
The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
H. Ural et al. (eds.), Testing of Communicating Systems

10.1007/978-0-387-35516-0_20

http://dx.doi.org/10.1007/978-0-387-35516-0_20

194 TESTING OF COMMUNICATING SYSTEMS

Common Object Request Broker Architecture (CORBA) in 1991, a
technology that addresses the need for interoperable, object-oriented, robust
and high-performance distributed solutions in the era of global networks and
communications [4].

Surprisingly, the issue of conformance testing of CORBA-based
distributed services remains relatively underdeveloped. To our knowledge,
application of TTCN (Tree and Tabular Combined Notation) to testing
CORBA interfaces has been addressed only in few papers (among them, [10]
considers testing of TINA service components and [11] describes application
of TTCN in the context of test case derivation from SDL models created
within a framework of TOSCA project). At the same time, TTCN as a part of
ISO-9646 standard [2] is a mature framework, widely recognized for its
flexibility and industrial strength. Covering this gap, we share our
experiences in testing CORBA objects described in terms of IDL interfaces
using TTCN language. We limit ourselves to conformance testing of
application-level CORBA servers and clients without considering other
issues like testing of GIOP/IIOP protocols, performance testing, inter­
operability testing, and so on. For the purposes of the present study we
assume that all other components of ORB are already tested and are
functioning properly. The paper is organized as follows: In section 2, we
present an overview of OMG Object Management Architecture and CORBA
middleware architecture. In section 3, we define the mapping of CORBA
Interface Definition Language (IDL) to TTCN, focusing on the obstacles of
such conversion. In section 4, an overall architecture of the CORBAfITCN
gateway is presented and its capabilities are explained. Section 5 goes
through a test session example and provides recommendations on test suite
coverage. Finally, in section 6 our conclusions are presented.

2. CORBA MIDDLEWARE ARCHITECTURE

The timely creation of interoperable, distributed and high-performance
applications capable of communicating transparently in the heterogeneous
network environment has grown to be an increasingly challenging task in the
telecommunications industry. To alleviate the problem, Object Management
Group (OMG) , a consortium consisting of several hundreds of member
organizations world-wide, has devised a CORBA middleware architecture,
the first version of which has been adopted in 1991. CORBA seamlessly
interconnects multi-vendor applications and services and let them communi­
cate with each other irrespectively of their location in the network, the
operating system they use or the programming language utilized at the

Conformance Testing ofCORBA Services Using TTCN 195

implementation stage. CORBA is the communications heart of the Object
Management Architecture (OMA) which acts as a higher level reference
model (RM) for CORBA framework.

OMA RM classifies all system components into four categories as shown
in Figure 1, namely: the Object Request Broker (ORB); CORBA Services
(COS); CORBA Facilities; Application Objects. The ORB provides generic
low-level communication services to all other OMA components and is
responsible for transparent distribution and communication of objects in the
network. CORBA Services define a set of system-level interfaces comple­
menting the basic functionality of ORB, and CORBA Facilities (classified
into horizontal and vertical ones) provide standard frameworks responsible
for defining the universal rules of engagement for collaborating objects [9] .

CORBA DOMAIN
fAQlmES INn!RPACES

CORBA SERVICES

Figure 1. OMA Reference Model

CORBA specification constitutes a set of well-defined rules describing
how OMA-oriented architecture shall be actually constructed. Its core part
discusses the syntax and semantics of Interface Definition Language (IDL).
Object declaration in terms of IDL acts as a contract between a concrete
object implementation (server) and its potential clients which is independent
from the programming language, platform and location of the contracted
parties. IDL declaration provides the formal means for declaring the
structure of CORBA object, abstracting from the implementation details. In
particular, it defines object location within hierarchy of IDL modules and
interfaces, operations accepted by the object, exceptions it raises and the data
types of input and output parameters used in operation calls. By putting an
IDL declaration into Interface Repository (IFR), the server advertises its
capabilities to all interested clients which can introspect the contents of IFR

196 TESTING OF COMMUNICATING SYSTEMS

and find out how invocation requests are handled by a specific server, thus
turning CORBA into a self-described component architecture. Combined
with Dynamic Invocation Interface (DI!) and Dynamic Skeleton Interface
(DSI), Interface Repository provides powerful and flexible means for
dynamic invocation of server operations or dynamic processing of client
requests. In case a distributed application or service platform does not need
this flexibility, invocation requests can be processed directly using
precompiled static IDL stubs and skeletons that act as a wrapper for low­
level core part of the invocation request. CORBA also standardizes the way
objects establish a communication path with each other by associating each
server with an Interoperable Object Reference (lOR). As soon as the client
finds out the exact contents of lOR, it may freely start communicating with
the corresponding server. The overall architecture of CORBA ORB is shown
in Figure 2.

Figure 2. Common Object Request Broker Architecture

In TTCN-oriented conformance testing of CORBA clients and servers the
power of DII, DSI and Interface Repository introspective capabilities is fully
employed. Basically, TTCN ASP is converted to CORBA dynamic request
or to dynamic response and vice versa, and appropriate generic clients and
servants are created on the test environment side for that purpose. According
to CORBA specification, a System Under Test (which is viewed as a
collection of client and server objects) cannot distinguish whether a static or
dynamic invocation scheme has been used, so the implementation details of
the test environment are completely transparent from the SUT perspective.

Conformance Testing ofCORBA Services Using TTCN 197

3. MAPPING OF CORBA IDL TO TTCN

The rules for mapping CORBA Interface Definition Language to TTCN
have been presented in the paper of GMD FOKUS [10], although the related
work of XlOpen and Network Management Forum (NMF) conducted by the
JIDM (Joint Inter Domain Management) working group shall be acknowl­
edged, too [8]. However, to our knowledge JIDM mainly concentrates on the
reverse task of mapping GDMO/ ASN.1 to IDL, so JIDM mapping rules have
had an indirect impact in the present paper; on the other hand, the mapping
discussed in [10] has contributed most to our study. In particular, [10]
defines the rules for mapping IDL operations, exceptions, constants,
attributes and type definitions to TTCN, and we adhered to the same
concepts as long as it has been practical. Yet, amendments and supplements
to the approach discussed in [10] proved to be inevitable, either in cases
when level of details in the original paper was insufficient or when
alternative design of the mapping rules has been viewed as beneficial for
improving the flexibility of the whole testing scheme. To avoid overlapping
with [10], hereafter we provide a brief overview of the basic principles used
in conversion of IDL to TTCN (mostly derived from [10]) and then
concentrate on our findings in this area, as well as on the obstacles and the
design issues to be considered.

The conversion rules are as follows: (a) one CORBA instance of IDL
interface maps to one PCO declaration, which may be reused in different test
cases to represent several CORBA objects; (b) declaration of one operation
maps to a pair of ASPs, namely Call ASP and Reply ASP, the identifiers of
which are prefixed by pCALL_ and pREPLY_ respectively; (c) one actual
operation call maps to a pair of ASP constraints; (d) IDL data types are
mapped to ASN.1 types; (e) IDL specification itself maps IDL attributes to
normal operations, so additional arrangements are unnecessary; (f) one
Exception ASP (identified as pRAISE) is defined for all possible CORBA
exceptions, both system exceptions and user-defined, so that different
constraints may be introduced as necessary for individual exceptions or for
groups of them; (g) to facilitate debugging of an Abstract Test Suite (ATS) at
design stage, CORBAlTTCN gateway introduces its own gateway-specific
exceptions defined in terms of IDL to signal e.g. incorrectly constructed ASP
and any other exceptional situations not directly related to SUT, and a
separate namespace is reserved by the gateway for that purpose; (h) IDL-to­
TTCN mapping implies an effective solution for IDL name resolution and
inheritance mechanism without declaring that specifically, as both issues are
more relevant to concrete language-dependent implementations of CORBA
objects.

198 TESTING OF COMMUNICATING SYSTEMS

The mapping rules defined in our gateway specification ensure that every
distinct entity of IDL language (interface, operation, type definition,
identifier of enumerated type etc.) possesses a one-to-one mapping in TICN
namespace of identifiers. For that purpose, we use a symbolic chain "_i" as a
separator and duplicate all occurrences of underscore characters ("_") in
names of original IDL entities while mapping them to TICN. For example,
interface "IntC" defined within IDL module with scoped name
"::ModA::ModB" according to these rules may be mapped to PCO identifier
IPC01_iModA_iModB_iIntC", and one way operation "opD" defined within
interface "::ModA_::_ModB::IntC" is mapped to Call ASP identifier
"pCALL_iModA_i_ModB_iIntC_iopD". Apparently, we have to con­
catenate several IDL identifiers to form one TICN identifier so that initial
IDL entities can be reconstructed from the resulting TICN aggregate,
otherwise the conversion rules would not guarantee a one-to-one mapping,
which can lead to possible collisions in TICN namespace. To address this
issue, we use a concept similar to "bit stuffing", a well-known pattern
utilized in low-level telecommunication protocols to mark boundaries of
frames sent over the communication medium. In our case, a similar idea is
introduced to label margins of module, interface and operation names.

We also introduce an additional field CALL_ID of ASN.1 type
INTEGER into every Call ASP, Reply ASP and Exception ASP to uniquely
identify operation calls sent to CORBA servers or received from clients,
which is necessary for support of concurrent invocations within one test
case. It is required that concrete values of CALL_ID shall be unique within a
test case, although set of CALL_ID values allocated for servers may overlap
with values used by clients. Without having a CALL_ID field, it would be an
ambiguous action to invoke the same operation while the previous operation
call issued through the same PCO and within the same PTC is still pending,
as in this case ATS would be unable to distinguish which operation
completed its execution once one of them returns. Moreover, CALL_ID field
is of vital importance for determining which operation call has thrown an
exception if pRAISE ASP is received or sent. Alternatively, several parallel
test components referring to the same PCO, or several PCOs referring to the
same CORBA object could well be used instead of CALL_ID to resolve the
ambiguous cases of concurrent invocations. Yet, in our view presence of
CALL_ID brings more flexibility and determinism to concurrent operation
calls. Moreover, concept of CALL_ID does not have an equally good
substitution in the area of exception handling, taking into account mapping
rules for IDL exceptions as they are presented in this paper.

Conformance Testing ofCORBA Services Using TTCN 199

Our specification of IDLmCN mapping intentionally avoids use of
TICN operations, although their use in concrete test suites is not restricted.
One situation when TICN operations could be used is related to associating
PCO with a concrete CORBA object, and [10] seemingly uses operations for
this purpose. However, this approach does not fit well with good TICN
design practice, as TICN operations shall be normally limited to calculating
the return value from the set of input parameters, and use of operation side
effects for performing an association procedure does not strictly follows the
formal part of ISO 9646-3 standard. Instead, we most naturally (and more
formally) delegate the responsibility for associating PCO with a CORBA
object to the CORBA!ITCN gateway by sending to it an ASP of a special
format as needed.

Test System SlIT
!'Co - Point of Control and Observation

(CORBA servers

[ill and clients) GlOP - General Inter-ORB Protocol

8: IIOP - Internet Inter-ORB Protocol

PDUs DII - Dynamic Invocation Interface

CORBAIITCN Gateway DII/IDL I DSI1IDL
DII I OSl slatic stub skeleton

OIOP I Service provider I OIOP

DSI -Dynamic Skeleton Interface

IUT - Implementation Under Test

ASP - Abstract Service Primitive

SlIT - System Under Test
nop I10P

TCPIIP proIocoIltal:k: TCPIIP prolOc:ol slack: PDU - Protocol Data Unit

Communication medium
LT - Lower Tester

Figure 3. Position of CORBAfITCN Gateway in Testing Architecture

For that purpose, we define several forms of Registration ASP which is
sent to the gateway every time ATS is willing to bind PCO with a client or
server object. For instance, ASP identified as pSREG_IOR sent through
PCO in question will bind this PCO to the CORBA server advertised by lOR
(Interoperable Object Reference); another form of Registration ASP
identified as pCREG_NSERV is used to instruct the gateway to create a
generic servant on its side and advertise its presence to all interested clients
by putting this servant into object hierarchy in the Naming Service. Since

200 TESTING OF COMMUNICATING SYSTEMS

then, all operation calls received from clients will be relayed to the PCO
through which original pCREG_NSERV ASP has been issued. Gateway will
inform A TS of whether the binding procedure failed or succeeded by
sending a gateway-specific Exception ASP to the test environment. Gateway
specification requires that all bindings mentioned above must be removed
(and generic servants destroyed) without any special notification coming
from ATS after test case completes its execution.

In our testing architecture the gateway is viewed as a part of Service
Provider, as shown in Figure 3. Hence, we found it acceptable to introduce
gateway-specific ASPs, thus following a gateway-aware approach, as long as
even in this case the actual communication is still mediated by Service
Provider (and the gateway being the part of it).

Our mapping of CORBA exceptions to ITCN allows catching group of
exceptions in one TTCN constraint. As noted previously, we define one
Exception ASP for all possible CORBA exceptions. This ASP contains three
fields: (1) CALL_ID of the operation that has thrown an exception; (2)
absolute scoped name of an exception thrown, as defined in IDL interface;
(3) exception body encapsulated into separate PDU. Absolute scoped name
is encapsulated into ASN.l SEQUENCE OF IA5String, so that exception
having scoped name "::ModA::IntB::ExcC" may be constrained by construct
{ "ModA", "IntB", "ExcC" }. At the same time, by defining construct
{ "ModA", "IntB", ?} we are capable of catching a group of exceptions
defined within interface "::ModA::IntB". We assume that CORBA system
exceptions are defined within interface "::CORBA::SystemException" and
gateway-specific exceptions are defined within namespace
"::GatewayException". The gateway-specific exceptions usually signal a
receipt of structurally invalid ASP; inopportune ASPs may in some cases
cause a gateway exception too, for instance when Call ASP has been issued
before sending Registration ASP. However, the gateway will handle most of
inopportune ASPs of all other kinds, as well as structurally correct ASPs
containing invalid values.

It was already mentioned that IDL data types map almost naturally to
ASN.l types, as shown in Figure 4. Yet, there are two essential exceptions
from this rule. One of them regards to IDL discriminated union. A
straightforward solution implies mapping of IDL union directly to ASN.l
CHOICE. However, a direct conversion may lead to a loss of information
about the exact value of the discriminator, since several values of the
discriminator may refer to one branch of IDL union. On the other hand,
CORBA language mappings allow a direct access to the discriminator, hence
the result of such access is implementation-dependent. To eliminate this
ambiguity, the final mapping for IDL union proposes encapsulation of

Conformance Testing ofCORBA Services Using TTCN 201

discriminator field and ASN.l CHOICE field into one ASN.1 SEQUENCE
structure, where a field of type CHOICE contains the actual branch activated
by union and an additional field carries the exact value of the discriminator.

Object Reference []

Floating Point

t Float [RBAL]
Double [RBAL]

IDL [ASN.l] Types

I
Basic Types

I

Interer Types

1 Short [INTBGBR]
Long [INTBGBR]
UShort [INTBGER]
ULong [INTBGER]

Other Types i Void!]
Char [IA5String]
String [IA5String]
Boolean [BOOLBAN]
Octet [OCTET STRING]
Bnum [BNUMERATBD]

Constructed Types l Stroct [SEQUENCE]
Sequence [SEQUENCE OF]
Union [CHOICE]
Array [SEQUENCE OF]
Any[]

Figure 4. Mapping of IDL Data Types to ASN.l

More serious restrictions concern mapping of IDL Any type. Mapping of
IDL to TTCN does not imply a one-to-one conversion from IDL data types
to ASN.l types, that is one ASN.1 type may correspond to several IDL
types. For instance, ASN.l INTEGER may correspond to IDL "unsigned
short" or "long" or "unsigned long", and ASN.l IA5String may correspond
to IDL "char" or IDL "string". For this reason, CORBAfITCN gateway
internally uses Interface Repository (IFR) as its structural backbone, so every
time it receives Call ASP going to server or Reply ASP or Exception ASP
going to client, it performs a lookup of IFR to clarify how the structured data
of the operation call must be actually processed. However, if the gateway
meets the definition of Any type in IFR, it may not have any hint how to
process the respective part of the received ASP, as the structural information
extracted from the ASP is insufficient to provide a reliable guidance to the
gateway, due to one-to-many nature of TTCN-to-IDL mapping of data types.
If "any" value has been received from SUT, then its conversion to ASP is
trivial, but in this case ATS shall contain multiple ASP definitions per one
operation, what contradicts to the mapping rules described above. Due to all
these complexities, current version of the gateway does not support mapping
for Any type. Three possible solutions are anticipated, all three having their
own advantages and drawbacks:

(1) Type information is explicitly inserted into corresponding identifiers
of ASP fields in form of prefixes, e.g. "s" for strings, "c" for characters etc.
However, this approach requires defining several pairs of ASPs per one
operation call if the latter happens to contain "any". Moreover, since then
ASP identifier itself must obey additional rules, because gateway must know
exactly how ASP name is constructed at run-time, and if there are several

202 TESTING OF COMMUNICATING SYSTEMS

possible ASPs per response from the same operation, a kind of operation key
is definitely needed. At the same time, we cannot encapsulate a variable of
Any type into a separate PDU and then append prefixes only to what is
inside (what would have eliminated the need for more than one pair of ASPs
per operation), since ISO 9646-3 standard prohibits use of non-ASN.1 types
inside ASN.1 data. Finally, it remains unclear how the whole scheme would
address cases like "union" inside "any" or other challenges, so this approach
shall be examined with caution.

(2) Values of "any" type are mapped to ASN.1 OCTET STRING type,
having part of the marshalling buffer as a content filler. Although this
approach seems to be the most natural solution from the gateway
perspective, it puts a heavy burden on the designer of test suite who is since
then responsible for manual construction of part of GIOPIESIOP/IIOP
stream, which might be practically unacceptable.

(3) The set of IDL interfaces describing SUT is supplemented with
manually implemented decorators that do not contain "any", so that
operation calls are routed through them. Decorator is a well-known design
pattern, the main function of which is attaching additional responsibilities to
the core system [1]. In our case, if we assume we know in advance all
variations of typed information encapsulated into "any" variables, we can
then make an equivalence transform of the operation containing "any" into
several operations containing only conventional types. A set of these
"wrapper" operations may be defined within one decorator object acting as a
relay point between MOT and core SUT. This idea could be extended to
mapping of one server operation containing "any" into two sets of decorating
oneway operations, one set responsible for decorating a direct part of
operation call and another one responsible for decorating operation return.
This would help if operation call and operation return both contain "any"
parameters. The similar idea could be also applied to operation calls coming
from clients. The technique of decorators is a good trade-off between two
previous approaches, although it requires additional effort to implement
decorating CORBA objects.

4. ARCHITECTURE OF CORBAffTCN GATEWAY

The CORBAJTTCN gateway acts as an intermediary between the test en­
vironment and SVT. The gateway itself is a CORBA-based Java application,
enjoying all the benefits of both CORBA distributed nature and Java

Conformance Testing of CORBA Services Using TTCN 203

platform independence. The ORB of our choice was ORBacus for Java from
Object Oriented Concepts Inc [6], which fully implements the core
functionality of CORBA 2.0 in accordance to the OMG standard. CORBA
mapping to Java is the most natural and frequently used solution, as Java
takes care of transparent object removal and has a comprehensive exception
handling mechanism. Although Java is an interpreted language and is
relatively slow, this issue is not of crucial importance as long as performance
measurements in conformance testing are not usually involved. Java is not
perfectly suitable for testing low-level protocols as Java API does not
provide a direct access to protocol layers lower than TCP and UDP, but this
could be solved by implementing a gateway logic on Java and a system-level
part on C++. The two parts could be, again, combined using CORBA or Java
native calls. Nevertheless, in case of testing CORBA services it is sufficient
for the gateway to have indirect access to the protocol stack.

The gateway communicates with the test environment using CORBA
ORB, thus making it possible to have both subsystems located on different
machines. This architectural design was technically feasible, as we have used
OpenTTCN from Open Environment Software Oy as our target test environ­
ment which internally uses ORB as its communication backbone [7]. The
distributed nature of the means of testing (MOT) may significantly facilitate
testing, especially if CORBA services are tested in conjunction with some
other telecommunication software, what may require the physical
distribution of multi-purpose gateways in the network. The interpreted nature
of the test environment combined with a simple and developed-friendly API
has noticeably reduced the time and budget spent on the gateway design,
allowing the design process to be iterative, i.e. when the gateway
components are designed and their functionality is tested immediately. The
absence of the overhead related to compiling ATS into ETS (Executable Test
Suite) was another speed-up factor at the design stage.

The overall structure of the gateway is shown in Figure 5. The core part
of it consists of BuilderAdapter, VisitorAdapter, ClientCallBuilder,
ServerReplyBuilder, ServerCallVisitor and ClientReplyVisitor. It performs a
conversion from ASP format into format acceptable for making an operation
call and vice versa. Here we have used three well-known design patterns,
namely Builder, Visitor and Adapter [1]. Visitor performs introspection of
ASP corning from the test environment, Builder constructs ASP
corresponding either to client operation call or to server operation response
and Adapter performs a technical conversion of information obtained from
the Interface Repository into internal format acceptable for processing either
by Builder or by Visitor.

204 TESTING OF COMMUNICATING SYSTEMS

Tl'CN Abstntct Tat Suil<

Builder I I V,sitarAdoptcr I
I ClientCaU I I
I ServetRepl y I I ServcrCall I

I I ClientReply I
I BuilderAlUpll:r II Visitor

, I lnlCtf"", Repository

OientPool =WI ServerPool

Oient I I Server Request Request
Databuc Databuc

II
]Jl 1

OS) on

System
Under
Test

(SUT)

Object Request Broker (ORB)

Figure 5. CORBAfITCN Gateway Architecture

The gateway uses the asynchronous mode of DIl invocation mechanism,
what naturally correlates with asynchronous nature of TTCN operational
semantics. The asynchronous mode enables the gateway to process new
invocation requests coming from the test environment while other operation
calls are still pending. This is also valid for concurrent invocations of one
explicit operation attributed to the same CORBA object. This feature allows
design of concurrent test suites with several parallel test components (PTC)
or even simultaneous execution of several independent test suites served by
one gateway component. In the latter case, the only restriction introduced by
the gateway concerns prohibitive use of overlapping PCO identifiers in
different test suites, as the TTCN test tool in use currently does not provide
means for distinguishing between different test sessions as they are seen
from the gateway perspective. Subsystem named "ServerRequestDatabase"
is running in a dedicated thread and regularly polls for response from
incomplete requests, accepting at the same time registration of new operation
invocations issued by ServerPool. Client side of the gateway operates in a
similar way, with "ClientRequestDatabase" subsystem designed to notify
waiting threads in the ClientPool in case a response on client request has
been issued by ATS. Client operation calls can be executed concurrently,
too.

Conformance Testing of CORBA Services Using TTCN 205

5. TEST SUITE EXECUTION

For the purposes of verifying a gateway functionality, two sets of test
cases have been developed. Each set contains nine test cases, one set for
testing servers and another one for testing clients. This collection constitutes
a minimum orthogonal set of tests of the gateway states and can therefore be
recommended as a skeleton for developing more detailed test groups aimed
at practical testing of ORB implementations. The test cases and their
objectives are classified as follows: (1) ''prototype'' tests the very basic
functionality of the gateway: it performs (or accepts) the only one operation
call with "in" and "out" parameters of primitive IDL types; (2) ''primitive''
tests all IDL primitive data types as input and output parameters; (3)
"oneway" tests correctness of executing oneway operations; (4) "struct" tests
all IDL structured types (struct, sequence and array) except union; (5)
"choice" tests IDL union, including recursive unions (i.e. union inside
union); (6) "context" tests operations declared with context clause; (7)
"concurrent" tests mUltiple invocation requests coming from clients or sent
to servers; (8) "exception" tests handling of both system and user-defined
exceptions; (9) finally, "abnormal" tests various invalid situations like
incorrectly constructed ASP, most of which shall normally be observed on
the ATS side in the form of gateway-specific Exception ASP.

A simplified example of a typical test session is shown in Figure 6. The
session dynamic behaviour follows two stages of testing a CORBA service:
(a) registering CORBA object, and (b) issuing (or accepting) actual operation
calls. The third stage of deregistering CORBA object is implicitly performed
by the gateway upon completion of test case and hence need not be reflected
in test suite. The Interoperable Object Reference (lOR) used for registering
CORBA server object is supplied to ATS in form of a PIXIT parameter.

It shall be acknowledged that the least formal part of CORBA services
practical testing (requiring in some cases a manual control over SUT) relates
to establishing a communication path between a CORBA object and the
means of testing. In the presented example this is achieved by supplying an
lOR of the object, but finding out the exact content of lOR may itself require
knowledge about location of lOR file in e.g. file system or in the network.
Moreover, an object may be located in the Naming Service or in the Trading
Service what makes registration procedure even more complicated. The
client side of SUT may be even harder to deal with, as ATS must explicitly
instruct the gateway to create a generic servant and advertise its presence to
the rest of the CORBA world. If for example SUT client is willing to
immediately obtain a reference to the corresponding servant emulated by
MOT before it becomes available, then such client shall be subject to manual

206 TESTING OF COMMUNICATING SYSTEMS

control of the operator, and a corresponding IMPLICIT SEND statement
shall be present in ATS.

Test Case
Test Case ID: tcINVOKE COUNT
Test Group Reference: Operations/
Test Case Purpose: To test that after CORBA server object is

registered by its lOR and "increment"
operation is invoked, it returns the argument
of the operation incremented by one.

N L Behaviour Description Constraint Ref V C
1 PCOl_iArithmetic_iCount ! cSREG_IOR

pSREG_IOR START tSREG
(xIOR CiArithmetic_iCount)

2 PCOl_iArithmetic_iCount ? pRAISE c 1 RAISE_iGatewayException

iRecoverable iGeneral

3 PCOl_iArithmetic_iCount ! c 1 CALLl_iArithmetic_iCount

pCALL_iArithmetic_iCount _iincrement

iincrement START tREPL Y

4 PCOl_iArithmetic_iCount? c1 REPLY l_iArithmetic_iCount P

pREPLY _iArithmetic_iCount _iincrement

iincrement

5 ? TIMEOUT tREPLY F
6 PCOl_iArithmetic_iCount ? F

OTHERWISE

7 ? TIMEOUT tSREG F
8 PCOl_iArithmetic_iCount ? F

OTHERWISE

Figure 6. Test Session Dynamic Behaviour Description

6. DISCUSSION

This paper discusses the practical application of TTCN framework to
conformance testing of CORBA services. An alternative approach to the
same task would require a manual design of CORBA-based subsystem using
language for which CORBA mapping specification exists, for instance C++,
Java or Smalltalk. This manually implemented subsystem would then
perform test invocations of SUT operations and in its tum respond to
requests corning from SUT clients. Several issues shall be considered while
making a choice between these two alternatives: (1) TTCN is a formal

Conformance Testing of CORRA Services Using ITCN 207

standardized framework specifically designed for reusable and automated
testing of telecommunication systems; (2) TTCN facilitates practical testing
of active components (servers) of CORBA services, as it clearly outperforms
the above mentioned conventional technique due to ad-hoc and informal
nature of the latter; (3) Yet, TTCN does not show up enough flexibility in
emulating a CORBA servant, as TTCN framework may require implementa­
tion of TTCN operations for this purpose, what makes the processing of
requests coming from reactive components of SUT (clients) look relatively
awkward. To sum up, in case of testing CORBA clients TTCN obviously
looses a comparison with its non-TTCN conventional counterpart. However,
if SUT mostly contains active parts (which is normally the case in testing
CORBA services), then a TTCN framework shall undoubtedly be preferred.

Several aspects constitute the grounds for the further research. First, the
use of Modular TTCN for supplementing the existing IDL-to-TTCN
mapping rules shall be investigated. The second aspect addresses the need
for automating the process of test suite derivation from IDL interfaces and
SDL models, as generating ASN.l type definitions and ASP declarations
from IDL is a relatively routine operation and is subject to automation.
Finally, the third edition of TTCN, although not officially published yet,
promises to be an innovative continuation of the TTCN standard which may
bring a fresh breath to conformance testing of CORBA services and
distributed applications. All these issues are planned to be addressed in our
future work.

References

[1] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Publishing Company, 1995.

[2] ISOIIEC 9646-3, Information technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 3: The Tree and Tabular
Combined Notation (TTCN), International Standard, second edition, 1994.

[3] O. Martikainen, J. Karvo, Internet Based Service Development, Fifth International
Conference on Intelligence in Networks (Smartnet '99), Thailand, November 22nd-
26th,1999.

[4] Object Management Group, The Common Object Request Broker: Architecture and
Specification, Revision 2.3.1, OMG Document 99-10-08, October 1999.

[5] Object Management Group, IDL-Java Language Mapping, OMG Document 99-07-53,
June 1999.

[6] Object Oriented Concepts, ORBacus Manual, http;//www.ooc.com.

[7] Open Environment Software, OpenTTCN Tester, http;//www.oes.fi.

208 TESTING OF COMMUNICATING SYSTEMS

[8] Open Group, JIDM Specification Translation, Technical Document P509, February
1997.

[9] R. Orfali, D. Harkey, Client/Server Programming with Java and CORBA, John Wiley
& Sons, Inc., 1998.

[10] I. Schieferdecker, M. Li, A. Hoffmann, Conformance Testing of TINA Service
Components - the TTCN/CORBA Gateway, Fifth International Conference on
Intelligence in Services and Networks IS&N'98, Antwerp, Belgium, May 25th - 28th,
1998.

[11] R. Sinnott, M. Kolberg, Creating Telecommunication Services based on Object­
Oriented Frameworks and SDL, Proceedings of the Second IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC'99), Saint
Malo, France, 1999.

	12 CONFORMANCE TESTING OF CORBA SERVICES USING TTCN
	1. INTRODUCTION
	2. CORBA MIDDLEWARE ARCHITECTURE
	3. MAPPING OF CORBA IDL TO TTCN
	4. ARCHITECTURE OF CORBAffTCN GATEWAY
	5. TEST SUITE EXECUTION
	6. DISCUSSION
	References

