_a,seq=2823083521, win=2048,mss=1460)1 

[ <,(i_SYN ,seq=2823083521, win=2048,mss= 1460),,(i_SYN_ACK, 

seq=4294967295,ack=2823083522, win= 16384,mss=256», <established, 
{i_ACK,ack=O,win=2048),established,> ] -7 (Estab,Estab) 

<3> (Closed,Listen) -- (active_open_a,seq=2823083521, win=8192,mss=256)1 
[ <,(i_SYN,seq=2823083521, win=8192,mss=256),,{i_SYN_ACK, 
seq= 1415531521,ack=2823083522, win=4096,mss=256»,<established, 
(i_ACK,ack=1415531522,win=8192),established,>] -7 (Estab,Estab) 

<4> (Closed,Listen) -- (active_open_a,seq=2823083521, win=8192,mss=256)1 
[ <,(i_SYN,seq=2823083521, win=8192,mss=256),,(i_SYN_ACK, 
seq=4294967295,ack=2823083522, win= 16384,mss= 1 024», <established, 
(i_ACK,ack=O,win=8192),established,> ] -7 (Estab,Estab) 

<5> (Closed,Listen) -- (active_open_a,seq=O,win=2048,mss=256)/[ <,(i_SYN, 
seq=O, win=2048,mss=256),,(i_SYN_ACK,seq= 1415531521 ,ack= I, 
win=16384,mss=1024», <established,(i_ACK,ack=1415531522,win=2048), 
established,> ] -7 (Estab,Estab) 

<6> (Closed,Listen) -- (active_open_a,seq=0,win=2048,mss=256)/[ <,(i_SYN, 
seq=O, win=2048,mss=256),,(i_SYN_ACK,seq=4294967295,ack=I, win=4096, 
mss=256», established,(i_ACK,ack=O, win=2048),established,> ] -7 
(Estab,Estab) 

<7> (Closed, Listen) -- (active_open_a,seq=O,win=8192,mss=1460)/[ <,(i_SYN, 
seq=O,win=8192,mss=1460),,(i_SYN_ACK,seq=1415531521,ack=1, 
win=16384,mss=256», <established,(i_ACK,ack=1415531522,win=8192), 
established,> ] -7 (Estab,Estab) 

<8> (Closed,Listen) -- (active_open_a,seq=O,win=8192,mss=1460)/[ <,(i_SYN, 
seq=O, win=8192,mss= 1460),,(i_SYN_ACK,seq=4294967295,ack=l, 
win=4096,mss= 1 024», <established,(i_ACK,ack=O, win=8192), 
established,> ] -7 (Estab,Estab) 

<9> (Closed, Closed) -- (active_open_a,seq=2823083521, win=2048,mss= 1460)1 
[ <,(i_SYN,seq=2823083521,win=2048,mss=1460),,> ] -7 
(SYN_Sent,Closed) 

<10> (Closed,Closed) -- (active_open_aseq=2823083521,win=8192,mss=256)1 
[ <,(i_SYN,seq=2823083521,win=8192,mss=256),,> ] -7 (SYN_Sent,Closed) 

<11> (Closed,Closed) -- (active_open_a,seq=0,win=2048,mss=256)1 
[<,(i_SYN,seq=0,win=2048,mss=256),,>] -7 (SYN_Sent,Closed) 

< 12> (Closed,Closed) -- (active_open_a,seq=O, win=8192,mss= 1460)1 
[<,(i_SYN,seq=0,win=8192,mss=1460),,>] -7 (SYN_Sent,Closed) 
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