
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. Ural et al. (eds.), Testing of Communicating Systems

10.1007/978-0-387-35516-0_20

http://dx.doi.org/10.1007/978-0-387-35516-0_20

128 TESTING OF COMMUNICATING SYSTEMS

interoperability, confonnance testing methodology has been published as
international standards in ITU-T X.290 Series [6] and ISO/IEC 9646 [5], and
used world-wide. Protocol confonnance testing is used for confirming
whether or not the behavior of Implementation Under Test (IUT) confonns
to its standards and specifications, and promotes the probability of
interoperation among IUTs. However, even though equipment and services
successfully passed confonnance testing, they do not often interoperate
owing to the variety of mandatory parameters, optional parameters and
control scopes. For this reason, interoperability testing is needed to check the
interaction behavior among IUTs implemented according to their
specifications. So far, no accepted common methodology for interoperability
testing has existed.

Paper [8] proposed an algorithm for generating the interoperability test
suite for communication protocols, and [13] and [14] respectively applied it
to the Internet TCP protocol and the ATMlB-ISDN signaling protocol. The
derived test cases are based on Finite State Machine (FSM) and the test
generation methods consider only the control part of the protocols. So far,
there has been no work on generating the interoperability test suite
considering the data part of protocols.

Because most protocols have a variety of data variables, for real protocol
testing the test suite generation has to deal with the data part as well as the
control part of them. The size of test suite generated with the test derivation
method considering the data part of protocols becomes much larger than that
considering only the control part of them. In order to reduce the size of test
suite while maintaining a well-defined level of test coverage, we make use of
experimental design techniques from industrial engineering. They are used
for planning experiments so that one can extract the maximum possible
infonnation from as few experiments as possible. Adopting these techniques
leads to faster detection of non-interoperation of protocols while maintaining
a well-defined level of test coverage. Experimental design techniques have
been used for protocol conformance testing but not for interoperability
testing so far. In this paper, we present an interoperability test suite
derivation method considering the data part of protocols. It is illustrated with
the example of TCP connection establishment. We then apply experimental
design techniques to the test suite and compare the size of the test suite
generated by the techniques with the size of test suite generated without the
techniques.

This paper is organized as follows: in Section 2, as background we
describe the interoperability test generation method for the control part of the
TCP in paper [13], experimental design techniques, and the specifications of
TCP connection establishment. In Section 3, with the experimental design

Interoperability Test Suite Generationjor the TCP Data Part 129

techniques under certain assumptions, we generate the interoperability test
suite for the data part of TCP connection establishment. Finally in Section 4,
we discuss the conclusion and the future work.

2. RELATED WORK

In this section, we survey the interoperability test suite generation method
for the TCP control part, explain experimental design techniques to be used
to reduce the size of the interoperability test suite for the TCP data part, and
describe the specification of TCP connection establishment.

2.1 Interoperability Test Suite Generation for the TCP
Control Part

Paper [13] implemented the algorithm for testing interoperability for the
class of communication protocols proposed in paper [8] and applied it to the
TCP. The implemented program generates the interoperability test suite after
an FSM is given. Figure 1 represents the connection establishment phase of
the TCP FSM shown in paper [13]. Input is given by the application program
running on TCP and output is presented by selecting one or more bits among
URG, ACK, PSH, RST, SYN, and FIN in the 6-bit control field of TCP
packet. TCP controls the connection establishment by selecting these bits.

Figure 1. Connection establishment phase ofTCP FSM.

As the result of executing the program of which input is TCP FSM in
Figure 1, twelve interoperability test cases shown in Appendix 1 are derived.
The following test case is for a three-way handshake and equivalent to item
< 1> of Appendix 1:

130 TESTING OF COMMUNICATING SYSTEMS

(Closed,Listen) active_open_a/[<,i_SYN"i_SYN_ACK>,
<established,i_ACK,established,>] -7 (Estab,Estab)

(Closed,Listen) is the starting stable state!, 'active_open_a' before '/' is
an input symbol to IUT A, and '[<,i_SYN"i_SYN_ACK>,
<established,ACK,established,>]' after '/' is a set of output symbols.
Corresponding to the input symbol with postfix 'a' (or 'b') represents a
message transmitted by Tester A (or Tester B) via interface A (or interface
B) respectively. 'i_' is used to indicate internal messages as opposed to
external messages. As shown in Figure 2, outputs are represented as a vector
<u1, u2, u3, u4>, where u1, u2, u3, and u4 respectively represent messages
transmitted by IUT A via interface A, JUT A via interface C, IUT B via
interface B, and JUT B via interface C respectively. '-7' is the transition
relation and (Estab,Estab) is the arrival stable state. The test cases like this
cannot be executed in real testing because they do not have values for the
data part.

interface A interface C interface B

Figure 2. Output symbols of two FSMs.

<Test A rchHecture I>

interface A interface C interface B

<Test A rchitecture II>

service provider

<Test A rchitecture III>

Figure 3. Interoperability test architectures.

Paper [14] presents three test architectures for the interoperability testing
as shown in Figure 3. In Test Architecture I, Tester A sends a message to
IUT A and then JUT A can send messages to JUT B and/or Tester A. If IUT
B receives the message, it can also send messages to IUT A and/or Tester B.
Tester C located between JUT A and IUT B can observe/modify messages

I A stable state is defined in paper [I] as a system state that is reachable from the initial state adhering to

the single stimulus principle, and from which no change can occur without another stimulus.

Interoperability Test Suite Generation/or the Tep Data Part 131

between IUT A and ruT B. In Test Architecture II, however, Monitor
located between IUT A and IUT B can only observe messages between IUT
A and IUT B. In Test Architecture III, it is impossible to read these messages
owing to the absence of Tester C or Monitor. Architecture III was considered
in generating the test suite of the control part in paper [13]. In order to
generate the test suite including data part, we have to observe values of
internal messages between IUT A and ruT B. Therefore Architecture II is
considered in this paper.

2.2 Experimental Design Techniques

Experimental design is a statistical technique for planning experiments
and for choosing and analyzing data so that one can extract the maximum
information from as few experiments as possible [9].

After deciding on the purpose of the experiment, we must choose factors
and levels of the factors. The factors are defined as the various parameters of
interest and the levels are defined as the values taken for each parameter. For
example, if the temperature is chosen as a factor, IS0°C or 200°C can be a
level of the factor. The number of the different levels of the factor is defined
as the space of the level.

When too many test cases are derived, we need to reduce the number of
test cases while achieving the purpose of the experiment. In order to make
the number of the test cases as small as possible, an assumption is needed
such that the interactions of three or more factors virtually do not exist in the
experiment. The assumption is that the risk of an interaction among three or
more fields is balanced against the ability to complete system testing within
a reasonable budget. An analysis of field data at Bellcore indicated that most
field faults are caused by interactions of one or two fields [3, 4]. In the
protocol world, it is also felt that most problems are caused by the
interactions of a few state variables [3]. Thus the assumption for the
experimental design techniques is satisfied in protocol testing area. This
paper investigates this approach, using the method of orthogonal arrays to
determine the test suite that cover all two-way interactions. Orthogonal
arrays are test sets such that, for any pair of factors, all combinations of
levels occur. The test suite using orthogonal array has more well-defined
level of test coverage than other test suites with the same size [9, 10].

At Bellcore, the Automatic Efficient Test Generator (AETG) [2, 3,4] was
developed based on ideas of statistical experimental design theory to reduce
the number of tests. The AETG is a system that generates test suite from user
defined test requirements. AETG was used in Bellcore for screen testing and
protocol conformance testing such as ISDN protocol conformance testing:
call rejection and channel negotiation [1].

132 TESTING OF COMMUNICATING SYSTEMS

Paper [15] presented a guide to the theory and practical application of the
method of orthogonal Latin squares to generate system test configurations
that achieve pairwise parameter coverage.

2.2.1 Orthogonal Arrays

Orthogonal array design is a method requiring as few experiments as
possible in an experiment with many factors [10]. Orthogonal array designs
are test sets such that, for any pair of factors, all combinations of levels occur
and every pair occurs the same number of times. So orthogonal array designs
produce a test set of a manageable size that still covers the interactions that
cause most of the field faults.

Orthogonal arrays are available with a variety of levels from 2 to 5.
Depending on the levels, a method for making orthogonal arrays is different.
For the majority of purposes, orthogonal arrays consisting of two or three
levels should be sufficient. In this paper, two-level orthogonal arrays are
referred. 2m is the number of test cases and 2m_1 is not only the number of
columns but also the maximum factor to enable to arrange. The variable, m,
is an integer of 2 or above. Thus two-level orthogonal arrays for 2m_1 factors
as the maximum enable to test out with 2m test cases while covering
interactions that causes most field faults.

To elaborate on these designs, consider a situation where three factors
have two levels per a factor, say 1 and 2. In this case, the exhaustive test set
has eight test cases, namely, (1,1,1), (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2),
(2,2,1), and (2,2,2). These test cases cover the interactions of three factors. A
corresponding orthogonal array has four test cases, namely, (1,1,1), (1,2,2),
(2,1,2), and (2,2,1). These test cases cover pairwise interactions.

To hi lOth 1 ti 3 f 2 1 I a e . r ogona arra)' or actors, eve s.

Experimental Column number (factor)
Number 1 2 3

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

To hi 2 N b f a e urn ero test cases an rea t o covera!e. db d h f

Experimental
Number of test cases needed Breadth of coverage (%)

example
Exhaustive Orthogonal Exhaustive Orthogonal

testing array testing array
3 factors, 2 levels

8 4 100 100 testing

Table 1 represents the orthogonal array to enable to test three factors as
the maximum with four test cases, as substituted 2 for m. In orthogonal

Interoperability Test Suite Generation/or the TCP Data Part 133

arrays, the arrangement of factors and levels are randomly chosen. In this
example, compared to the exhaustive testing, there is a 50% reduction in the
number of test cases. It is possible to test with only four test cases because in
the real world most problems are caused by the interactions of two factors as
illustrated in section 2.2. As shown in Table 1, two columns chosen
randomly include pairwise interactions: (1,1), (1,2), (2,1), and (2,2), so
orthogonal array designs include all pairwise combinations of the test
factors. Table 2 summarizes the number of test cases needed and the breadth
of coverage for the exhaustive testing and orthogonal array designs. The
breadth of coverage is defined here as the percentage of all pairwise
combinations of the test factors.

2.3 TCP Specification for Connection Establishment

TCP consists of three phases, i.e., connection establishment, connection
release, and data transmission. In this paper, since we generate the test suite
for TCP connection establishment phase, we only give the specification of
connection establishment phase. Figure 4 shows the format of the TCP
header [12] .

16· bit source port number 16-bit destination port number

32-bit sequence number

32-bil aClcnowledgment number

4-bit I Reserved header (6bit) C S S Y I 16-bit window
lensth

16·bil TCP checksum 16-bit urgent pointer

option. (if any)

Figure 4. TCP header.

Since TCP is a connection-oriented protocol, a connection must be
established between two ends before either end can send data to the other.
TCP establishes connections · with a procedure known as a three-way
handshake. The TCP packets for this procedure include sequence number
(seq), acknowledgement number (ack) , window size (win), and maximum
segment size (mss) as well as the control field. These fields are presented by
the shadow in Figure 4 and are the factors related to test suite generation for
the TCP data part.

Since the sequence number and the acknowledgement number are 32-bit
fields, their space ranges from 0 to 232_1. Since the space is finite, they cycle
from 232_1 to 0 again. When each end sends its SYN to establish a

134 TESTING OF COMMUNICATING SYSTEMS

connection, it chooses an initial sequence number (ISN) for the connection.
The ISN should change over time so that each connection has a different
ISN. The ISN should be viewed as a 32-bit counter that increments by one
every 4 microseconds because the sequence numbers on the clock are
increased about every 4 microseconds [11].

TCP's flow control begins by each end advertising a 16-bit window size.
Since the window size is significant only when combined with an
acknowledgement number, this field is meaningful only when the
acknowledgement field is valid. When the ACK bit in the control field is set,
the requesting end sends a SYN segment with the window size. Some
applications change their buffer sizes to increase performance, but the
window size need not change its default because any data is not exchanged
for the connection establishment phase.

The maximum segment size for option field is a 16-bit field and TCP
uses this option only during connection setup. The sender advertises the
maximum segment size and does not want to receive TCP segments larger
than this value. This is normally to avoid fragmentation. For Ethernet this
implies the maximum segment size of up to 1460 bytes.

Figure 5 shows the tcpdump [7] output for the segments for TCP
connection establishment.

1 svr4.1037 > bsdi.discard: S 1415531521 : 1415531521(0) win 4096 <mss 1024>
2 bsdi.discard > svr4.1037: S 1823083521 : 1823083521(0) ack 1415531522 win 4096

<mss 1024>
3 svr4.1037 > bsdi.discard: . ack 1823083521 win 4096

Figure 5. tcpdump output for TCP connection establishment.

These three TCP segments contain only TCP headers. No data is
exchanged. For TCP segments, each output line begins with 'source>
destination: flags' where flags represent the control bits.
'1415531521:1415531521(0), means the sequence number of the packet is
1415531521 and the number of data bytes in the segment is O. In line 2 the
field 'ack 1415531522' shows the acknowledgement number. This is printed
only if the ACK flag in the header is on. The field 'win 4096' in every line
of output shows the window size being advertised by the sender. The final
field '<mss 1024>' in the lines 1 and 2 shows the maximum segment size
option specified by the sender.

3. INTEROPERABILITY TEST SUITE
GENERATION FOR THE TCP DATA PART

In this section, we describe a method to derive the test suite for the TCP
data part from the test suite previously generated in paper [13]. Figure 6

Interoperability Test Suite Generationjor the TCP Data Part 135

shows stages for deriving the interoperability test suite for the TCP data part.
In paper [13], the test suite for the control part was generated as the result of
giving TCP FSM to the implemented program. The generated test suite for
the control part has the effect to exclude impossible behavior sequences. In
this work, the test suite for the data part is based on that for control part. In
Section 3.1, we lay down some assumptions for test suite generation for the
data part. In Section 3.2, based on the assumptions of Section 3.1 we
generate test suite for the data part. In Section 3.3, by using orthogonal
arrays, we again generate test suite from the test suite derived in Section 3.2.
In Section 3.4, we calculate and compare the sizes of the test suites generated
at various stages.

Test suite Test suite Test suite Test suite
generation generation

for data for data
part part
(B) (e)

Figure 6. Stages for generating the test suite for the data part.

3.1 Assumptions

We need assumptions for the test purpose to generate test suite for the
data part based on the test suite for the control part.

(1) We consider six factors: the sequence numbers, the window sizes, and
the maximum segment sizes of two TCPs.

Figure 7. Message sequence chart for the TCP connection establishment.

136 TESTING OF COMMUNICATING SYSTEMS

Figure 7 shows the general procedure for TCP connection establishment
in which each segment has several factors. We need not assign an initial
value of acknowledgement number because TCP acknowledges the other
TCP's SYN by ACKing the other's ISN plus one. Since the
acknowledgement number and the next sequence number are fixed by the
initial sequence number and the next window size maintains the default,
each tester sends initial values of three factors to TCP.

(2) As shown in Figure 7, Tester A (Tester B) assigns initial values of
factors to TCP A (TCP B) respectively. When 'active_open',
'passive_open', or 'send_data' message is given by the application
program running on TCP, values of the three factors in the TCP packets
are initialized. When the packets between TCPs are exchanged, these
values are transmitted to the other TCP.

(3) All factors have two levels and levels of the factors are shown in Table
3.
Because the level space is usually very large, it is impossible to sample
all level values. So in order to provide better sampling coverage, levels
need to be chosen properly. The method to choose levels follows the
three principles [9]: (i) for the level space, it is better to choose the
minimum and maximum values and to partition it into homogeneous
spaces for middle values, (ii) levels are better to include values used in
current systems and expected to be the optimal solution, and (iii) the
suitable size of level space is from 2 to 5 because over 5 level space
makes the domain of factors be hard to be managed. In this work, for the
sequence number, we partition the level space into homogeneous spaces
and then choose values including the minimum and maximum. For the
window size and the maximum segment size, we choose values used in
current systems. These values of each factor can be assigned to the tester
by the implementer through the Protocol Implementation Conformance
Statement / Protocol Implementation eXtra Information for Testing
(PICSIPIXIT) .

Table 3 Levels for factors
Factor seq of win of mss of seq of win of mss of

Level TCPA TCPA TCPA TCPB TCPA TCPA
I 2823083521 2048 1460 1415531521 4096 1024
2 0 8192 256 4294967295 16384 256

3.2 Test Suite Generation

To generate the test suite for the data part, we consider the assumption (1)
and (2) (Condition 1). Then the derived test suite has two types. For

Interoperability Test Suite Generation/or the TCP Data Part 137

example, the item <1> of Appendix 1 which is an example of test case for
the message interaction in Figure 7 is the first type and as follows:

(Closed,Listen) -- (active_open_a,seq,win,mss)/[<,(i_SYN,seq, win,mss)"
(i_SYN_ACK,seq,ack, win,mss », <established,(i_ACK,ack, win),
established,>] 7 (Estab,Estab)

Judging from the fact that (Closed,Listen) is the starting stable state, TCP
B has already received 'passive_open' message and initial values of its
factors from Tester B. TCP A receives 'active_open' message and initial
values of it's factors from Tester A. Thus this example of test case is a test
case with six factors because both TCPs use three factors. Like this, in
generating the test suite for the data part, eight test cases with six factors are
represented by the items <1> to <8> of Appendix 1.

The item <9> of Appendix 1, for example, is the second type. It is an
example of test case for the message interaction in Figure 8 and as follows:

(Closed,Closed) -- (active_open_a,seq,win,mss)/[<,(i_SYN,seq,win,
mss),,>] 7 (SYN_Sent,Closed)

When TCP B is not ready to receive packets from TCP A because of not
receiving 'passive_open' message from Tester B, TCP B is in state Closed.
Thus this test case have only three factors. In generating the test suite for the
data part, four test cases with three factors like this is represented by the
items <9> to <12> in Appendix 1.

Let us calculate the size of test suite after choosing all possible values of
the factors. The 32-bit sequence number field has 232 levels and the 16-bit
window size and the 16-bit maximum segment size fields have 216 levels.
The eight test cases with six factors have 2128 (= 232X232X216X216X216X216)
test cases for the data part respectively and the four test cases with three
factors have 264 (= 232X216X216) test cases respectively. Thus the total number
of test cases for the data part is 2131+266 (=
8x232X232X216X216X216X216 +4X232X216X216).

Figure 8. Message sequence chart in case of using only factors of one TCP.

138 TESTING OF COMMUNICATING SYSTEMS

Let us calculate the size of test suite after considering the assumption (3)
(Condition 2) as well as the assumptions (1) and (2) (Condition 1). The eight
test cases with six factors have 64 (= 26) test cases for the data part
respectively and the four test cases with three factors have 8 (= 23) test cases
respectively. Thus the total number of test cases is 544 (= 8x26+4x23).

3.3 Test Suite Generation using Experimental Design

The size of test suite derived in Section 3.2 can be reduced by using
orthogonal arrays (Condition 3). Table 4 represents 2-level orthogonal array
substituting 2 for m and we randomly arrange six factors to the columns. We
chose the column numbers 1 to 6 for the arrangement of the factors. The
arrangement of levels of each factor, 1 and 2, is randomly decided and
follows Table 3 in this paper. Table 4 means that it is possible to test
interoperability for the TCP data part with only 8 test cases without 64 (= 26)

with all combinations of test factors.

T. hi 4 0 h a e . rt ogona array or ac ors, £ 6f t 21 eve s.

Experiment Column number (factor)
al number 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

seq of win of mss of seq of win of mss of
Arrangement TCPA TCPA TCPA TCPB TCPB TCPB

For the eight test cases with six factors, we arrange their factor levels by
using the orthogonal array in Table 4 and for the four test cases with three
factors by using the orthogonal array in Table 1. In case of using Table 1, the
sequence number, the window size, and the maximum segment size are
arranged in the column numbers 1,2, and 3 respectively. Therefore the total
number of test cases is 80 (= 8x8+4x4). Appendix 2 shows eight and four
test cases respectively from the items <1> and <9> of Appendix 1. This test
case for the item <1> of Appendix 2 has levels assigned by the experimental
number 1 of Table 4.

(Closed,Listen) -- (active_open_a seq=2823083521,win=2048,
mss= 1460)/[<,(i_SYN,seq=2823083521, win=2048, mss=1460)"
(i_SYN_ACK,seq=1415531521,ack=2823083522,win=4096,mss=1024)

lnteroperability Test Suite Generation/or the TCP Data Part 139

>, <established,(i_ACK_a,ack= 1415531522, win=2048),established,>]
(Estab,Estab)

TCP A sends SYN segment with its sequence number 2823083521,
window size 2048, and maximum segment size 1460 to TCP B. TCP B
responds with its own SYN segment containing TCP B' s sequence number
1415531521, window size 4096, and maximum segment size 1024. TCP B
also acknowledges TCP A's SYN by ACKing TCP A's ISN plus one. TCP
A acknowledges this SYN from TCP B by TCP B's ISN plus one. So this is
the test case to establish connection by the three-way handshake.

3.4 Assessment

Table 5 shows size of test suite for the data part when we add each of
three conditions in order. By Condition 1, the size of test suite becomes
2131+266 and by the addition of Condition 2, it becomes 544. Also by
Condition 3 using orthogonal arrays, the size of it is reduced to 80 while a
well-defined level of test coverage is maintained in terms of the observation
illustrated in Section 2.2. Thus compared to (B), there is an 85% reduction in
the number of test cases and compared to (A), there is a reduction of more
than 99.999%. Because most field faults are caused by the interactions of
two factors, 80 test cases covering all pairwise combinations have nearly the
same test coverage, compared to the 544 test cases.

To bl 5 C a e f oml anson 0 test SUIte size at eac h sta e.
Indication Conditions for generating Size of

Note
of Figure 6 the test suite for data part test suite

(A)
Condition 1. Considering the

2131+266
assumptions (1) and (2) (C) : 85% reduction

Condition 2. Considering the
compared to (B)

(B) 544 and reduction of
assumption (3) more than 99.999%

(C)
Condition 3. Using orthogonal

80 compared to (A)
arrays of Experimental Designs

4. CONCLUSION AND FUTURE WORK

In this paper, we presented the test generation method suitable for testing
interoperability of the data part for TCP connection establishment. For this
work, we laid down three assumptions for the data part and considered
experimental designs in order to reduce the size of the test suite while
maintaining a well-defined level of test coverage. The 80 test cases were
finally generated for testing the data part. Thus compared to the case of
choosing all possible values as the level space, there is a reduction of more

140 TESTING OF COMMUNICATING SYSTEMS

than 99.999% in the number of test cases and compared to the case of
reducing the level space, there is an 85% reduction. This method leads to a
faster detection of non-interoperation, which would help to get a higher
quality of products in a shorter development interval.

As further work, this method will be applied to the TCP connection
release and data transmission phases. We need to develop an algorithm for
generating the test suite for the data part and to implement the algorithm.
Also we will demonstrate the feasibility of the algorithm by comparing its
application result with the test suite derived manually in this paper and the
generality of the algorithm by applying it to the other protocols.

REFERENCES

[1] K. Burroughs, A. Jain, and R. L. Erichson, "Improved Quality of Protocol Testing

Through Techniques of Experimental Design," SupercommlICC '94,1994.

[2] D. M. Cohen, S. R Dalal, M. L. Fredman, and G. C. Patton, "The AETG System: An

Approach to Testing Based on Combinatorial Design," IEEE Transactions on Software

Engineering, Volume 23, Number 7, pp.437-444, July 1997.

[3] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton, ''The Automatic Efficient Test

Generator (AETG) System," Proc. 5th Int'l Symp. Software Reliability Eng., IEEE CS

Press, pp. 303-309,1994.

[4] D. M. Cohen, S. R. Dalal, 1. Parelius, and G. C. Patton, ''The combinatorial design

approach to automatic test generation," IEEE Software Volume: 13, Issue: 5, pp. 83-88,

September 1996.

[5] ISOIIECl9646, OSI Conformance Testing Methodology and Framework Parts 1-7,

1994.

[6] ITU-T X.290 Series, Conformance Testing Methodology and Framework, 1994.

[7] V. Jacobson, C. Leres, and S. McCanne, The Tcpdump Manual Page, Lawrence

Berkeley National Laboratory, Berkeley, CA., June 1997.

[8] S. Kang and M. Kim, "Interoperability Test Suite Derivation for Symmetric

Communication Protocols," IPIP Joint International Conference on Formal Description

Techniques for Distributed Systems and Communication Protocols (FORlE X) and

Protocol Specification Testing and Verification (pSTV XVII), pp. 57-72, November

1997.

[9] D. C. Montgomery, Design and Analysis of Experiments, 4th Ed., John Wiley & Sons,

Inc., 1997.

[10] G. S. Peace, Taguchi Methods: A Hands-On Approach, Addison-Wesley, 1993.

[11] J. B. Postel, ''Transmission Control Protocol," RFC 793, September 1981.

[12] W. Richard Stevens, TCPIIP Illustrated, Volumel: The Protocols, Addison-Wesley,

1995.

Interoperability Test Suite Generation/or the TCP Data Part 141

[13] S. Seol, M. Kim, S. Kang, and Y. Park, "Interoperability Test Suite Derivation for the
TCP," IPIP TC6 WG6.1 Joint International Conference on Formal Description
Techniques for Distributed Systems and Communication Protocols (FORTE XII) and
Protocol Specification, Testing and Verification (PSTV XIX), October 5-8, Beijing,
China, 1999.

[14] J. Shin and S. Kang, "Interoperability Test Suite Derivation for the ATMIB-ISDN
Signaling Protocol," Testing of Communicating Systems, Vol. II, Kluwer Academic
Publishers, pp. 313-330,1998.

[15] A. W. Williams and R. L. Probert, "A Practical Strategy for Testing pair-wise Coverage
of Network Interfaces," Proceedings of the 7th International Conference on Software
Reliability Engineering (ISSRE '96), White Plains NY USA, pp. 246-254, October
1996.

Appendix 1. Test suite related to the control part of TCP connection establishment.

<1> (Closed,Listen) active_open_al[<,i_SYN"i_SYN_ACK>,
<established,i_ACK,established,>] (Estab,Estab)

<2> (Listen,Closed) active_open_b/[<,i_SYN_ACK"i_SYN>,
<established"established,i_ACK>] (Estab,Estab)

<3> (Closed,SYN_Sent) active_open_al[<,i_SYN"i_SYN_ACK>,
<established,i_ACK,established,>] (Estab,Estab)

<4> (SYN_Sent,Closed) active_open_b/[<,i_SYN_ACK"i_SYN>,
<established"established,i_ACK>] (Estab,Estab)

<5> (Listen,Listen) send_data_al[<,i_SYN"i_SYN_ACK>,
<established,i_ACK,established,>] (Estab,Estab)

<6> (Listen,Listen) send_data_b/[<,i_SYN_ACK"i_SYN>,
<established"established,i_ACK>] (Estab,Estab)

<7> (Listen,SYN_Sent) send_data_al[<,i_SYN"i_SYN_ACK>,
<established,i_ACK,established,>] (Estab,Estab)

<8> (SYN_Sent,Listen) send_data_b/[<,i_SYN_ACK"LSYN>,
<established"established,i_ACK >] (Estab,Estab)

<9> (Closed,Closed) -- active_open_al[<,LSYN,,>] (SYN_Sent,Closed)
<10> (Closed,Closed) -- active_open_b/[<",i_SYN>] (Closed,SYN_Sent)
<11> (Listen,Closed) -- send_data_al[<,i_SYN,,>] (SYN_Sent,Closed)
<12> (Closed,Listen) -- send_data_b/[<",i_SYN>] (Closed,SYN_Sent)

Appendix 2. Test suite for the TCP data part from the items <1> and <9> in
Appendix 1.

<1> (Closed,Listen) -- (active_open_a,seq=2823083521, win=2048,mss=1460)1
[<,(i_SYN,seq=2823083521, win=2048,mss= 1460),,(i_SYN_ACK,
seq= 1415531521,ack=2823083522, win=4096,mss= 1 024 », <established,

142 TESTING OF COMMUNICATING SYSTEMS

{i_ACK,ack=1415531522, win=2048),established,>] -7 (Estab,Estab)
<2> (Closed,Listen) -- (active_open_a,seq=2823083521, win=2048,mss=1460)1

[<,(i_SYN ,seq=2823083521, win=2048,mss= 1460),,(i_SYN_ACK,

seq=4294967295,ack=2823083522, win= 16384,mss=256», <established,
{i_ACK,ack=O,win=2048),established,>] -7 (Estab,Estab)

<3> (Closed,Listen) -- (active_open_a,seq=2823083521, win=8192,mss=256)1
[<,(i_SYN,seq=2823083521, win=8192,mss=256),,{i_SYN_ACK,
seq= 1415531521,ack=2823083522, win=4096,mss=256»,<established,
(i_ACK,ack=1415531522,win=8192),established,>] -7 (Estab,Estab)

<4> (Closed,Listen) -- (active_open_a,seq=2823083521, win=8192,mss=256)1
[<,(i_SYN,seq=2823083521, win=8192,mss=256),,(i_SYN_ACK,
seq=4294967295,ack=2823083522, win= 16384,mss= 1 024», <established,
(i_ACK,ack=O,win=8192),established,>] -7 (Estab,Estab)

<5> (Closed,Listen) -- (active_open_a,seq=O,win=2048,mss=256)/[<,(i_SYN,
seq=O, win=2048,mss=256),,(i_SYN_ACK,seq= 1415531521 ,ack= I,
win=16384,mss=1024», <established,(i_ACK,ack=1415531522,win=2048),
established,>] -7 (Estab,Estab)

<6> (Closed,Listen) -- (active_open_a,seq=0,win=2048,mss=256)/[<,(i_SYN,
seq=O, win=2048,mss=256),,(i_SYN_ACK,seq=4294967295,ack=I, win=4096,
mss=256», established,(i_ACK,ack=O, win=2048),established,>] -7
(Estab,Estab)

<7> (Closed, Listen) -- (active_open_a,seq=O,win=8192,mss=1460)/[<,(i_SYN,
seq=O,win=8192,mss=1460),,(i_SYN_ACK,seq=1415531521,ack=1,
win=16384,mss=256», <established,(i_ACK,ack=1415531522,win=8192),
established,>] -7 (Estab,Estab)

<8> (Closed,Listen) -- (active_open_a,seq=O,win=8192,mss=1460)/[<,(i_SYN,
seq=O, win=8192,mss= 1460),,(i_SYN_ACK,seq=4294967295,ack=l,
win=4096,mss= 1 024», <established,(i_ACK,ack=O, win=8192),
established,>] -7 (Estab,Estab)

<9> (Closed, Closed) -- (active_open_a,seq=2823083521, win=2048,mss= 1460)1
[<,(i_SYN,seq=2823083521,win=2048,mss=1460),,>] -7
(SYN_Sent,Closed)

<10> (Closed,Closed) -- (active_open_aseq=2823083521,win=8192,mss=256)1
[<,(i_SYN,seq=2823083521,win=8192,mss=256),,>] -7 (SYN_Sent,Closed)

<11> (Closed,Closed) -- (active_open_a,seq=0,win=2048,mss=256)1
[<,(i_SYN,seq=0,win=2048,mss=256),,>] -7 (SYN_Sent,Closed)

< 12> (Closed,Closed) -- (active_open_a,seq=O, win=8192,mss= 1460)1
[<,(i_SYN,seq=0,win=8192,mss=1460),,>] -7 (SYN_Sent,Closed)

	8 INTEROPERABILITY TEST SUITE GENERATIONFOR THE TCP DATA PART USINGEXPERIMENTAL DESIGN TECHNIQUES
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Interoperability Test Suite Generation for the TCPControl Part
	2.2 Experimental Design Techniques
	2.3 TCP Specification for Connection Establishment
	3. INTEROPERABILITY TEST SUITEGENERATION FOR THE TCP DATA PART
	3.1 Assumptions
	3.2 Test Suite Generation
	3.3 Test Suite Generation using Experimental Design
	3.4 Assessment
	4. CONCLUSION AND FUTURE WORK
	REFERENCES

