
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2000
H. Ural et al. (eds.), Testing of Communicating Systems

10.1007/978-0-387-35516-0_20

http://dx.doi.org/10.1007/978-0-387-35516-0_20


222 TESTING OF COMMUNICATING SYSTEMS 

study using the TGV test generation tool [7], and the TORX tool environment 
[2] for test execution (see Fig. l.(a)). 

We use two different methods to generate the test suites: one based on 
manually-designed test purposes, and the other based on randomly-generated 
test purposes. Our goal is to evaluate advantages and drawbacks of the tools 
used during this experiment, and to investigate these two approaches of test 
purpose design. 

(a) (b) 

Figure 1. Architecture: (a) steps and tools of the experiments; (b) the test architecture 

2. THE EXPERIMENT 

2.1 Description 

The experiment addresses testing of a multicast protocol implementation, 
facilitating a service similar to a 'chatbox' to users participating in a confer­
ence. A conference is a session in which a group of users can participate by 
exchanging messages with other users (called partners). The partners involved 
in a conference can change dynamically. The Implementation Under Test (IUT) 
is the Conference Protocol Entity (CPE) which implements the protocol at a 
conference user site. The test architecture of the experiment is depicted in 
Fig. 1. (b). Since the IUT communicates using the User Datagram Protocol 
(UDP) underlying service, we need to incorporate it into the System Under 
Test (SUT). The specification of this protocol is described using the formal 
language LOTOS. 

The experiment consists of testing 28 different implementations of the 
CPE-of which 27 are incorrect-and detecting the incorrect implementa­
tions (i.e., mutants [11]). In each mutant a single error has been introduced. 
There are three types of errors: No outputs, No internal checks and No internal 
updates (see [2]). There are respectively 6, 4, and 17 mutants for each type. 

We evaluate the quality of the generated test suites by checking how many 
of these mutants are declared non-conforming with respect to the specification. 
See [2, 3] for more details about the experiment, the protocol and specifications. 



Formal Test Automation: The Conference Protocol with TGV/l'orX 223 

2.2 Test Suite Generation 

Description of TG V. TG V [7] is a tool dedicated to the automatic gen­
eration of conformance tests based on a formal specification. Given a formal 
specification of a system to be tested and a formal description of a test purpose, 
TG V generates an abstract test case. The test purposes are used as test selection 
criteria and are formalized using automata. An abstract test case is a directed 
graph in which each path represents a test sequence with associated verdicts 
which indicate whether the SUT conforms to the specification. We use the 
conformance relation ioco [12], which is a correction notion for conformance 
between the specification and an implementation. The main characteristic of 
TGV is that it produces test cases "on-the-fly", i.e. the generation is done 
in a "lazy" way, so that the specification state space is not completely stored. 
"On-the-fly" techniques are one of the solutions proposed for the state-space 
explosion problem commonly encountered in verification techniques. 

Formal specification. We used the LOTOS specification, which is freely 
provided by the Cote de Resyste project [3]. As shown in Fig. l.(b), the core 
of the LOTOS specification is a (state-oriented) description of the CPE be­
haviour. The CPE behaviour is parameterized with the potential conference 
partners. The instantiation of the CPE with concrete values for these param­
eters is part of the specification. We made some small modifications on the 
specification, to make processing by TG V more efficient. These adaptations 
are similar to optimizations of the PROMELA specification reported in [2]. 

Test purpose design. In addition to a specification, we need test purposes 
[5]. In TGV, test purposes are given in the form of an automaton. They serve 
as a "guide" to the state-space exploration which is performed on the product 
between the specification and the test purpose. We followed two approaches to 
obtain them: 

• In the first approach, the test purposes are designed manually, based on 
the informal requirements of the conference protocol [3]. 

• The second approach consists in automatic random generation of test 
purposes. 

We began by designing 18 basic test purposes for basic protocol function­
alities: joining and leaving the conference and data transfer. From these, we 
composed 8 more complex test purposes. We designed the test purposes to 
fulfill the informal requirements for a CPE. With the 8 complex test purposes 
and 11 basic test purposes, we generated a test suite with TGV. We select 
only 11 of the 18 basic test purposes to produce (basic) test cases with TGV 
because of the following testing equivalence hypothesis. Since the specific a-



224 TESTING OF COMMUNICATING SYSTEMS 

tion indicates that user2 and user3 behave equivalently towards userl (see Fig. 
l.(b», the verdict for a test case with userl and user2 (noted TC(userl,user2) 
should be the same as the verdict for TC(userl,user3), i.e., the same test case 
replacing user2 by user3. The time effort spent on designing and writing these 
19 test purposes and generating tests was 4 hours. After execution of the test 
suite as described above, we designed 7 new test purposes, since the generated 
test suite was not able to detect one last mutant. To find the last mutant, we 
relied on the fault model used for the mutant generation. For each expected 
error, we designed a specific test purpose for which an implementation with 
this error would behave incorrectly. Those test purposes were more difficult to 
design than the previous ones. We decided to stop the test purpose design after 
ten hours of work. 

For the second approach, we used the CADP [4] simulator to simulate the 
specification randomly. With this tool, we produced and saved 200 traces of 
200 steps. We translated those traces into test purposes (with a script), and we 
used TGV to produce the associated test cases. 

2.3 Test Execution 

TorX and adaptation. For the execution of the tests generated by TG V 
we used TORX [2] (configured for on-the-fly test generation and execution) 
and gave it the tests generated by TGV as "specifications". Because TORX 

can handle nondeterministic graphs, we were able to execute not only tests 
cases, but also uncontrollable tests graphs [7]. With TORX, we could reuse 
ADAPTER, the component that connects the tester to the SUT, as it was con­
figured for the previous conference protocol experiments [2]. Minor changes 
were necessary for the components PRIMER, which implements the test deriva­
tion algorithm, DRIVER, which controls the testing, and EXPLORER, which 
explores the transition graph. PRIMER had to be changed because it initially 
only implemented the ioeo test generation algorithm, while for this experiment 
it has to compute the traces of its input, i.e., test cases in TGV output format. 
In addition, it has to recognize the special events in the tests that encode qui­
escence [12] and verdicts and pass the verdicts to the DRIVER. The DRIVER 

had to be extended to accept verdicts from the PRIMER (in addition to com­
puting the verdicts itself). The CADP libraries [4] allowed us to replace the 
LOTOS-specific EXPLORER by one that read the test case in BeG format. 

Results. Since TG V is based on the ioeo-conformance relation, it can poten­
tially detect ioeo-incorrect implementations, but it cannot detect ioeo-correct 
erroneous implementations. Among the 28 implementations, 25 were ioeo­
incorrect. 

We first executed the test cases generated from the manually-written test 
purposes. In total 34 test cases were derived from 19 test purposes (11 basic 



Formal Test Automation: The Conference Protocol with TGVtTorX 225 

, 
, I 
I A B I 
: U C I 
ITO I S 
, I 

BATCH DERIVATION : _____ J _______________________________________ 
___________________ J 

Figure 2. TORX tool architecture instantiated with TGV 

and 8 complex). The test cases detected 24 ioco-incorrect mutants. One 
mutant was detected by all the test cases, 6 mutants were detected by 50% of 
the test cases, 7 mutants were detected by less than 10% of the test cases. The 
test suite generated from the 7 test purposes especially designed to find the last 
undetected mutant, was not able to detect it. 

We then executed the test cases produced from the randomly generated test 
purposes. All 25 ioco-incorrect mutants were detected. One was detected by 
all the test cases, 3 were detected by 50% of the test cases, 3 were detected by 
less than 10% of the test cases. 

3. CONCLUSION AND PERSPECTIVES 
Tools. We were able to easily interface TG V and TORX, so that we could 
execute the generated tests. As a result of this experiment, we noted two ideas 
for the improvement of TG V, both of which have been implemented. First, 
the restriction that a test purpose should be deterministic has been removed, to 
facilitate the writing of a test purpose. For example, it eases the writing of wild 
cards in the transitions of a test purpose by avoiding the manual computation 
of the complement of a regular expression. The other adaptation of TG V 
addresses the controllability of a generated test case. In TG V, priority between 
inputs and outputs (of the specification) was given to the inputs. It can be 
advantageous to give less control to the environment (e.g., regarding quiescence 
[12]). 

Specification of test purposes. Manually-written test purposes were more 
general than those produced by the random generation method: wild cards 
in transitions labels were used whereas they did not appear in random tests 
purpose coming from traces. To derive a test case by TG V, we began with a 
general test purpose and subsequently, restricted it (i.e., instantiated some wild 
cards). This iterative approach was needed, since the generation either took 
too much time or TGV did not produce a test case because of incoherence 
between the specification and the test purpose. That is, a test purpose is coherent 



226 TESTING OF COMMUNICATING SYSTEMS 

with a specification if the behaviors it describes are included in those of the 
specification, see [7]. 

This experiment with TG V has underlined the difficulties that users have 
when translating a test purpose into TGV input format with which test cases 
are quickly generated. A balance has to be found between the expressiveness 
of test purposes and the amount of computation needed to generate a test case. 
This expressiveness comes from the ability to use wild cards in the labels. 
When test case generation takes too long, the expressiveness of the test purpose 
has to be reduced (e.g., by expanding the wild cards labels or by considering 
the different options of TGV). To succeed in a test campaign with manually­
written test purposes, the user has to know the algorithms described in [7] to 
understand how TG V works in order to know what to do to obtain the expected 
test case. 

From the experience gained in the use of TGV with the manually-written 
test purposes we chose to have the random test purposes as constrained as 
possible to ensure fast generation of test cases. This shows that it is possible 
to choose the level of automation of test generation: completely automated (as 
with random test purpose) or with TestComposer [8] or in a more interactive 
way (more control over the test generation process). 

Manual vs. random test purpose design. One should notice that the goal 
of this paper is not to compare the efficiency of the two test purpose design 
approaches. The fact that one method is better than another one cannot be 
established with a single experiment. We present our observations on the two 
design approaches. With the random generation of test purposes approach, all 
ioeo-incorrect mutants were found. It is not clear why we did not manage to 
detect one ioeo-incorrect mutant with the manual approach. The fact that all 
the mutants were detected by the random approach is not surprising considering 
that this method is essentially equivalent to the on-the-fiy method of [2]. The 
efficiency of the random walk method for protocol (specification) testing has 
been known for a long time [13] even though few formal explanations exist 
regarding its efficiency [10]. Efficiency is transferred from specification testing 
to conformance testing when execution is combined with simulation. Another 
reason for the efficiency of both methods could be that the fault model we 
considered is restricted. Only "functional" mutants (in contrast to the usual 
syntactic mutants) were considered. The high-level fault model (no outputs, no 
internal checks, no internal updates), when applied at the source-code level of 
the implementation, give less choice in mutations than usual mutation operators 
[1] applied directly on the code of the implementation. 

Analysis. As in the previous experiment [2], the analysis of test case execution 
was the least automated part. We did not go much further than verdict checking, 



Formal Test Automation: The Conference Protocol with TGVnorX 227 

i.e., we did not diagnose the errors. We found that analysis of random-generated 
test purposes is quite difficult. In fact, many events in the test execution trace 
were unnecessary to trigger the error. The analysis of the trace produced from 
designed test purposes seems easier since these test purposes usually give a 
more precise idea of what is supposed to be tested (although obtaining a fail 
verdict is not necessary related to a fail on the "property" targeted by the 
test purpose). To diagnose a fail verdict on a mutant, we used an iterative 
approach to analyze the result of the test case execution, i.e., analyzing the test 
run. From this test run, we made a new test purpose by suppressing irrelevant 
events and derived a new test case. After execution of this test case, we iterated 
again to converge to a "minimal" test purpose. From a reduced test purpose, we 
hoped to interpret the detected error more easily. Although this methodological 
approach eases human diagnosis, it is not systematic and did not help for the last 
undetected mutant with manual test purposes 1• Here, automation is lacking for 
fault diagnosis (which is a more complex problem than conformance testing, 
see [9] p. 1119). 

Comparison with previous experiments. Both approaches for test purpose 
development, resulted in a good mutation score (96% and 100% respectively). 
These results should be somewhat mitigated by the fact that mutant population 
is low and maybe not representative of common errors encountered when writ­
ing C code. We consider this experiment to be a case study. It is not possible 
to really compare this experiment with a previous one, i.e., benchmark it. The 
only conclusion to be drawn is that TG V and TORX (the full tool, not just the 
ADAPTER) have the same fault detecting power on this case study, which is 
not surprising since they use the same conformance relation. To do real bench­
marking you need, besides benchmarking criteria, equivalent specifications in 
order to make a fair comparison. On the other hand, specifications may be 
adapted so that a tool is able to perform better. Therefore strict equivalence 
among specifications is hard to maintain. 

Perspectives. The experiment detailed here is the first part of a larger one 
using other tools. We intend to use TGV and TestComposer with the SDL 
specification of the CPE, and we have already produced some test cases. Cur­
rently we are working on the execution of these test cases. We want to extend 
the set of mutants by automatically generating more mutants. We are cur­
rently studying possible approaches towards this. We believe that more work 
is needed on the notion of a test purpose both at the theoretical and method-

1 Note that since we obtained traces leading to fail with random test purposes, we could have used them for 
the other approach. But since we did not get the "meaning" ofthese test purposes, they cannot be considered 
as manual test purposes. 



228 TESTING OF COMMUNICATING SYSTEMS 

ologicallevel. There are several infonnal definitions of what a test purpose is. 
TGV uses one specific, fonnal and constructive notion of a test purpose. One 
can consider that the test purpose description in TG V is too restrictive (for 
instance, it is not possible to specify quiescence in test purposes). It remains 
an open problem, to find the correct notion of test purpose. Such a definition 
should be as general as the infonnal one in [5] or the fonnal definition in [6]. In 
addition, we would still like to use the definition as a basis for test generation. 
Finally, tool support for writing test purposes is needed. 

References 

[1] H. Agrawal, R. A. DeMilio, B. Hataway, W. Hsu, W. Hsu, E. W. Krauser, R. 1. Martin, 
and E. Spafford. Design of mutant operators for the C programming language. Technical 
Report TR-41-P, SERC, 1989. 

[2] A. Belinfante, 1. Feenstra, R.G. de Vries, 1. Tretmans, N. Goga, L. Feijs, S. Mauw, and 
L. Heerink. Formal test automation: A simple experiment. In IWTCS' 99, pages 179-196. 
Kiuwer, 1999. 

[3] Cote de Resyste. Conference protocol case study. http://fmt.cs.utwente.nIlConfCase, 
1999. 

[4] H. Garavel. Open/cresar: An open software architecture for verification, simulation, and 
testing. In TACAS'98, LNCS 1384. Springer, 1998. 

[5] ISO. International Standard IS-9646. 1991. 

[6] ITU-T recommendation Z-500: Framework on formal methods in conformance testing, 
1997. 

[7] T. leron and P. Morel. Test generation derived from model-checking. In CAV'99, LNCS 
1633. Springer, 1999. 

[8] A. Kerbrat, T. leron, and R. Groz. Automated test generation from SDL specifications. 
In SDL'99, pages 135-151. Elsevier, 1999. 

[9] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines-a 
survey. Proceedings of the IEEE, 84(8): 1090-1123, 1996. 

[10] M. Mihail and C. H. Papadimitriou. On the random walk method for protocol testing. In 
CAV'94, LNCS 818, pages 132-141. Springer, 1994. 

[11] R. 1. Lipton R. A. DeMilio and F. G. Sayward. Hints on test data selection: Help for the 
practicing programmer. IEEE Computer, 11(4):34-43, 1978. 

[12] 1. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software­
Concepts and Tools, 17(3): 103-120, 1996. 

[13] c. H. West. Protocol validation by random state exploration. In PSTV' 86, pages 7.1-7.12, 
1986. 


	14 FORMAL TEST AUTOMATION:THE CONFERENCE PROTOCOL~THTGVnORX
	1. INTRODUCTION
	2. THE EXPERIMENT
	2.1 Description
	2.2 Test Suite Generation
	2.3 Test Execution
	3. CONCLUSION AND PERSPECTIVES
	References




