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Abstract Jacobian varieties of hyperelliptic curves have been recently used in 
cryptosystems. However, lacking of efficient point-counting algorithms 
for such varieties over finite fields makes the design of secure cryptosys­
tems very difficult. This paper presents efficient algorithms to calculate 
the CM type and ideal factorization of Frobenius endomorphisms of Ja­
cobian varieties over finite fields F P in polynomial time of logp. Then 
we show how to construct secure hyperelliptic curves of small genera 
over large prime fields F P in polynomial time of log p. 

1. INTRODUCTION 
In recent years, elliptic curves are used to define a novel kind of dis­

crete logarithm, which is expected to resist all known subexponential 
attacks [11][17]. Furthermore, Jacobian varieties of hyperelliptic curves 
or general algebraic curves over finite fields have also been used to build 
cryptosystems[12]. It is known that if one chooses a generic curve with 
small genus and the Jacobian variety with an almostprime order, or has 
a large prime factor in its order, the discrete logarithm seems at least 
as intractable as the elliptic curves[2][18][7][23]. Besides, cryptosystems 
based on Abelian varieties of genus g > 1 have shorter bit-length for the 
same key size, which means possible use of cheaper processors, or higher 
processing and transmission efficiency. 

However, construction of secure Jacobian varieties seems far more 
nontrivial than elliptic curves. The generalized Schoof's algorithms , 
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either following [21] such as [1], or using Cantor's analogue of division 
polynomials of elliptic curves [8] are still not practical for cryptosystem 
design. Using Jacobian factors of modular curves [6] seems have difficulty 
to determine orders of J.acobians of low genera curves. Besides, they have 
to repeat the whole order-counting calculations O(log2 q) times over F q 

until an almost prime Jacobian variety to be found. 
A hopeful direction is to use CM curves or curves whose Jacobian 

varieties are with complex multiplication. Since the Frobenius endo­
morphisms of their reductions to finite fields are completely determined 
by their endomorphism rings, it is easier to calculate the orders of these 
Jacobian varieties over finite fields and design secure discrete logarithms. 
It is known that for small genera, e.g. less than five or equal to six, there 
are infinitely many CM curves[5]. Moreover, methods are proposed to 
construct CM hyperelliptic curves using theta function theory [25] [27] 
or using lifting from small finite fields [10][16]. However, calculation of 
the order of a Jacobian variety of CM curves, as in [25] with genus two, 
by solving norm equation costs exponential time [22]. Other methods 
in [13][19] [3] use the Jacobi sums when the CM fields are cyclotomic 
fields. [20] extended the Cornacchia algorithm assuming the maximal to­
tal real subfields of the CM fields have the integral rings to be Euclidean 
domains. 

In this paper we show a fast algorithm to calculate the order of J aco­
bian varieties over F P with general CM fields and in cost of polynomial 
time in logp. In particular, we show an algorithm to compute the CM 
types of CM Jacobian varieties. Then an algorithm to calculate the 
ideal of the Frobenius endomorphism using Weil numbers 
is presented. In particular, we use the principal primal ideal factoriza­
tion of the Frobenius endomorphism in the definition field to obtain the 
fast algorithm. These algorithms are applied to design secure Jacobian 
varieties of small genus over large finite fields. Finally, performance of 
the proposed algorithms are shown by simulation results. 

2. PRELIMINARY 
A hyperelliptic curve over a field F of genus n is defined by 

C : Y 2 + Yh(X) = f(X) 

where deg h ::::; g, deg f = 2g + 1. For charF =f. 2, one can use the 
definition as 

C: Y 2 = f(X). 

A F-rational point is defined by both P = (x, y) E C x, y E F such 
that y2 + yh(x) = f(x) or the point at infinity. A (Weil) divisor D on 
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Cis defined as a finite formal sum of form :Ei miPi, mi E Z, PiE C(Fq) 
,where Fq is a separable algebraic closure ofF. The degree of Dis defined 
as deg(D) = I:i mi. In particular, the divisors with degree zero form a 
subgroup D0 (C) of the divisor group whose elements are algebraically 
equivalent to zero. The function field of C is consisted of {p / q}, p, q E 
F[u, v], q =/:. 0 mod v2 +vh(u)- f(u). The divisor of a function pjq on C 
is defined as I:i miPi- I:j njQj, here Pi, Qj E Care zeros and poles of 
the function and mi, nj are the multiplicity of the zeros and the poles. 
It can be shown that all the divisors of functions over C have degree 
zero and are called as principal divisors, or linearly equivalent to zero. 
Obviously the principal divisors form a subgroup Dl(C) of D0 (C). The 
Jacobian variety of Cis then defined as .J(F) = D0 (C)j'Dl(C). 

We now consider the endomorphism rings of Abelian varieties. Let 
F be a number field or a finite extension of Q, A/ F a g-dimensional 
Abelian variety, EndpA its endomorphism ring. It is known that for 
a simple Abelian variety A, EndFA is a division algebra of finite rank 
over Q with an involution x x' such that if x =/:. 0, TrF;Q(xx') > 0. 
Define K = End0 A := EndpA ®z Q. When K is isomorphic to a totally 
imaginary quadratic extension of a totally real extension of Q of degree 
2g, A is called with complex multiplication or CM and K is called a 
CM field of A. It is known that ordinary Abelian varieties over finite 
fields are all CM, and any CM Abelian variety is isogenous to an Abelian 
variety over finite fields (Grothendieck). Further details of notations are 
referred to e.g. [15], [24]. 

3. CALCULATION OF CM TYPE OF 
ABELIAN VARIETIES 

Let K be a CM field of a g-dimensional Abelian variety A with 
[K : Q] = 2g and {<p1 , · · ·, 'Pg} be g embeddings of K into C such 
that none of them are pairwisely complex conjugate. Then (K; {'Pi}) is 
called the CM-type of A. (Using notation <I> := EBi'Pi, a CM type is also 
denoted as (K; <I>)) 

Following above notations , one can define for x E K the type trace 
T<P(x) := tr<I>(x) = L:i'Pi(x) and the type norm N<P(x) := det<I>(x) = 
ITi'Pi(x). The reflex of a CM field K is defined asK':= Q(T<P(x)jx E 
K). 

Theorem 1. Let L be a finite Galois extension of Q s. t. L ::J K and 
G =Gal(L/Q). Extend 'Pi to rpi over L, let H = Gal(L/K) C G and 
sL = uf=1 'Pi H. 

Define := {cr-1 jcr E SL} and H' = {I E G I = SL} then, 
H' = Gal(L/ K') c G. 
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Let { '1/Jj} be the embeddings of K' ----+ C induced from 8(_, the lifts 

of'I/Ji to overLand [K': Q] = 2g', then = 
Let q)' := f:Bj'l/Jj, (K', q)') is always a primitive CM type, called the 

reflex CM type of (K, q)). When K is Galois, '1/Ji = c.p-;1, q)' = f:FJ<pi 1 . 

Proof. This is basically from [15], [24]. D 

For a CM type (K, q)), and L ::J K', one can define the reflex type 
norm over Las follows. For x E L, 

n/2 

N<Pj_ (x) =IT Bi(x) 
i=l 

g' 

N<P'r_ (x) = N<P'(NL/K'(x)) =IT NL/K'(x)Wi, 
j=l 

where { Bi} denote the em beddings of L --t C induced from { '!f;i} and 
[L: Q] = n. For L :J F :J K', N<PF- = N<P' o NF/K'· 

Bellow, we show an algorithm to determine the embedding { '1/Ji} of 
the reflex CM type which will be used in the following chapter.· 

[Algorithm 1] 
Input : A curve C / F of genus g, K the CM field of its Jacobian variety 

.:1, L the normal closure ofF and G := Gal(L/Q), [L: Q] = n. 
Output : The embeddings { '1/Ji} in the reflex CM type of .:1 over F. 
1 : Choose an algebraic integer w E 0 L such that its absolute norm 

N(w) = p equals a prime number p splitting completely in OL. 
2 : Calculate and Mp = pk- 1 (k = 1, ···,g). 
3 : Choose n/2 embedding {Bi} s.t. G 3 Bi : L----+ C such that none 

of them are pairwisely complex conjugate, calculate the type norm 
1 = Ne(w) = f1iw8i for 8 = f:BBi· 

4 : If 1 tf. K or 3Mk # -TrK/Qik, then go to Step 3 to choose another 
set of embeddings. 

5 : Output the embedding of { '1/Ji : F ----+ C} which induce { Bi} such 
that ( F, 8) as the reflex CM type lifted from the CM type ( K', q)') 
and terminate. 

4. DESIGN OF SECURE CM JACOBIAN 
VARIETIES USING WElL NUMBER OF 
TYPE (Ao) 

It was proved by Shimura and Taniyama the existence of the Grossen 
or Heeke character and the associated CM character in CM fields, which 
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can be used to determine the Frobenius endomorphisms of the Jacobian 
varieties over finite fields, therefore their orders. 

Theorem 2. Let (A, t, C) denotes an Abelian variety A, " : K 
End0 A, and C a polarization. Assume this triple is defined over F, 
a number field and with CM type (K, <P) and reflex (K', <!>'). 

Then there is a unique (CM) character defined on the idele group Ap 
ofF 

such that for s E A p 
a(s)a(s) = N(s). 

Let c Op be a prime ideal, the group of local units, then a is 
unramified at or 

= 1 {:=:::?A is a good reduction. 

In this case, the character determines the so-called Frobenius element by 

= Fh,p 

where Fh,p is the Frobenius endomorphism of the Jacobian variety over 
the finite field For if OK C EndA and 
t(OK) = EndAnt(K) one has factorization = Nq,' 

F 

Ja(I.TJ)I = y'N(I.TJ). 

Proof. This is basically from the so-called the second main theorem of 
complex multiplication. [24] chapter 13 Theorem 1 and [15] chapter 4 
Theorem 1.1, 1.2. 0 

Basically, one needs to calculate ideal factorization of the Frobenius 
endomorphism given in type norm in the definition field, which generally 
costs exponential time[22]. 

It was Honda and Tate proved the following theorem. 

Definition 1. {9} Let K be a CM field. 1T"o E K is called a Weil number 
of type (Ao) of order m, if it satisfies the following condition. 

for all embeddings a of K into C, where () denotes complex conjugate. 

Theorem 3. The type norm of prime ideals in Theorem 2 are principal 
generated by the Weil numbers of type (A0 ). Furthermore, there is a bi­
jective correspondence between the isogeny classes ofF pm -simple Abelian 
varieties and the conjugate classes of the Weil numbers of type (Ao). 
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Proof. See Theorem 1 , 2 and 3 in [9). See also [26]. 0 

Thus one may wish to use only principal ideal factorization of a prime 
number, but the solution of the so-called norm equation will be still 
exponentially hard. 

Bellow, we show a fast algorithm to calculate the principal ideal fac­
torization by use of the so-called Weil numbers of type (Ao). 

[Algorithm 2] 
Input : Definition field F of C, a reflex CM type (F, <I>'p), and bit-length 

c for prime numbers. 
Output : ?To: Weil number of type (Ao) of order 1 such that N(1ro) = 

p9, where p is a prime number of bit-length c. 
1 : Choose an algebraic integer wE Op such that N(w) = p for a prime 

number p of bit-length c. Thus one derives primal ideal q:J's in Op 
lying over p such that (p) = Nq:J = N ( w). 

2 : Calculate the Weil number ?To E 0 K of type ( Ao) of order 1 such 
that ?To= Nq,' (w). 

F 

3 : Output ?To as the Weil number of type (Ao) of order 1 associated 
with p. 

Below we present an algorithm for construction of a secure hyperel­
liptic curves over F P which has a simple Jacobian variety. 

[Algorithm 3] 
Input : C/ F an algebraic curve of genus g with CM, K its CM field 

and the reflex CM type, (F, <I>'p). 
Output : p and C /F P such that #.:J(F p) is almost prime. 
1 : Choose a prime p large enough, and find a Weil number ?To E Ox 

associated with p9 of order 1 by Algorithm 2. 
2 : For all roots of unity { ( E K}, calculate the order #.:J(F p) -

N(1- (7ro). 
3 : If { #.:J(F p)} contains no almost prime order then go to Step 1. 
4 : Output p and C /F p· 

Remark 1. The Weil number of type (Ao) is unique up to scaling by the 
roots of unity. These scaled Weil numbers then represent the so-called 
twists of the Abelian varieties. In fact, it is known not all of twists can be 
always found as curves. However, almost all twist are found as curves 
in our experiments. Therefore, the twist problem seems not a serious 
problem in practice. 
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5. EXAMPLE 
We show an example using the curve 

C /Q : Y2 = X 5 + 3X4 - 2X3 - 6X 2 + 3X + 1 (1) 

described in [27][25], where it is shown that C has its CM field K = Q (a) 
with Gal (K/Q) Z/4Z, where a= J -2 + .;2. 

An integral basis B = ( 1 a a 2 a 3 ) of K is used. A simple 
CM type of C can be defined by Gal (K/Q) which turns out to be 
(K, {sot, S02} ), with '1/Ji = soi1 : a H ai where at =a and a2 = 3a + a 3• 

Then using the proposed algorithms, we found a principal prime ideal 
of K 

(w) = B ( ) (')K 

-526503 

such that p = NK;q(w) = 2353539104668601065177079. A Weil number 
of type-(Ao) is derived as 

_ 1/J1 1/J2 _ B -1820564551008 ( 

869249529777 ) 

1ro - w w - -103525925671 · 
-386358829007 

Then we obtained #J (F p) = N K/Q (1 - 7ro) = 4 X Pmax where Pmax is a 
160bits prime 1384786579298536962658040825319326195404691870759. 
Finally we obtained a secure curve over F P as follows, 

C/Fp : Y2 =X5 + 3X4 + 2353539104668601065177077X 3 

+ 2353539104668601065177073X 2 + 3X + 1 

of which the Jacobian variety has the designed order . 
Timing of the above construction by using Maple V on Pentium 

166MHz are described in Table 1. 

Tablel Timing to construct secure J acobians 

I iterations I time (sec.) I 
'Pi 1 1.6 
w 2490 16.9 
7ro 58 0.2 

#.J (Fp) 58 1.2 
Total 19.9 
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6. COMPLEXITY ANALYSIS 
We will denoted [L : Q] and [F : Q] as n and d respectively. 

Theorem 4. The Algorithm 1 calculates the CM type and reflex CM 
type with complexity of 0 ( nn+3 1og3 n + nn+llog4 n) bit-operations. 

Proof. The algorithm is based on the relation between the congruence 
zeta function of the curve over a finite field and the characteristic poly­
nomial of the Frobenius endomorphism of its Jacobian varieties over the 
same finite field (See [14]). This relation is used to check the CM type 
and reflex CM type. 

The computation cost can be analyzed as follows. One can choose 
in Step 1 a prime number splitting completely in L, thus we can take 
p = O(nn). Thus to derive an ordinary reduction needs 
0 ( n n+3 log3 n + n n+ 1 log4 n) bit-operations (see also the proof of The­
orem 5). The Step 2 needs O(gn log3 n) for counting points of Cover a 
field of cardinality O(nn). The cost in Step 3 and 4 is that of type norm 
of w, to calculate it takes O(gn4 log2 n)bit-operations. The number of 
combinations for '1/Ji 2n. 0 

Remark 2. It can be noticed that, unlike the Algorithm 2 and 3 which 
have to use very large prime numbers for calculation the Weil numbers 
and design the Jacobian varieties, the prime p used in the Algorithm 
1 to calculate CM type could be choosed as small as possible. Thus its 
cost will depend mainly on the extension degree of the definition field 
of the curve. Therefore, we will use only the curves which are defined 
over number fields with reasonable degrees, thus bounded discriminants. 
{This is consistent with the fact that all curves which have used until 
now are over the rational number field Q) 

Theorem 5. The Algorithm 2 calculates Weil numbers with absolute 
norm of O(pY) has complexity of 0 ( dd( n2 log3 p + log4 p)) bit-operations. 

Proof. Correctness of the algorithm is based on Theorem 2 and 3. 
We have to consider the costs of following computations: 1. Con­

struction of an integral basis for Ch; 2. Computation of Galois action 
on L; 3. Search algebraic integer wE Op such that NF;Qw is a prime; 
4. Computation of type norm of win Op; 

The integral basis of OL will cost 0 (n4) when disc(L) is factorizable 
[22]. The Galois actions on L can be realized by computations of n 
n x n matrices, whose entries are bounded by the discriminant of L. 
Thus, these mappings can be calculated in 0 (n4). 

The absolute norm is computed by matrix computations and mul­
tiplications on Op. It needs d multiplications of n x n matrices and 
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n-D vectors. Assuming the entries of the matrix are bounded by the 
discriminant of L, they cost 0 ( dn2 log2 p) bit-operations. Since d - 1 
multiplications on OL need 0 ( dn2 log2 p) bit-operations, the total cost 
will be 0 ( dn2 log2 p) bit-operations. 

To search an w E Op with a prime absolute norm, we use random 
combinations of the integral basis {bi E Opli = 1 ... d} to generate w = 

wibilwi E Z, then calculate its absolute norm and check if it is a 
1 

pseudo prime. The search will be carried out for w in 0 lwil < pd.. 
The probability that the absolute norm of an algebraic number is prime 
p equals 1/ ( ddh logp). In fact, assuming that the probability of absolute 
norm of an ideal of Op to be prime equals 1/ logp, then the probability 
for such an ideal to be principal is 1/ h, where h is the class number of 
F which is of O(disc(F) 112), and the probability of such an ideal splits 
completely in Op is 1/dd. Thus ddhlogp searches will be needed. 

Including also the cost for probabilistic prime tests, an w with prime 
absolute norm can be found in 0 (dd(n2 log3 p + log4 p))bit-operations. 

Computation of the type norm of w on Op will cost the same order 
as of absolute norm. 

In conclusion, Algorithm 2 has complexity of 0 ( dd( n2 log3 p + log4 p)) 
bit-operations. D 

Theorem 6. The Algorithm 3 outputs a secure Jacobian variety of or­
der O(pg) in 0 (dd(n2 log5 p + log5 p)) bit-operations. 

Proof. This follows immediately from the above theorem. D 
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