
Elements of A Language for Role-Based Access
Control

M. HITCHENS & V. V ARADHARAJAN
Distributed Systems and Network Security Research Group,
University of Western Sydney Nepean

Key words: Role Based Access Control, Object-Oriented, Language

Abstract: A language for specifying role-based access control (RBAC) policies is
presented. The language is designed to support the range of access control
policies of commercial object systems. The basic structures ofRBAC, such as
role, users and permission, are present in the language as basic constructs. The
language is flexible and is able to capture meta-level operations. The language
also provides a mechanism for tracking actions and basing access control
decisions on past events.

1. INTRODUCTION

In a computing system, when a request for a certain service is received by one
principal (an agent) from another, the receiving principal needs to address two
questions. First, is the requesting principal the one it claims to be? Second, does the
requesting principal have the appropriate privileges for the requested service? These
two questions relate to the issues of authentication and access control
(authorisation). Recently, there has been extensive interest in Role Based Access
Control (RBAC) [1,2] as an alternative to the more traditional discretionary access
control (DAC) and mandatory access control (MAC) approaches. In RBAC models
the attributes used in the access control are the roles associated with the principals
and the privileges associated with the roles. In a previous paper [10] we have
discussed some of the issues which need to be considered in the design of a language
for specifying RBAC policies. These issues include the basic constructs of the
language, the question of ownership and the recording of the history actions so that
access control decision may be based on past events. In this paper we present some
of the details of the language Tower, which has been specifically designed for the
expression ofRBAC policies in object systems and which addresses these issues.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
S. Qing et al. (eds.), Information Security for Global Information Infrastructures

10.1007/978-0-387-35515-3_53

http://dx.doi.org/10.1007/978-0-387-35515-3_53

372 Information Security for Global Information Infrastructures

The next section describes the basic structure of the language. Section 3 outlines
the basic constructs of Tower, including roles, users, and permissions.. Finally
section 4 gives concluding remarks. A full version of this paper, including further
motivation and examples in the language specifying commonly used access policies
is in [11].

2. ACCESS CONTROL LANGUAGE: TOWER

The most important structures in Tower are the definitions of users, roles, and
permissions. The details of these structures are discussed in subsequent sections but
first we wish to make the following general comments. Each structure is declared
and is given a name. The name is used to identity the structure throughout the
access control system. The problems of a single level name space are avoided by
employing block structured scoping. Each of these names must be unique within a
particular scope. A new structure instance may be created and assigned to a
structure variable. The closure of a structure includes any variables declared in the
same scope. The structures are immediately available upon creation for evaluating
access requests. They may also have their values modified in code that is
subsequently executed. In this paper we do not specifY the management interface of
the access control system. We envisage that both users and administrators can enter
policies (in the form of Tower expressions) into the system Whether this is in a
form similar to the Adage VPB [8] or by some other means is not relevant to the
design of the language itself.

For an access control system to function it will require some capacity for storing
information about the objects it manages and the access policies to be enforced. The
Tower language allows the specification of information internal to the access control
system in the form of variables. There are two distinct categories of variables in
Tower, which differ in the type of information stored, their scope and use. These
categories are simple variables (henceforth referred to as variables) and
structures. The types of (simple) variables supported are standard ones such as
integer, real, boolean, string, userid (user identity) and sets.

From the point of view of such variables, Tower is a block-structured language.
A block consists of the definition of either a role or permission or statements
between matching begin and end statements. Within a block, variables are declared
before any roles, permissions or interior blocks. A variable is in scope within the
block in which it is declared, within any structures declared within that block and
within any interior blocks (except for further declarations using the same variable
names) and any constructs defmed within them Variables declared within
permissions or roles are only in scope within those constructs. Variable declarations
have the followin s tax:

var name [=value], var name [=value], ... : var type
except for set variables, which are declared as

I setvar name [=value], setvar name [=value], : set of element type
A set variable of any set type may be empty.

The optional section after each variable name allows the value of variables to be
initialised when declared. The value of variables can be altered in subsequent code,

Elements of A Language for Role-Based Access Control 373

especially in the action sections of privileges (see below). The values of variables
may be tested within condition expressions and constraints. Any attempt to access a
value of a variable before it is initialised results in an error.

Each variable name may be followed by a * or a & (or both). These control the
actual number of instances of the named variable and their effect within the current
scope. If neither symbol follows the variable name in the declaration then only a
single variable is created. If the variable name in the declaration is followed by
either or both of these symbols then more than one variable, each with the same
name, is (potentially) created within this scope. If a variable's name is followed by
a *, then a separate such variable is created for each object covered by the
permission(s) within the scope of the declaration. If a variable's name is followed
by a &, then a separate such variable is created for each user whose access requests
involve this scope. If both symbols occur, then a separate variable is created for
each user/object pair. As it cannot be always known in advance which users and
objects will be involved, these variables are created dynamically as required. As
accesses to variables only occur when a request to a specific object by a specific user
occurs, it is straightforward for the system to determine which variable is to be used
in any particular case.

Structure variables cover the following constructs within Tower: privileges,
permissions, roles, users, ownership and blocks. Their values must be initialised
before use (the exception to these provisions is blocks). The details of how values
for these structures are created are covered in the following sections. Apart from the
obvious differences between structures and variables in terms of syntax and value,
the chief difference between them is the scope of structures. Unlike variables, which
are only in scope within the block or structure within which they are declared,
structures can be in scope within the entire access control system. The decision on
scoping must be made when the structure variable is declared. Global scope is the
default; if a structure's scope is not to be global then its name must be followed by a
'@' character in the declaration. The unique user identification of the user who
created the structure can be pre-pended to its declared name to ensure uniqueness.
The exception to the above are blocks defined by begin and end keywords. Any
such block is considered to be global if it is not defined within another block.
Blocks do not need declaration but can be given a name.

The name of a block can be used to add additional structures or variables to the
scope it represents. That is, Tower is not a statically scoped language but to some
extent is dynamically scoped. This is related to database schema evolution.

Many constructs within Tower are based upon sets. The language provides a
number of operations upon sets for all of these constructs; union, difference,
intersection, test for inclusion, cardinality, equality, subset test The operators are
type-sensitive, i.e. the types of all the sets involved must match and the types of the
elements must match the declared element type of the sets.

3. BASIC RBAC STRUCTURES

In a previous paper [10] we refined the basic RBAC model and proposed one
which explicitly includes the objects to which access is being controlled. We also
introduced another structure, for which we use the term privilege. Ownership of an

374 Information Security for Global Information Infrastructures

object may be vested in a user, a role or any combination thereof. Permissions apply
to one or more objects and privileges specify the methods to which the privilege
grants access and the conditions under which they may be accessed. In this section,
we describe the representation of the basic RBAC elements in Tower.

3.1 Privileges

In an object-oriented system, it is reasonable to base the lowest level construct of
the access control system at the method level. In Tower, a privilege is a triple,
consisting of the set of names of the methods to which it gives access, the condition
under which access is granted and any action to be taken within the access control
system if access is granted. A new privilege is created as follows:

privilege_ name := privilege
[condition_ expression]
[action_ statement, action_ statement, ...]
{method_ clause,method _clause, ... }

end _privilege

The condition expression and the set of action statements are optional. The
condition expression is a Boolean expression (of arbitrary complexity) which must
evaluate to true if any of the methods is to be invoked under the authority of this
privilege. A condition expression can test both the values of parameters passed and
access control system variables in scope. The action statement (or statements) is
(are) executed if the invocation of any of the methods is allowed under the authority
of the privilege (the default) or whenever the condition expression is tested, by
preceeding each action statement to be executed with the keyword always. When an
action statement is executed, the state of the access control system is altered. A
method_ clause is either a method name or a set of method names.

Note that there is no specification within a privilege as to the objects to which it
applies. This is handled at the permission level. While users will probably have
access to multiple methods of each object, they will not necessarily be able to access
those methods under the same condition. We therefore associate conditions and
methods in privileges and group privileges together with a specification of which
objects they apply to within the permissions. For those methods of an object to
which the same conditions apply, they may be grouped together in the method set of
a privilege.

3.2 Permissions

Permissions encapsulate the access to objects of a single class. A permission
consists of a specification of the objects to which it gives access and how these
objects can be accessed. The latter is specified as a set of privileges. A permission
will give access to some subset of the objects of the class to which the permission
applies. Normally the subset will be a proper subset and not all the objects of the
class. This restriction reflects the observation that normally a user will not have
access to all the objects of a class (unless they are the only user who can access
objects of that class). It would be an unusual situation where, for example, a single

Elements of A Language for Role-Based Access Control 375

user would have access to all spreadsheets or all text documents in a multi-user
system. However, it is usually impossible to specifY in advance the names (or other
identifiers) of all the objects of a given class to which a user will have access. A
permission can specifY that it allows access to objects of a class owned by a given
set of users. This allows access control to be specified for objects which have not
yet come into existence. The syntax for a creating a new permission is as follows:

permission_ name := permission
class name
[owner]
[users user _set]
[roles role_set]
[objects object_set]
[variable_ declarations]
privileges {privilege_ clause,privilege _clause, ... }

end _permission

The class_name gives the name of the class of the object to which this permission
grants access. After that, we have clauses specifying the objects covered by the
permission. A permission may contain one or more of these clauses. These clauses
are the first test on whether access will be granted by the permission.

The objects to which the permission will grant access may be specified in terms
of their ownership. If the keyword owner is employed then the permission can grant
access to objects of the named class owned (singly or jointly) by the user attempting
to gain access. The permission may grant access to objects of the named class
owned by any of the listed entities. This may be a set of explicitly named users or
users which currently have the named role as an active role. The permission may be
defined to give access to a set of existing objects by explicitly naming them The
permission can then be used to access those objects and no others. Finally the object
set may be a named object set, which can be dynamically updated without directly
accessing the permission.

If an access to an object is attempted which is not to one of the specified objects
then this permission will not grant access.

Of course, even if the object that is being accessed is one covered by the
permission, access may still be denied according to the privileges included within
the permission. Tests for ownership may also occur in the condition sections of
privileges, but such tests are additional (not an alternative) to the permission level
tests.

After the specification of the objects to which the permission applies any
variables that are in scope within the permission are declared. Finally, there is a set
of privileges which defme the exact access allowed by the permission. A
privilege_ clause is either a privilege, a privilege set or a privilege_expression. A
privilege_expression is an expression specifying changes to a privilege (such as
adding or subtracting methods, conditions or actions).

The following gives an example of the initialisation of a permission and the
effects of ownership. A user, a, wishes to access the objects of class text_object
owned b user b. a enters the followin code:

b _text := permission
text object

376 Information Security for Global Information Infrastructures

users b
{privilege,privilege, ... }

end _permission

The code is syntactically correct and the permission will be created ifboth the
owner of the class definition for text_objects and user b give their permission. The
method by which they would do this relates to the management interface and is
outside the scope of this paper. The management interface and operations are
addressed in a separate paper that is currently in preparation.

3.3 Roles

The syntax for creating a new role value is as follows:
role name := role

[variable_ declarations)
[authorised constraint_ expression
[constraint_ action]]
[active constraint_ expression
(constraint_ action]]
(session constraint_ expression
(constraint_ action]]
(roles {role_ clause,role _clause, ... })
(permissions {permission_ clause,permission _clause, ... }]

end role

Role constraints may be used to affect the roles of a user at three different levels
the roles that a user may be authorised to have as active,
the roles that a user has active across concurrent sessions
the roles that a user has authorised within a particular session

These are in increasing level of refmement - if a role speciftes that no user can
have both it and another role as authorised roles, then obviously the user can not
have both those roles as active roles (either in the same session or in another one).
Constraints-may be used to impose restrictions upon whether a user may have this
role added to his/her set of roles, or whether a user may add another role while
possessing this one. The constraint tests in a role are checked when a user to role
mapping is made (the role is to become an authorised role) and when a session to
role mapping is made (the role becomes active). The constraints are also checked
whenever any relevant user mappings are altered. For example, this avoids the
necessity of specifying exclusion in both roles. A constraint test is a Boolean
function which must evaluate to true if the role is to be added. A short hand is
provided for the common case of exclusion, which is that possession of the current
role is mutually exclusive with the roles in the role set.

I exclude role set

This set can be explicitly listed in the constraint expression or represented by a
set variable, allowing easier dynamic update.

Elements of A Language for Role-Based Access Control 377

The constraint action allows for updating of any variables relevant to the
constraint. Variables have been discussed above. The role and permission sections
define the access allowed by the newly created role. The definitions of role_ clause
and permission_ clause are analogous to that of privilege_ clause in section 4.2. Role
inheritance is modelled by allowing roles to be formed, in part, from other roles.
These roles may already exist, and are referred to by name, or are defined within the
new role.

3.4 Users and Sessions

The syntax for creating a new user structure is as follows:

user name := user
name
uuid
[variable_declarations]
[{role,role, ... }]
[{session,session, ... }]

end user

Note that the roles are those which the user may take on (known as the
authorised roles of that user). When a new user is created this set may often be
empty. In addition to explicitly naming roles, one or more role sets could also be
given. The variable declaration section allows attributes to be assigned to the user.
The sessions of the user will only be updated by the system, reflecting the current
sessions of the user.

For each log-in session of a user, it is also necessary to record the actual roles
that are current (known as the active roles). It is the active roles that are used to
check whether any attempted method invocation should be allowed.
The syntax for a session is

session_ name := session
user name
uuid
[{role,role, ... }]

end session

Note that in some sense this a conceptual syntax, as such structures would be
implicitly created whenever a new user session is commenced. However, they have
an actual existence and are used in checking role constraints as well as actual
method invocation. Here the roles are the active roles for the particular session.

3.5 Ownership of Objects and Structures

The concept of ownership can simplify the expression of access control policies.
Many systems limit ownership to a single user. This does not match many real
world situations, where ownership is often equally shared between many people.
For example, all members of the committee may jointly own a document produced

378 Information Security for Global Information Infrastructures

by a connnittee. Vesting ownership in more than a single entity leads to the question
of how many of these entities must co-operate for successful performance of actions
restricted to an owner. Many discussions of RBAC ignore the question of
ownership completely. In Tower we employ a relatively simple answer to the
question: for each object, the number (or fraction) of the joint owners who must
agree before an action can be performed is stored along with the ownership
information.

Each object (and class specification) stored in the system has a corresponding
access control structure. These structures record the owner(s) of the corresponding
object and other related information (such as attributes). While the creation of the
ownership structures is automatic on the creation of the corresponding object, they
have a conceptual Tower syntax. This allows updating of the ownership information
within the scope of the language.

name := object
owners
{uuid, uuid, ... }I {role, role, ... } I {uuid, uuid, ... } {role, role, ... }
quorum positive integer I real between 0 and 1 I all
creation {uuid, uuid, ... } I {role, role, ... } I {uuid, uuid, ... } {role,

role, ... }
[variable_ declarations]

end object
The name of the structure is the system dependent unique object identifier. The

first clause specifies the owner of the object, as one or more specified users and/or
the members of named roles. The second option allows for a dynamic concept of
ownership, as it grants joint ownership to all users who currently have at least one of
the named roles as an active role1•

The second clause specifies how many of the owners must agree if any operation
requiring owner approval is to be carried out. For an object there are only three such
operations

changing any of the information stored in the ownership structure (including
the specification of the owner),
allowing the object (or class specification) to be referenced from within a
permission, and
revoking the allowance for the object (or class specification) to be referenced
from within a permission.

The second operation prevents users from including objects within a permission
when they do not own that object. The third operation allows for revocation of
access.

The third creation clause specifies the owner of any object created as a direct
result (i.e. without subsequent accesses to other objects) of access to this object. For
example, while the owner of a text editor may be the system manager, any files
created using the text editor can be specified as belonging to the user who accessed
it.

1 While we could have simply allowed the role to be an authorised role, insisting that it must
be an active role helps to protect untrusted code running used limited permissions.

Elements of A Language for Role-Based Access Control 379

The same principles of ownership can be applied to structures of the access
control system (roles, permissions, privileges, users). The syntax is the same as that
given above, except that keyword object is replaced with structure. The name of the
ownership structure is that of the structure to which it applies, followed by the
special character "A". This allows us to control access to the access control system
itself in a conceptually efficient manner. Each structure in Tower has an associated
ownership structure. The ownership information in such an ownership structure also
applies to itself, avoiding infinite recursion. Thus it is possible to specify who owns
each structure and can therefore modify it. This also allows us to restrict the use of
access control structures; they can only be altered or used (included in the values of
other structures) either by their owner, or with their owner's permission. In the case
of removing one structure from another (such as removing a role from a user's list of
authorised roles), the permission of the owner of either structure is sufficient.

3.6 System Evolution : Alterations to Structure Values

The previous sections have described how the various structures of the language
are given their initial values. As the system evolves, any of these structures may
need to have their values updated. Set operations may be applied to each of these
structures, for example

I Pl := Pl + {Prl,Pr2}
Permission PI now has privileges PrJ and Pr2 added to its set of privileges. The

type of PrJ and Pr2 (i.e., privilege) means that the update must be to the privilege
set of the permission. Therefore we can simply use the permission name without
further qualification. This applies to all the components of structures that can be
unambiguously identified. Where a structure consists of two or more sets of the
same element type, such as the record of the owners of an object and the owners of
an new ob · ects, further ualification, and u dates occur as follows:

objectl.owners := objectl.owners +{michael}
objectl.creation := objectl.creation + {vijay}

The first statement adds the user michael to the set of users who own object
object]. The second statement adds the user vijay to the set of users who will own
any objects created using object].
From the above, the set operations applied to a privilege alter the contents of its set
of method names (as the only set contained in a privilege is the method set).
Similarly, the roles and permissions which make up a role can be altered, as in the
following examples:

I Rl := {Pl,P2}
The permissions in Rl are now P 1 and P2.
I Rl := Rl + {R2,R3}

RJ has R2 and R3 added to its roles
I Rl :=Rl- {R3}

R3 is no longer one of Rl 's roles
The system can determine if the roles or permissions of a role are being updated

by resolving the names on the right hand side of the assignment statements.

380 Information Security for Global Information Infrastructures

The other information held in a structure may also be updated within assignment
statements. Additions (for example) may be made to the condition within a
privilege, as:

I Prl := Prl +condition expression

The new condition expression for the privilege is formed by joining the previous
expression and that in the assignment statement with the and conjunction.

4. CONCLUDING REMARKS

Implementation of Tower is in its early stages. We rejected any implementation
on top of other access control mechanisms, such as access control lists, as being too
inefficient and probably incapable of supporting the full expressive power of the
language. Instead we have chosen to directly implement it. The chosen vehicle is
the CORBA interceptor mechanism (3,9]. This allows the access control to be
independent of the rest of the system while still being able to allow or deny access.
The implementations in each ORB can communicate, allowing distributed access
control. However, several of the issues related to implementation of RBAC
management in a distributed environment still need to be solved. We will report on
the implementation when it is completed.

5. REFERENCES

[1] R.Sandhu, E.J.Coyne, H.L.Feinstein, "Role based Access Control Models", IEEE
Computer, Vol. 29, no. 2, Feb.1996, pp. 38-47.

[2] D.Ferraiolo, R.Kuhn, "Role based Access Controls", 15th NIST-NCSC National Computer
Security Conference, Oct.1992, USA.

[3] Object Management Group (OMG) : Security Services in Common Object Request
Broker Architecture, 1996.

[4] S.Jajodia, P.Smarati, V.Subrahmanian, "A Logical Language for Expressing
Authorizations", IEEE Proceedings on Security and Information Privacy, 1997.

[5] R. Sandhu, E. Coyne, H. Feinstein & C. Youman, "Role-Based Access Control: A Multi­
Dimensional View'', lOth Annual Computer Security Applications Conference, 1994, IEEE
CS Press, pp. 54-61.

[6] B. Hilchenbach, "Observations on the Real-World Implementation of Role-Based Access
Control", National Information Systems Security Conference, 1997, pp. 341-52.

[7] V.Varadharajan, C. Crall, J.Pato, "Authorization for Enterprise wide Distributed Systems:
Design and Application", IEEE Computer Security Applications Conference, ACSAC'98,
1998.

[8] M. Zurko, R. Simon & T. Sanfilippo, "A user-Centered, Modular Authorization Service
Built on an RBAC Foundation", IEEE Symposium on Security and Privacy, 1999.

[9] Object Management Group (OMG), "CORBAservices: Common Object Services
Specification", OMG Document 97-07-04.

[10] M. Hitchens & V. Varadharajan, "Issues in the Design of a Language for Role Based
Access Control", ICICS'99, pp. 22-38.

[11] M. Hitchens & V. Varadharajan, "Tower: a Language for Role Based Access Control",
submitted for publication.

	Elements of A Language for Role-Based AccessControl
	1. INTRODUCTION
	2. ACCESS CONTROL LANGUAGE: TOWER
	3. BASIC RBAC STRUCTURES
	3.1 Privileges
	3.2 Permissions
	3.3 Roles
	3.4 Users and Sessions
	3.5 Ownership of Objects and Structures
	3.6 System Evolution : Alterations to Structure Values
	4. CONCLUDING REMARKS
	5. REFERENCES

