
CLASSIFYING INFORMATION
FOR EXTERNAL RELEASE

S. Dawson1 S. De Capitani di Vimercati2 P. Lincoln1 P. Samarati1•3

{1} SRI International, Menlo Park, CA, USA

{2} Universita di Brescia, Brescia, Italy

{3} Universita di Milano, Milano, Italy

Abstract Organizations in the private, public, and governmental sectors are more
and more required to make their data available on the Internet. This de­
mand often involves archival data maintained at the organization, which
must be disclosed selectively. We illustrate an approach to classifying
information for external release that guarantees protection of sensitive
data while maximizing information release.

1. INTRODUCTION
The widespread use of the Internet and the World Wide Web has introduced a

globally interconnected society, in which information is available from everywhere at
any time. As a result, organizations are often required to publish their data on the
network to make them accessible to the external world. This export process often
involves historical data, once considered protected and available only internally, that
can (or must) be made available outside. Such information sharing and dissemination
is clearly selective: not all data can be cleared for release. Some data are private and
hence should not be released, some data should be released only to specific classes of
users. Publication of the database must then ensure that sensitive information is not
improperly disclosed. Ensuring this protection requires withholding from recipients
data they are not cleared to see as well as additional data that, although not them­
selves sensitive, might allow recipients to infer sensitive information. At the same
time, it is desirable to avoid unnecessary (i.e., not needed for protection) denials to
publish information. As a matter of fact the first reason for undergoing the release
process is to make data available to others.

Constraints establishing what data can or cannot be released are often stated with
reference to classes of data recipients (a user by user specification would be rather im­
practical, if at all applicable). Recipient classes may bear relationships with eachother
(e.g., data released to a class of users may be a subset of data released to another
class of users). This consideration makes mandatory policies, based on the classifica­
tion of subjects and data, particularly appealing to the problem under consideration.
Mandatory policies are also appealing since they allow a clear and formal definition
of the constraints. However, although mandatory policies have been largely investi-

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
S. Qing et al. (eds.), Information Security for Global Information Infrastructures

10.1007/978-0-387-35515-3_53

http://dx.doi.org/10.1007/978-0-387-35515-3_53

152 Information Security for Global Information Infrastructures

TS
I
5

t
&

(a)

Figure 1

Mgt

/ '----..

Admin Research
'----.. /

Public

(b)
An example of two security lattices

gated and several multilevel models and systems have been proposed [Castano et al.,
1995, Jajodia and Sandhu, 1991, Lunt et al., 1990, Sandhu and Chen, 1998, Winslett
et al., 1994], the support for inference protection (i.e., indirect disclosure) remains to
date very limited (we refer the reader to [Dawson et al., 1999a, Jajodia and Meadows,
1995] for a discussion on related work).

We illustrate an approach to the classification of archival relational databases that
must undergo external release. The reason for considering relational databases is that
most archival data are indeed relational. We start by investigating different kinds of
constraints that can be imposed on information being released, including different
types of protection constraints (direct data classification, or indirect classification
requirements due to inference) as well as visibility constraints, consideration of which
allows the data holder to express the fact that some information should be made
available to given classes of subjects. Constraints can be content-dependent, that is,
the classification of a data element may depend on its value or the value of other
related elements. We present an approach to enforce the constraints that guarantee
protection from improper disclosure while maximizing information release.

2. BASIC CONCEPTS AND SCENARIO
We briefly introduce preliminary definitions and concepts of mandatory access

control, relational model, and multilevel relations.
Mandatory access control policies are based on definition of access classes, often

called security levels, and on the assignment of security levels to subjects (processes)
and objects (data) in the system. The security level of a subject, also called clear­
ance, reflects the subject's trustworthiness not to improperly disclose information it
acquires. The security level of an object reflects the sensitivity of the information in
the object. Security levels are partially ordered according to a dominance relationship
?:::, where x?:::y is read x dominates y. Security levels together with the dominance re­
lationship defined on them form a security lattice, C. Figure 1 illustrates an example
of two security lattices: a totally ordered lattice (Figure 1(a)) with classes top secret
(T5), secret (5), confidential (C), and unclassified (U), where T5 ?::: 5 ?::: C ?::: U; and
a partially ordered lattice (Figure 1(b)) with Public (publicly available information)
as bottom and Mgt (Management restricted information) as top. Accesses are regu­
lated so that information can flow only upwards (from lower to higher sensitivity). In
particular, a subject can read only objects at its level or below (no read up principle)
and write only objects at its level or above (no write down principle).

A relational DBMS defines a database in terms of relation schemas, and relations
(instances) over them. Formally, let A be a set of attributes and 1) a set of do­
mains. A relation schema R is a finite set of attributes { A1, ... , Am} A each of
which is defined on a domain D;, i = 1, ... , m. Notation R(A1 , .•. , Am) is used to

ClassifYing information for external release 153

(a)

{b)

Figure 2 An example of database (a) and multilevel database (b)

represent a relation schema R over the set {At, ... , Am} of attributes. A tuple t
over a set of attributes {At, ... , Ak} is a function that associates with each attribute
A; a value v E D;. Expression t[A] denotes the value v associated with attribute
A in t and R;.A denotes attribute A in R;; relation names may be omitted when
clear from the context. A relation r over relation schema R(A1, ... , Am) is a set of
tuples over the set of attributes {At, ... , Am}· A database B over a set of relation
schemas {R1 , •.• , .R,.} is a set of relations {r1, ... , rn}, where each r; is a relation
over R;. Figure 2(a) illustrates a simple example of database storing information
about departments, technology, projects, and employees of an organization.

The application of a mandatory policy to a relational database requires the clas­
sification of the information in it. Such classification can be applied at different
granularity levels (e.g, relation, tuple, or single elements). To make our approach as
general as possible, we consider a classification at the element level. Given a relation
schema R(A1 , ••• , Am) and a security lattice C=(L, !:), a multilevel relation with
element-level labeling over R, denoted r>., is a pair (r, >.), where r is a relation over
Rand>. is a labeling function >. : r -+ L such that >.(t[A;]) = l if and only if t(A;] E r
is classified at level l E L. Accordingly, a multilevel database B>. with element-level
labeling over a set of relation schemas { Rt, ... , .R,.} is a set of multilevel relations
{r;1 , ••• , }, where r;• is a multilevel relation over R;, and >. = >.t U ... U >.n. Fig­
ure 2(b) illustrates a multilevel version of the database in Figure 2(a), where security
levels are taken from the lattice in Figure 1 (b).

Figure 3 depicts the basic scenario we consider. We are given an archival relational
database, a set of classification constraints, and a security lattice for the interpretation
of the mandatory policy. The goal of our approach is to produce a classified database

154 Information Security for Global Information Irifrastructures

c p
L R
A 0
s c
s 2
I S
p s
I
c
•
T
I
0
N

i - i
0 1---t

Figure 3 Classification of information for external release

that provides the required protection, while maximizing information visibility. The
interpretation of the classified database will then produce different database views for
different subjects, where each view contains all and only the data whose classification
is dominated by the subject clearance. According to how data classifications are
determined by the classification process, each view is a subset of the actual database
obtained by eliminating all the data that the subject is not cleared to see as well as
additional data that would have allowed the subject to infer sensitive information.
From an architectural point of view, we can imagine this classification process to be
executed by a wrapper protecting the database (Dawson et a!., 2000].

3. PROBLEM DEFINITION
We investigate the different kinds of classification constraints that data holders

may express to impose restrictions on the data release. We also discuss completeness
and consistency properties of the constraints and define the concepts of correctness
and minimality of a solution.

Classification constraints. Classification constraints specify properties that the
classification assigned to data should satisfy. We identify two main classes of classifi­
cation constraints: protection constraints and visibility constraints.

Protection constraints impose minimum bounds on levels that can be assigned to
elements and possible dominance relationships that must be satisfied between them.
Among these constraints we can distinguish basic, association, inference, and in­
tegrity constraints. Basic constraints specify the minimum classification that can
be assigned to an element. For instance, "..\(E.salary)tFinmgt where E.rank;::: 3"
states that the salary of employees with rank greater than or equal to 3 should be
classified at least Finmgt. Association constraints specify minimum bounds for clas­
sifications of set of elements, by referring to their least upper bound. Intuitively,
they specify the minimum clearance necessary to view all the elements in the set.
For instance, "lub{..\(E.name), ..\(E.salary)tAdmin" states that only subjects cleared
Admin or above can have visibility of both employee's name and salary (subjects
at other levels might be able to see one of the two attributes but not both) . Infer­
ence constraints specify relationships that must be satisfied between the classifica­
tion of an attribute (or set of attributes) and the classification of another attribute.
They reflect interrelationships between data that must be taken into account in the
classification to prevent indirect (inference) disclosure. For instance, if by knowing

Classifying information for external release 155

the value of a project's topic one could infer the project's requisite, constraint
"..\(P.topic)!::..\(P.requisite)" should be imposed. This way, subjects not cleared to
view a project's requisite will not be able to see the topic, and will not therefore be
able to make inferences. Integrity constraints specify conditions on the classifications
imposed by the multilevel relational data model, rather than from the data. For
instance, primary key constraints state that all key attributes must have the same
level, while reference constraints state that the level of foreign key attributes must
be greater than or equal to the level of the corresponding key attributes (Lunt et al.,
1990]. All these constraints define (directly or indirectly) lower bounds on the lev­
els that can be assigned to elements. Intuitively, if we think of all the information
unclassified (bottom) at the beginning of the process, the consideration of protection
constraints will bring to increasing the levels of the elements.

Visibility constraints impose upper bounds on the classification of attributes. In­
tuitively they require that certain data be visible to certain subjects. For instance,
"Public!::E.name" states that employees' names should be visible to Public subjects.
With respect to inference problems, visibility constraints can also be used to represent
the fact that certain information is already available to certain subjects, and therefore
a higher classification assigned by the process would not reflect real knowledge.

In our approach, classification constraints are represented in a uniform and general
way as SQL-like statements of the form

set (labeling expression} in (relations_list} where (condition}
where labeling expression is an expression of the form X!::Y, where X is a security
levell E Lor is of the form lub{..\(At), ... , ..\(An)}, with A; E A, andY is a security
levell E Lor is of the form ..\(A) and At, ... , An, A disjoint; condition is a boolean
expression of mathematical relationships between attributes, or attributes and ground
values; and relations_list is the set of relations involved in the constraint. The
meaning of a constraint is that labeling expression must be satisfied on the clas­
sification of elements in relation_list in all the tuples satisfying the condition.
Figure 4 illustrates an example of possible classification constraints defined over the
database in Figure 2(a) and security lattice in Figure l(b). For simplicity, field in
is omitted, and field where is omitted when there is no condition associated with
the constraint (which intuitively is to be read as condition always true). Constraints,
which have been distinguished according to the typologies discussed above, are of
immediate interpretation. Completeness constraints guarantee completeness of the
specifications and are discussed next.

Constraint completeness and consistency. Given a database B, a security lattice
C, and a set C of classification constraints over Band C, our objective is to produce
a multilevel database B>. that satisfies the set C of constraints. To guarantee the ex­
istence of such a database B>., the set of constraints must be complete and consistent.
A set of constraints is complete if it defines a classification for each possible element
in the database. Intuitively, if the set is not complete there may exist elements for
which no level is produced. Completeness, if not provided in the initial specifications,
can be trivially guaranteed by adding a default constraint "set >.(A)!::j_" for each at­
tribute A in the database whose occurrence may not be completely classified, where
j_ denotes the bottom of the lattice. Such a default constraint clearly does not affect
the specifications provided as input, since each level in the lattice dominates L A set
of constraints is consistent if there exists a labeling that satisfies all the constraints,
that is, if it possible to find a solution B>.. Unlike completeness, consistency cannot be
guaranteed since the presence of both lower and upper bound constraints could force,

156 Information Security for Global Information Infrastructures

Viaibllity (upper bound) con•tra.inta
1) ••t Publict;A(B.c:ode)
2) aet where type= 1pubdoma.in'
3) aet where type= 'pubdomain'

B1ulc cla••iftcatlon con•tralnt•
4) •et
5) ••t where E.ruk < 3
6) ••t where E.rank 3
7) ••t
8) ••t
9) •et
10) ••t
11) ••t >.(T.cod.e)tDev.lopment
12) ••t)t.(P.cod•)t:Finmgt
13) ••t)t.(P.type)t;Finmgt
14) •et
15) •et A(P.topic)tRese•rch
16) aet A(P.platform)>-Runrc:h
17) ••t >..(P.requbite)CRuurch

Inference and aaaoclatlon con•traint•
18) ••t lub{>.(E.apecialty),

'Where E.prj = P.cod.e A B.dept = D.naa•
19) ••t A(P.topic)t:A(P.requilite)
20) aet lub{.\(P.roquilite),

where P.type = 'reserved' 1\ P.techno = T.code
21) ••t >..(T.ci .. cription)t:A(D.vorkarea)

where T.ci•pt = D.naae
22) ••t A(E.rank)t >..(B.nlary) where E.ruk 3
23) ••t lub{.\(S.nlary), .\(B.naae)}l:;:Adm;n

Integrity con.tralnta
24) aet
25) aet .\(E.a&lary)>--A(E.c:ode)
26) aet
27) aet .\(E.prj)l:;:.\(E.oodo)
28) aet A(E.naaae)t:A(E.coda)
29) aet .\(E.•p•ci<y)C..\(E.code)
30) aet .\(D,IIorkarn)CA(D.name)
31) aet A(T.deecription)t>.(T.code)
32) aet .\(T.dopt)l:;:.\(T.oodo)
33) aet ..\(P.topic)CA(P.code)
34) aet A(P.pla.tt'orm)tA(P.code)
35) aet A(P.nquhite)?:.\(P.code)
36) aet .\(P.techllo)?:>.(P.code)
37) aet .\(P.typo)l:;:.\(P.oodo)
38) aet .\(E.dept)?:>.(D.niUD.e)

where B.dept = D.nue
39) oet .\(B.prj)l:;:.\(P.oodo)

where E.prj = P.code
40) ••• .\(T.dopt)l:;:.\(o.n ... o)

where T.dept = D.nu.e
41) aet .\(P.tec:hno)>-A(T.code)

where P.t.cha; = T.code

Con1pletene•• conatraint•
42) •et >.(E.c:od.•)tPublic
43) aet A(E.rank)!!:Public
44) aet >.(B.Du.e)>-Public
46) aet A(P.coci•)t:Public
46) ••t A(D.na•)CPublic
47) •et A(D.workar•a)tPublic

Figure 4 Possible classification constraints on the relations in Figure 2(a)

on certain elements, dominance relationships that cannot be satisfied. For instance,
constraints "set A(E.name)tAdmin" and "set PublictA(E.name)" are clearly inconsis­
tent, since no classification of E. name is possible which satisfies both of them. Our
classification process enforces consistency checking at the beginning of the labeling
computation, returning an error and avoiding the execution of the process in presence
of inconsistencies (see Section 4).

Minimal classification. Given a database B and a set C of classification constraints,
there might be more than one multilevel database B>. satisfying C. Although each of
them will provide the required protection, not all of them are equally satisfactory. We
are interested in solutions that, while protecting from improper information disclosure
(i.e., satisfying the constraints) minimize the information loss due to the classification,
where by information loss we intend the nonvisibility of certain data by given subjects.
Although the notion of information loss is difficult to make both sufficiently general
and precise, it is clear that a first requirement in minimizing information loss is to
prevent overclassification of data: no database elements should be assigned security
levels higher than necessary to satisfy the classification constraints. Consistently, we
define minimal a solution B>. such that no other solution B>.' exists which assigns a
security level lower than or equal to that assigned by B>. to every element in B. A
formal definition of minimal classification can be found in (Dawson et al., 1999b].

4. CONSTRAINTS ENFORCEMENT
Our classification process is based on a previous proposal presented by us in (Daw­

son et al., 1999a], exploiting a graph interpretation of the constraints, which we have
now extended to the consideration of conditions. A set C of classification constraints
over relation schemas { R1, ... , Rn} and security lattice .C=(L, t) is represented as
a graph, called the constraint graph, as follows. There is a node for each security
level l E L and for each attribute A appearing in some relation schema R.;. Each

ClassifYing information for external release 157

Figure 5 Graphical representation of the constraints in Figure 4

constraint c E C with a labeling expression of the form and condition s is
represented by an edge labeled s incident to node Y. The starting point of the edge
is X, if X is a security level or attribute; it is a hypernode containing all attribute
nodes A;, if X = lub{.A(A!), ... , .A(An)}. Figure 5 illustrates the constraint graph
corresponding to the classification constraints in Figure 4. Attributes are represented
as circles, levels as squares, and hypernodes as dashed ellipses. Note that, for the
sake of readability, some level nodes have been duplicated.

The classification process, sketched in Figure 6, is divided in two main phases:
the first phase enforces upper bound constraints (step 5) and propagates them (step
6), while the second phase (step 7) enforces lower bound constraints and determines
the final classification. Both phases enforce constraints by traversing the constraint
graph, where for traversal purposes, arcs leaving from a hypernode are interpreted
as leaving from each of the nodes in it. Traversal is performed following (possibly
in reverse order) the topological order of the graph calculated without consideration
of upper bound constraints. Upper bound constraints are ignored in the determi­
nation of the topological order as they are evaluated only once pushing them into
the node incident of the arc (step 5) . At the beginning of the process, the classifi­
cation .A of each node is initialized to bottom level .L (step 1), while its maximum
allowed level lmax is initialized to top level T (step 2). Constraints are indexed
(step 3) so that for each node A, set Constr[A] contains all the constraints whose
left-hand side includes A. Each attribute A also maintains a flag (done[A]), ini­
tially set to false, that indicates whether all the elements of the attribute have been
classified. After this initialization process the set of constraints is interpreted as a
graph and its strongly connected component (SCC) determined (step 4), so to al­
low topological order based-traversals. For instance, a possible topological order for
the graph in Figure 5 is: scc(l] := {P.platform}; scc(2] := {E.specialty} ; scc(3]
:= {P. requisite,P. topic,D. workarea,T. description}; scc[4] := {P. techno}; scc(5]
:= {T.dept}; scc[6] := {T.code}; scc[7] := {P.type}; scc[8] := {E.prj}; scc(9] :=

{P.code}; scc(lO] := {E.dept}; scc(ll] := {D.name}; scc(12] := {E.name}; scc(13]
:= {E.rank}; scc[14] := {E.salary}; scc(15] := {E.code}. Step 5 enforces upper
bound constraints by pushing the level imposed by them (left-hand side) into the in-

158 Information Security for Global Information Infrastructures

/* Input: A database B, a security lattice C, and a set C of constraints *I
/* Output: A corresponding multilevel database B:. satisfying C for external release * 1
1. Set the level >. of all elements in B to .L
2. Set the maximum level lmam of all elements in B to T
3. For each A E .A doConstr[A]:= {c E C [A E lhs(c)}; done[A] :=FALSE
4. Define the graph G representing C and find a topological order among the SCCs of G.

Let numscc be the number of SCCs
5. /* Push upper bound constraints into hit nodes *I

For each upper bound constraint c E C do
For each t E evaluate(c, B) do l,ao(t[rhs(c)]) := lmam (t[lhs(c)])

6. /* Traverse the graph in topological order pushing upper bound constraints forward *I
For i := 1, ... , numscc do

For each A E scc(i] do
For each c E Constr[A] do

For each t E evaluate(c, B) do
If rhs(c) E L and (t[lhs(c)])!::rhs(c)) then return (inconsistency)
else lower Imam of t[rhs(c)] to the g.!. b. between its current value

and the lub of the 1m .. of the elements t[lhs(c)]
If rhs E scc[i] then repeat the step for rhs(c)

7. /* Traverse the graph in reverse topological order pushing lower bound constraints backward.
Within each sec execute a forward propagation process. *I

For i := numscc, ... , 1 do
For each A E scc[i] do

done[A] :=TRUE
For each c E Constr[A] do

If done[rhs(c)] then
For each t Eevaluate(c, B)
If [lhs(c)[= 1 then assign >.(t[A]) the lub between its current value and the>. of rhs(c).
else assign >.(t[A]) the lub between its current value and the minimum level

that A can assume without violating the constraint
else done[AJ := FALSE

If -.done[A] then
For each c E Constr[A] do

For each t E evaluate(c,B) do determine a minimal level! that t[A] can assume by trying
levels walking down lattice C one step at the time from and checking consistency
by traversing the SCC forward. Lower other elements in the SCC as needed.

>.(t[A]) := Imam (t[A])
done[A] := TRUE

Figure 6 Classification Algorithm

terested element (right-hand side). Then, the graph is traversed in topological order
pushing the constraints forward and possibly lowering the maximum allowed level
of nodes encountered (step 6). Note that traversal of an arc requires determining
the elements actually involved in the dominance relationship expressed by the arc.
Function evaluate(c, B) performs such a computation in the algorithm. Intuitively,
evaluate executes a SQL query on the database and returns the tuples to which
the constraint applies (i.e., those on which the condition evaluates to true). Note
that the propagation of upper bound constraints is deterministic as no choices can
be taken during the propagation but lowering the lma:o of the hit elements to the
greatest lower bound of their current value and the maximum level being pushed
through, where the level being pushed through may increase when traversing arcs
corresponding to lub constraints (i.e., constraints with more than one attribute on
the left-hand side). Possible inconsistencies in the constraints are found in this phase
as they cause attempts to push into a constant level node l a maximum allowed level
that does not dominate l. At the end of this phase, each element in the database has
associated a maximum allowed level lma:o, which must dominate the final level A that
will be produced. For instance, with reference to our example, the maximum level
for tl(P.topic), and tl(P.requisite) is set to Research; while the maximum level for

Classifying information for external release 159

tt[P.code], t1[E.code], h[E.code], and ta[E.code] is set to Public. The maximum of
all other elements remains in-varied and equal to the top level Mgt.

The second phase (step 7) enforces lower bound constraints, increasing the clas­
sification .A of each element until it reaches its final level. A major complication in
lower bound constraint propagation is the presence of cycles, intuitively sec, which
are therefore treated separately.

Let us first assume there are no cycles. The graph is traversed in reversed topolog­
ical order (backtraversing edges) raising the classification .A of the nodes encountered
(left-hand side of the constraint being traversed) to be the least upper bound between
its value and the level being pushed backwards. Note that, unlike with upper bounds,
such propagation along the graph is not deterministic as lub constraints can be sat­
isfied in several ways. For instance, constraint lub{.A(E.salary),
could be solved by raising the .A of elements on either E. salary or E. name to satisfy
the constraint, or by distributing the "load" on E.salary and E.name. In our ap­
proach, the choice of how to solve a lub constraint is based on the topological order:
we force the lub constraint on the last attribute in the left-hand side to be flagged
done (intuitively the one belonging to the SCC with lowest index). Thus, according
to the topological order previously illustrated, the constraint above is solved by first
considering elements on E. salary and then elements on E. name. Note that traversal
in reversed topological order guarantees that we will (back)proceed from a node when
only the corresponding attribute (more precisely, the elements of the attribute) has
reached its final level, that is, all arcs leaving from it have been considered. This
guarantees that each constraint is evaluated only once.

For cyclic constraints, this backward propagation process is not directly applica­
ble. The problem with cycles is that constraints have to be evaluated more than
once (as passing through a cycle the level being pushed backward could increase)
and a further pass could invalidate previous choices that increased the classification
of certain elements, meaning the classification being produced would not be min­
imal anymore. Adapting backward propagation to acyclic constraints would then
require a considerable effort and log maintenance to enforce backtracking of pre­
viously determined .A. To avoid this complicated and expensive process, we deal
with cycles in a special way, enforcing on them a forward "push-down" propaga­
tion. When entering a SCC with more than one attribute (cyclic constraint) we
traverse the graph forward and try to lower the maximum level of the elements we
encounter, as low as possible. In particular, for each element, the process starts
from the element's current lma, and walks down the lattice to a minimal level that
can be assigned to the element without violating the constraints. To illustrate, con­
sider the cycle formed by the constraints {c1s, c19, c2o, c2t} and assume that lmax
of all elements to be top level Mgt. When encountering the first attribute in the
sec, let it be p. requisite, the algorithm will try to lower the current maximum
level of elements on it by attempting one level at the time walking down the lattice
to the lowest possible level. First Finmgt is considered and the attempt to lower
the lmao: of t;[P.requisite], i = 1, ... ,3, is evaluated with respect to its conse­
quences on the other elements involved in the SCC. Consideration of the other con­
straints "set "set and" set
lub{.A(P.requisite), where P.type ='reserved'
1\ P. techno = T. code" returns satisfaction without requiring changes. Continuing
down the lattice, Admin, is considered. However, the attempt to lower the maximum
level of t;[P.requisite], i = 1, ... ,3, to Admin fails because it would violate con­
straint "set Hence, level Research is tried. The lowering

160 Information Security for Global Information Infrastructures

attempt succeeds only for element h[P.requisite), which will then be assigned max­
imum level Research. It fails instead for the values of P. requisite in tuples t 2 and t 3

which will be assigned level Finmgt. In a similar way, the process computes the final
level of all elements over attributes involved in the considered cycle.

Figure 2(b) illustrates a multilevel database B>-. produced by enforcing the con­
straints in Figure 4 on the database Bin Figure 2(a).

5. CONCLUSIONS
We have presented an approach for classifying archival relational databases that

must undergo external release. Our approach takes into account different kinds of
content-dependent constraints and produces a classification that provides the required
protection while maximizing information visibility. Future work includes the con­
sideration of dynamic and longitudinal databases, where data updates need to be
considered.

Acknowledgments
This work was supported in part by the National Science Foundation under grants

ECS-94-22688 and CCR-9509931, and by DARPA/Rome Laboratory under contract
F30602-96-C-0337.

References
[Castano et al., 1995) Castano, S., Fugini, M., Martella, G., and Samarati, P. (1995).

Database Security. Addison-Wesley.
[Dawson et al., 1999a) Dawson, S., De Capitani di Vimercati, S., Lincoln, P., and

Samarati, P. (1999a). Minimal data upgrading to prevent inference and association
attacks. In Proc. of the 18th ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS), Philadelphia.

[Dawson et al_., 1999b) Dawson, S., De Capitani di Vimercati, S., and Samarati, P.
(1999b). Specification and enforcement of classification and inference constraints.
In Proc. of the 20th IEEE Symposium on Security and Privacy, Oakland.

[Dawson et al., 2000) Dawson, S., Qian, S., and Samarati, P. (2000). 'providing
security and interoperation of heterogeneous systems. Distributed and Parallel
Databases, 8(1):119-145.

[Jajodia and Meadows, 1995) Jajodia, S. and Meadows, C. (1995). Inference prob­
lems in multilevel secure database management systems. In Information Security:
An Integrated Collection of Essays, pages 570-584.

[Jajodia and Sandhu, 1991) Jajodia, S. and Sandhu, R. (1991). Toward a multilevel
secure relational data model. In Proc. of the 1991 ACM SIGMOD Conference,
pages 50-59.

[Lunt et al., 1990) Lunt, T., Denning, D., Schell, R., Heckman, M., and Shockley, W.
(1990). The seaview security model. IEEE 'Iransactions on Software Engineering,
16(6):593-607.

[Sandhu and Chen, 1998) Sandhu, R. and Chen, F. (1998). The multilevel relational
(mlr) data model. ACM 'Iransactions on Information and System Security, 1(1).

[Winslett et al., 1994) Winslett, M., Smith, K., and Qian, X. (1994). Formal query
languages for secure relational databases. A CM 'Iransactions on Database Systems,
19(4):626-662.

	CLASSIFYING INFORMATIONFOR EXTERNAL RELEASE
	1. INTRODUCTION
	2. BASIC CONCEPTS AND SCENARIO
	3. PROBLEM DEFINITION
	4. CONSTRAINTS ENFORCEMENT
	5. CONCLUSIONS
	Acknowledgments
	References

