
Regulating Access to Semistructured
Information on the Web

E. Damiani1 S. De Capitani di Vimercati2 S. Paraboschi3 P. Samarati1

{1} Universita di Milano, Milano, Italy

{2) Universita di Brescia, Brescia, Italy

{3) Politecnico di Milano, Milano, Italy

Abstract The remarkable growth of the World Wide ·web in recent years has made
it possible to distribute information to users in the form of an unorga­
nized and unstructured collection of documents.. While security is an
important aspect in such a scenario, access control systems available to­
day result too rigid and limited. We present an approach to specify and
enforce access restrictions to Web documents. The approach provides
flexible, as it allows to enforce a variety of security policies and require­
ments at a fine-grained level without affecting the data organization.

1. INTRODUCTION
Internet,.the Web in particular, is emerging today as a primary means to acquire

and make information available to others. The large amount and diversity of informa­
tion that needs to be shared calls for the support of flexible models and techniques to
manage it. Data models and languages are making considerable steps in this direction,
as witnessed by the large body of research and development activities around multime­
dia and semistructured data management [Buneman, 1997, Papakonstantinou et al .. ,
1995, Simeon and Smaga, 1998] .. Semistructured data models allow the organization,
storing, and manipulation of information with loosely defined or irregular structure
thus providing a flexible means for publicizing information on the Web.. Communi­
cation and sharing of this loosely structured information requires the adoption of a
uniform standard to transfer data.. The eXtensible Markup Language [Bray et al .. ,
1998], recently proposed by the World Wide Web Consortium as a new standard for
Web publishing, appears a promising solution to this problem [Goldman et al .. , 1999] ..
By maintaining interface specifications separate from the actual data, XML allows
applications to exchange data among each other, without requiring prior knowledge
of incoming data formats. In this distributed and heterogeneous context, security is
clearly a critical problem and the model to express and enforce access restrictions
must provide the flexibility and expressiveness needed in the large network infras­
tructure.. Current security solutions (e .. g .. , Apache's access control) support access
restrictions traditionally used for operating systems, therefore resulting much limited

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
S. Qing et al. (eds.), Information Security for Global Information Infrastructures

10.1007/978-0-387-35515-3_53

http://dx.doi.org/10.1007/978-0-387-35515-3_53

352 Information Security for Global Information Infrastructures

in this new context. In particular, specification of authorizations at the file system
level does not provide support for different restrictions within a document, at the
point that security considerations could affect the data organization itself. The vari­
ety and dynamic nature of access restrictions that can arise in such a context makes
this a considerable limit. The lack of a flexible and powerful access control model for
Web documents is probably due to the inherent limitations of the HTML language
traditionally used to publish documents. HTML provides no clean separation between
the structure and layout of a document, and access control proposals developed for
HTML documents [Samarati et a!., 1996] remains therefore limited. XML represents
an important opportunity to solve this problem. By exploiting XML data organiza­
tion it is possible to define access restrictions directly on the structure and content of
documents. In [Damiani eta!., 2000] we started the investigation of an authorization
model to regulate access to information in XML documents. In this paper, we extend
the work by supporting different types of authorizations and overriding policies, and
present an algorithm for their enforcement. Our model provides flexible as it allows
the representation of different security policies and protection requirements.

2. OVERVIEW OF XML
XML [Bray et a!., 1998] is a markup language for describing semistructured in­

formation. An XML document is composed of a sequence of nested elements, each
delimited by a pair of start and end tags. Figure 1 shows an example of XML docu­
ment including information about a department of an organization, which is assumed
to have one R&D division composed of the Security group. XML documents can be
classified into two categories: well-formed and valid. An XML document is well­
formed if it obeys the syntax of XML (e.g., non-empty tags must be properly nested,
each non-empty start tag must correspond to an end tag). A well-formed document is
valid if it conforms to a proper Document Type Definition (DTD). A DTD is a file (ex­
ternal or included directly in the XML document) which contains a formal definition
of a particular type of XML document. A DTD includes declarations for elements
and attributes. Element declarations in the DTD specify the names of elements, and
their sub-elements, possibly associated with a cardinality constraint: "*" indicates
zero or more occurrences, "+" indicates one or more occurrences, "?" indicates zero
or one occurrence, and no label indicates exactly one occurrence. Attributes represent
properties of elements. Attribute declarations specify, for each element, its attribute
names, types, and, possibly, default values. Figure 2 shows the DTD for the XML
document in Figure 1.

3. PROTECTION REQUIREMENTS
Before introducing our access control system, we discuss two basic features that

an authorization model for regulating access to Web documents should support.

Coarse and fine object granularity. It should be possible to specify authorizations
at both a coarse as well as at a fine grain object level. The advantage of supporting
fine grain specifications is obvious: specifying requirements on individual pieces of
information. The support of coarse grain specifications allows instead the factorization
of common requirements, which can be stated as one. With respect to a document's
content, granularity considerations call for the support of authorizations on individual
elements as well as on whole portions of a document. At a higher level, granularity

Regulating access to semistructured information on the Web

<dept>
<div Dillie = "R&D">

<group name = "Security">
<re•earch>

<dueription>
The research activity is in the area
of computer security

<lducription>
<contact>

<addreu> Cherry Ave </addreu>
<e-ma.il> aecgrpCacme.com <!email>

<!contact>
<lre•ea.reh>
<mel!lben >

<penon>
<nnu.•> Sam Dale <lflnue>
<a.ddnu> 1st Ave <la.ddreu>

<!penon>
<p.r•on>

<flnue> Bob Cody <lflnu.e>
<addre.u> A!lpen Dr <la.ddreu>

<!penon>
<p•raon>

<flname> Alice Cook <lflnue>
<a.ddreu> Ray Ave <Jaddreu>

<Jpu•on>
<!members>
<project prj name = "Access Models" type = "public">

<fund>
<organization> SECGROUP <lorganiza.tion>
<UI.ount> $ 200000 <!amount>

<I fund>
<ma.nager>

<nna.me> Alice Cook <Jflna.m.e>
<addreu> Ra.y Ave <laddreu>

<!manager>
<paper pid = "pOl" category= "private">

<title> Security Models <!title>
<author>

<tlna.m.e> Sam Dale <Jflname>
<addrus> 1st Ave <laddrus>

<!author>
</paper>

<!project>
<project prjnue = "Web and Security" type = "internal">

<fund>
<organization> WebSec <!organization>
<amount> $ 300000 <!amount>

<J:tund>
<me.n.ager>

<flname> Bob Cody <l:tlnue>
<addre.u> Aspen Dr <la.ddreu>

<!manager>
<!project>

<ldiv>
<!dept>

Figure 1

353

considerations require the support of authorizations on single documents as well as
on sets of documents, identified with reference to their schema (DTD).

Exception support. The use of authorizations at a coarse granularity level would
result limited without the support of exceptions. For instance, a requirement stating
that all instances of a DTD, but a specific document, can be accessed would need to
be translated in several authorizations: one for each instance of the DTD, but the one
that must be protected. The support of both permissions and denials, and the con­
sequent exception policy, allows instead the same requirement to be represented with
two authorizations: a positive authorization on the DTD, and a negative authorization
on the specific document to be protected. An analogous reasoning applies to excep­
tions within documents (e.g., the whole document but a particular element/attribute
within it can be released). It is important to note that when dealing with exceptions,
the exception policy has to be flexible. In particular, if a built-in policy is assumed,
it should be possible to reverse it (Jajodia et al., 1997].

354 Information Security for Global Information Infrastructures

<!ELEMENT dept (div)+>
<!ELEMENT diY (group)+>
<!ELEMENT group (n .. arch,m••b.ra,project"')>
<!ELEMENT u .. areh (d .. eription,contact?)>
<!ELEMENT deocription (#PCDATA)*>
<!ELEMENT contact (addnu,e-lldl7)>
<!ELEMENT m .. ber1 (penon)+>
<!ELEMENT peraon (tlnu.e,addreal,e-mail?)>
<!ELEMENT fln .. e (#PCDATA)>
<!ELEMENT ad.dnn (#PCDATA)*>
<!ELEMENT o-.. 11 (#PCDATA)>
<!ELEMENT project (:tund,me.nager* ,papu"') >
<!ELEMENT fund. (organization,u.ount) >
<!ELEMENT organb:ation (#PCDATA)>
<!ELEMENT (#PCDATA)>
<!ELEMENT manager (tlnu.e,addr•••) >
<!ELEMENT paper (title,author+)>
<!ELEMENT titlo (#PCDATA)>
<!ELEMENT author (tlnue,addrua,e-mail?)>
<!ATTLIST div name CDATA #REQUIRED>
<!ATTLIST group n-.e CDATA #REQUIRED>
<!ATTLIST project prjnu.e CDATA #REQUIRED

typo CDATA #REQUIRED>
<!ATTLIST paper pid ID #REQUIRED

cat .. gory (publicjprivat•) #REQUIRED>
(a)

(b)

Figure 2 An example ofDTD (a) and its corresponding graphical representation (b)

The next section illustrates the components of authorizations in our model and
how they address the requirements above.

4. ACCESS AUTHORIZATIONS
Access authorizations determines the accesses that the system should allow (or

deny). In our model, each authorization is a 5-tuple (subject, object, action, sign,
type), where subject is the subject for which the authorization is intended, object is
the object to which the authorization refers, action indicates the operation autho­
rized/denied by the authorization (for simplicity, we consider action to be the read
access), sign indicates whether the authorization states a permission ('+') or a denial
('-'), and type regulates whether the authorization propagates to other objects and
how it interplays with other authorizations (exception policy). We now discuss the
subject, object, and type fields.

Subject. Our model allows authorizations to be referred to specific user identities
(e.g., Tom) as well as groups (e.g., Managers or Public) defined on them. Moreover,
in consideration of the fact that we operate in a distributed context, authorizations
can refer to hosts, that is, location addresses from which requests may (or may not)
originate. Location addresses can be specified in addition or in alternative to identities
and can make use of patterns denoting sets of addresses (e.g., 130.89. * denotes all
the machines in subnetwork 130.89).

Object. Our model supports different levels of granularity. The schema vs instance
specifications are easily supported by referring authorizations to either the URI of
the DTD (schema level) or of the document (instance level). Reference to the finer
element and attribute grains is supported through path expressions, which are spec­
ified in the XPath language [XPa, 1999]. A path expression identifies one or more
elements/attributes within a document though the specification of a sequence of la­
bels h/l2/ ... /ln, where each li is either an element or a predefined function (e.g.,

Regulating access to semistructured information on the Web 355

child is a function returning the children of a node), and the last label can be
either an element or an attribute prefixed by The name of a function and its
argument are separated by a double colon ':: '. A path expression may also spec­
ify conditions that elements need to satisfy to be identified by the path expression.
Conditions are distinguished from navigation specifications by enclosing them within
square brackets. For instance, with respect to the DTD in Figure 2, path expression
"/dept/di v/group/project [. I child: :*[position() iden­
tifies the second to the last child of public projects.

Type. The type field defines how the authorizations must be treated with respect
to propagation at finer granules and overriding (exception support). By default, we
assume that authorizations specified on a DTD apply to all its instances, but may
be overridden by authorizations explicitly specified on the document, according to
the principle that the more specific authorization takes precedence (Lunt, 1989]. This
propagation/overriding policy is intuitive and natural, and we can expect it to apply
in most cases. We can however imagine scenarios where this policy may need to
be bypassed (reversed). For instance, one may wish to specify authorizations at the
schema level that do not allow exceptions (hard statements). Analogously, one may
wish to specify authorizations at the instance level that behave as default rules, in
case no schema level statement has been made, but are not intended to override
them otherwise (soft statements). A further option associated with authorizations
regulates whether the authorization on an element (i.e., an element that satisfies the
path expression) applies only to the element itself, that is, to its direct attributes,
or to all its content, that is, recursively to its subelements. In the first case the
authorization is local; in the second case it is recursive.

The combination of the options above, introduces eight authorization types: LDH
(Local DTD Hard), RDH (Recursive DTD Hard), LD (Local DTD), RD (Recursive DTD),
L (Local), R (Recursive), LS (Local Soft), and RS (Recursive Soft). Types are used
by the access control system according to the following principles: (1) DTD level
authorizations propagate to all instances of the DTD; (2) recursive authorizations
on a node recursively propagate to all its subnodes; (3) local authorizations on a
node propagate to its direct attributes; (4) propagation is stopped whenever a more
specific authorization is found on the node; and (5) instance level authorizations,
unless declared as soft, take precedence over DTD level authorizations, unless declared
as hard. Intuitively, principles 1 through 3 regulate what is propagated, principle 4
determines how it is propagated, and principle 5 determines how defined/propagated
authorizations are used to produce the final decision.

Example 4.1 Consider the XML document and DTD illustrated in Figure 1 and
Figure 2, respectively. Some examples of authorizations are as follows.
Organization's policy specified at the DTD level. It refers to the organization in
its entirety and applies to all its departments.

• The name of divisions and groups is publicly accessible.
((Public,*),/dept/di v //<Cname,read,+,LD)

• The research activity and members of any group in any division is publicly
accessible.
((Public,*),/dept/div/group/child:: *[position():::; 2] ,read,+,RD)

• Access to "private" papers must be explicitly forbidden to nonmembers of the
department, no instance-level exceptions allowed (hard authorization).
((NonMembers,*),!dept/di v //paper = "private"] ,read,-,RDH)

356 Information Security for Global Information Irifrastructures

Department's policy specified on document in Figure 1. It may complement or
override the policy stated by the organization.

• Managers connected from machines in network 130. * can access projects of the
Security group. Everybody else is expliCitly forbidden to access "internal"
projects.
((Manager,130. *),/dept/div [. /group[. Security"]/
project,read,+,R}
((Public,*),/dept/div [. /group[. Security"]/
project internal"] ,read,-,R}

• The name of "public" projects is publicly accessible, unless the organization's
policy states otherwise (soft authorization).
((Public,*) ,div /group/project [.

• Users connected from host 130. 89. 56.8 and members of the Security group
can read the name of "internal" security projects.
((Security,130. 89.56. 8),/dept/div [. /group
"Security"] /project [. "]

5. AUTHORIZATION ENFORCEMENT
The access control system mediates all the requests to documents and evaluates

them against the authorizations. For each request, it produces the view of the doc­
ument composed only of the information that the requester can access. The ex­
pressiveness of the language and the fine granularity at which authorizations can
be specified make the access control enforcement far from being trivial. In particu­
lar, each access request may imply the consideration of several authorizations, each
applying to specific elements/attributes of the documents. The elements/attributes
to which an authorization applies are determined by the path expression associated
with the authorization; the type of the authorization regulates instead whether it
recursively applies to the element's content. It is therefore important that the access
control mechanism enforces authorizations in an efficient way. For this reason, our
system first evaluates all authorizations at once and translates them into labels ('+'
for permission, '-' for denial, 'e' for no specification) associated with element and
attribute nodes of the tree structure of the documents, and then enforces propaga­
tion/overriding of the labeling by navigating through the tree. The consideration of
label 'e' is particularly important in the enforcement of the propagation and overrid­
ing policies (see Section 4). Indeed, authorizations propagate down (from an element
to its content, and from a DTD to a document) to a node only if not overridden by
a more specific authorization, meaning if neither a'+' nor a'-' is already associated
with the node. Intuitively, the propagation of authorizations from a node labeled b to
a node labeled a can be expressed by assigning to a the result returned by statement
"if a = e then b".

By interpreting labels as values of a three-value logic [Rescher, 1969], we can
conveniently express such a statement as a simple logic formula. To this end, we first
need to map '+', '-', and 'e' in the logic. The only condition that such mapping
must satisfy is that 'e' must be mapped to 0 (false). To understand the reason
for this, think of false as "no statement" has been made. Signs '+' and '-' must
then be mapped to the other two values, namely 1 (true), and (indeterminate);
whatever choice would do. Here, we map'+' to 1 and'-' to It is easy now to see
that, with the defined mapping, statement "if a = e then b" is equivalent to formula
"a V (-.a A b)". In the following, we denote such a formula as a EEl b.

Regulating access to semistructured information on the Web 357

INPUT: A requester rq, the tree T of the requested document, and the set of authorizations
associated with the document.
OUTPUT: The tree corresponding to the document view to be returned to rq.

1. Determine the set Arq of authorizations specified on the document applicable to rq
2. For each authorization a E Arq do

Evaluate object(a) on T to determine the set Na T of nodes to which a applies
For each n E Na do
If sign(a)= '+'then ENQUEUE(subject(a),Labeln[type(a)].Ailowed)
else ENQUEUE(subject(a), Labeln (type(a)]. Denied)

For each node n in T and type t E{LDH,RDH,L,R,LD,RD,LS,RS} do
Determine Labeln[t].sign by composing Labeln[t].AIIowed and Labeln[t].Denied
according to the policy

3. Traversing tree T in preorder:
For each node n do

Let p be the parent of n
case n of

attribute: Labeln := Labeln EB Labelp
element: Labeln := Labeln EBmask.Jocal(Labelp)

finaln := €

Fort in [LDH,RDH,L,R,LD,RD,LS,RS] do finaln := finaln EB Labeln[t].sign
4. Traversing tree T in postorder:

Delete all leaf nodes n such that finaln :f. '+'
Figure 3 Access control algorithm

Figure 3 illustrates the complete access control process. It is composed of four
basic steps that we now describe in more details.

Step 1: Authorization retrieval. It consists in finding, among the authorizations
associated with the document, specified either at the instance or schema level, those
that apply to the requester. Authorizations that apply to a requester rq=(user, location)
are those authorizations specified for a subject (ug,host) such that user is equal to,
or is a member of, ug and location is a machine within host.

Step 2: Initial labeling. The initial labeling step evaluates the authorizations re­
trieved in step 1 and translates them into labels associated with each node in the tree.
Although the analysis of all the authorizations should eventually produce a unique sign
on each element and attribute of the document, in the process itself it is convenient to
associate with each node more than one sign; one sign for each possible authorization
type. For this reason, our tree labeling process starts by associating with each node
n a vector Labeln of eight elements, one for each type t E {LDH,RDH,L,R,LD,RD,LS,RS},
whose content reflects the authorizations specified on the node. Again, note that sev­
eral authorizations, possibly of different sign, may exist for each of such types, either
specified for the same or for different subjects. For instance, a (user) requester may
belong to two different groups, and one of such group may be allowed access to a node
while the other may be denied the same access. The presence of both authorizations is
completely legitimate and it is not to be considered an inconsistency; it represents (on
the given user) a conflict that must be resolved according to some conflict resolution
policy. Different policies can be applied to this purpose [Damiani et al., 2000, Jajodia
et al., 1997, Lunt, 1989]. For instance, a possible policy is the intuitive "most specific
subject takes precedence" together with the "denials take precedence" according to
which authorizations specified for a group (location pattern, resp.) are overridden by
authorizations specified for its members (location subpatterns, resp.) and, if conflicts

358 Information Security for Global Information Infrastructures

remain unsolved (incomparable subjects) the denial prevails. To make our mechanism
largely applicable and adaptable to different policies that can be considered, we evalu­
ate authorizations independently of the con'fiict resolution policy for subjects. To this
purpose, as a result of parsing authorizations, we associate with each vector compo­
nent Labeln[t] two lists of subjects: Labeln[t].Denied and Labeln[t].Allowed, composed
of all those subjects for which there is a negative, positive respectively, authorization
of type t that applies to n. The sign ('+' or '-') to be then considered applicable
to node n for each type t, stored in Labeln[t].sign, is then obtained by combining the
two lists according to the conflict resolution policy. Labeln[t].sign = 'c:', in the case
where no authorization of type t applies to n. While our mechanism implements the
policy discussed above, the application of a different policy simply requires a different
combination of the two lists.

Step 3: Label propagation. The third step of the algorithm consists in propagating
the access permissions/denials associated with each node down to its descendants
(elements and attributes), according to their types (see Section 4). Since propagation
from a node may affect its indirect descendants in a recursive way, the natural way of
enforcing the process is by considering the nodes according to a preorder visit of the
tree, therefore labeling a node only after the labeling of its parent. Propagation makes
use of operator EEJ, Propagation of labels from node p to a child attribute n is obtained,
for each t, by assigning to Labeln[t].sign the result of Labeln[t].sign EEl Labelp[t].sign.
Intuitively, Labeln[t].sign remains unchanged if different from 'c:'; it takes the value
of Labelp[t].sign, otherwise. Propagation of labels in case n is an element is enforced
in an analogous way with the difference that signs of "local" labels (LDH, L, LD, and
LS) are not propagated. This is obtained by combining Labeln with a masked Labelp,
(function mask...local), where the sign of LDH,L,LD,LS is set to 'c:'. Note that the
algorithm enforces propagation of labels with reference to vectors and uses operator
E§, defined as component-wise application of EEl to the sign fields of the vectors. After
the propagation is completed, the final sign associated with each node n, denoted
finaln, can be determined as the result of operation EEl between the elements of the
label vector considered in their priority order (from left to right). Intuitively, this is
the same as t'aking the first non null (i.e., different from 'c:') value in the vector. It
is easy to see that this process of propagating labels and determining the final signs
correctly implements principles 1 and 5 discussed in Section 4.

Step 4: View computation. The final step of the access control algorithm com­
putes the document's view to be returned to the requester. As a result of the labeling
process, the value of finaln for each node n contains the sign, if any, reflecting whether
the requester can ('+') or cannot ('-') access the node. Remember that, even after
propagation, the value of finaln can still be 'c:', in the case where no authorizations
have been specified nor can be derived for n. Value 'c:' can be interpreted either as
a negation or as a permission, corresponding to the enforcement of the closed and
the open policy, respectively [Jajodia et al., 1997]. Here we assume the closed policy.
Accordingly, the requester is allowed to access all the elements and attributes whose
label is positive. To preserve the structure of the document, the returned view will
also include start and end tags of elements with a negative or undefined label, which
have a descendant with a positive label. With respect to implementation, the view is
obtained by pruning from the original document tree all the subtrees containing only
nodes labeled negative or undefined. By exploiting the tree structure, the algorithm
enforces such a pruning by visiting the tree in postorder and removing all leaf nodes
n with finaln "I- '+' (note that a node can be a leaf because all its descendants have

Regulating access to semistructured information on the Web

(a)

(b)

Figure 4 The view of user Tom (a) and user Sam (b)

359

already been deleted in the process). The computed pruned document, although
guaranteed to be well-formed, may not be valid with respect to the original DTD
(e.g., a required attribute is deleted in the pruning process). To avoid this problem, a
loosening transformation is applied to the DTD. Loosening a DTD simply means to
define as optional all the elements and attributes marked as required in the original
DTD. From a security point of view, the DTD loosening prevents users from detecting
whether information was hidden by the security enforcement or simply missing in the
original document.

Example 5.1 Consider the set of authorizations illustrated in Section 4 and sup­
pose that users Tom and Sam connected from hosts 130. 100. 50. 8 and 130.89. 56. 8,
respectively, submit a request to read the document in Figure 1. We now assume that
Tom belongs to group NonMembers (he does not belong to any other group), and Sam is
a member of the Security group, which is a subgroup of DeptMembers. Sam does not
belong to any other group (in particular, he does not belong to Manager). Figure 4
illustrates the views returned to Tom and Sam by the access control algorithm.

360 Information Security for Global Information Infrastructures

6. CONCLUSIONS
We have presented an access control system for specifying and enforcing protec­

tion requirements on Web documents. Our system not only takes into account the
possible semistructured form of documents, but exploits it to provide flexibility and
expressiveness in the access control model itself. Basing on the XML standard, our
access control system results of easy integration with existing technology.

Acknowledgments
This work was supported in part by the European Community within the FASTER

Project in the Fifth (EC) Framework Programme under contract IST-1999-11791 and
by the Italian MURST within the INTERDATA and DATA-X projects.

References
[XPa, 1999] (1999). XML Path Language (XPath) Version 1.0. World Wide Web

Consortium (W3C). http:/ /www.w3.org/TR/PR-xpath19991008.

[Bray et al., 1998] Bray, T., Paoli, J., and Sperberg-McQueen, C. (1998). Ex­
tensible Markup Language {XML) 1.0. World Wide Web Consortium (W3C).
http:/ /www.w3.org/TR/REC-xml.

[Buneman, 1997] Buneman, P. (1997). Semistructured Data. In 1997 Symposium on
Principles of Database Systems {PODS97), pages 117-121, Tucson, Arizona.

[Damiani et al., 2000] Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., and
Samarati, P. (2000). Securing XML Documents. In VII Conference on Extending
Database Technology {EDBT2000}, Konstanz, Germany.

[Goldman et al., 1999] Goldman, R., McHugh, J., and Widom, J. (1999). From
Semistructured Data to XML: Migrating the Lore Data Model and Query Lan­
guage. In Proc. of the 2nd International Workshop on the Web and Databases
(Web DB '99), Philadelphia, Pennsylvania.

[Jajodia et aL, 1997] Jajodia, S., Samarati, P., and Subrahmanian, V. (1997). A
Logical Language for Expressing Authorizations. In Proc. of the IEEE Symposium
on Security and Privacy, pages 31-42, Oakland, CA.

[Lunt, 1989] Lunt, T. (1989). Access Control Policies for Database Systems. In
Landwehr, C., editor, Database Security, II: Status and Prospects, pages 41-52.
North-Holland, Amsterdam.

[Papakonstantinou et al., 1995] Papakonstantinou, Y., Garcia-Molina, H., and
Widom, J. (1995). Object Exchange Across Heterogeneous Information Sources.
In ICDE, pages 251-260, Taipei, Taiwan.

[Rescher, 1969] Rescher, N. (1969). Many Valued Logics. Me Graw-Hill, New York.

[Samarati et al., 1996] Samarati, P., Bertino, E., and Jajodia, S. (1996). An Au­
thorization Model for a Distributed Hypertext System. IEEE Transactions on
Knowledge and Data Engineering, 8(4):555-562.

[Simeon and Smaga, 1998] Simeon, J. and Smaga, K. (1998). Your Mediators Need
Data Conversion! In Proc. of the ACM SIGMOD'98 International Conference on
Management of Data, Seattle, Washington.

	Regulating Access to SemistructuredInformation on the Web
	1. INTRODUCTION
	2. OVERVIEW OF XML
	3. PROTECTION REQUIREMENTS
	4. ACCESS AUTHORIZATIONS
	5. AUTHORIZATION ENFORCEMENT
	6. CONCLUSIONS
	Acknowledgments
	References

