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Abstract The modern era of interior-point methods dates to 1984, when Kar­
markar proposed his algorithm for linear programming. In the years 
since then, algorithms and software for linear programming have become 
quite sophisticated, while extensions to more general classes of problems, 
such as convex quadratic programming, semidefinite programming, and 
nonconvex and nonlinear problems, have reached varying levels of ma­
turity. Interior-point methodology has been used as part of the solution 
strategy in many other optimization contexts as well, including ana­
lytic center methods and column-generation algorithms for large linear 
programs. We review some core developments in the area. 
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1. INTRODUCTION 

Interior-point methods have been a topic of intense scrutiny by the 
optimization community during the past 15 years. Although methods 
of this type had been proposed in the 1950s, and investigated quite 
extensively during the 1960s [9], it was the announcement of an algo­
rithm with intriguing complexity results and good practical performance 
by Karmarkar [20] that ushered in the modern era. This work placed 
interior-point methods at the top of the agenda for a large and diverse 
body of researchers and led to a series of remarkable advances in various 
areas of convex optimization. 

Today, interior-point methods for linear programming have become 
quite mature both in theory and in practice, and several high-quality 
codes are available. For the rival algorithm, the simplex method, the 
sudden appearance of credible competition spurred significant improve­
ments in the software, resulting in a quantum advance in the state of 
the art in computational linear programming since 1988. 
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The theory of interior-point methods in other areas of convex pro­
gramming and monotone complementarity also appears to have reached 
a fairly advanced stage. The computational picture is less clear than 
for general linear programming, however. In some areas, such as semi­
definite programming, there is no apparent alternative algorithm whose 
practical efficiency is comparable to the interior-point approach, while in 
others, such as quadratic programming, active-set methods (which de­
scend from the simplex method for linear programming) provide strong 
competition. 

Investigation of the use of interior-point methods in various areas of 
nonconvex optimization, including discrete optimization, is in a much 
less advanced stage. The eventual prospects are still unclear, though 
early results in so me areas (for example, nonlinear programming) show 
distinct promise. A thread common to many approaches is the use of 
interior-point methods to find inexact solutions of convex subproblems 
that arise during the course of the larger algorithm. 

We start in Section 2 by outlining the state of the art of interior-point 
methods in linear programming, discussing the pedigree of the most 
important algorithms, computational issues, and customization of the 
approach to structured problems. In Section 3, we discuss the straight­
forward extensions to quadratic programming and linear complementar­
ity, and compare the resulting algorithms with active-set methods. The 
extension to semidefinite programming is discussed in Section 4, along 
with the theoretical work on self-concordant functionals and self-scaled 
cones that forms the underpinning of some of this work. Finally, we 
present so me conclusions in Section 5. 

A great deal of literat ure is available to the reader interested in delving 
further into this area. A number ofrecent books (Ye [44J, Roos, Vial, and 
Terlaky [35], Wright [42]) give overviews of the area, from first principles 
to new results and practical considerations. Theoretical background 
on self-concordant functionals and related developments is described by 
Nesterov and Nemirovskii [28J and Renegar [34]. Technical reports from 
the past five years can be obtained from the Interior-Point Methods 
Online Web site at www.mcs.anl.gov/otc/lnteriorPoint. 

For lack of space, we have omitted discussion of many interesting 
areas in which interior-point approaches are making an impact. Convex 
programming problems of the form 

min f(x) S.t. gi(X)::; 0, i = 1,2, ... ,m, 
x 

where fand gi, i = 1,2, ... ,m, are convex functions, can be solved by 
extensions of the primal-dual approach of Section 3; see, for example, 
Ralph and Wright [32J. Interestingly, it is possible to prove super linear 
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convergence of the resulting algorithms without assuming linear inde­
pendence of the active constraints at the solution. This observation 
prompted recent work on improving the convergence properties of other 
algorithms, notably sequential quadratic programming. A number of 
researchers have used interior-point methods in algorithms for combina­
torial and integer programming problems. (In some cases, the interior­
point method is used to find an inexact solution of related problems in 
which the integrality constraints are relaxed.) Recent computational re­
sults are presented in Mitchell [24], and a comprehensive survey is given 
by Mitchell, Pardalos, and Resende [26]. In decomposition methods for 
large linear and convex problems, such as Dantzig-Wolfe/column gen­
eration and Benders' decomposition, interior-point methods have been 
used to find inexact solutions of the large master problems, or to ap­
proximately solve analytic center subproblems to generate test points. 
Approaches such as these are described by Gondzio and Sarkissian [16], 
Gondzio and Kouwenverg [15], and in the survey paper of Goffin and 
Vial [13]. Additionally, application of interior-point methodology to 
nonconvex nonlinear programming has occupied many researchers for 
some time now. The methods that have been proposed to date contain 
many ingredients, including primal-dual steps, barrier and merit func­
tions, and scaled trust regions. Recent work in this area includes the 
reports of Byrd, Hribar, and Nocedal [5], Conn et al. [7], Gay, Overton, 
and Wright [11], and Forsgren and Gill [10]. 

2. LINEAR PROGRAMMING 
We consider first the linear programming problem, which we state in 

standard form: 
min eT x S.t. Ax = b, x 0, (1) 

x 

where x E lRn and A E lRmxn . We assurne that this problem has a strict 
interior, that is, the set 

FO {x I Ax = b, x > O} 

is nonempty, and that the objective function is bounded below on the set 
of feasible points. Under these assumptions, (1) has a (not necessarily 
unique) solution. 

By using a logarithmic barrier function to account for the bounds 
x 0, we obtain the parametrized optimization problem 

min f(x; jl) x - t log Xi s.t. Ax = b, (2) 
x i=l 
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where log denotes the naturallogarithm, and P > 0 denotes the barrier 
parameter. Because the logarithmic function requires its arguments to 
be positive, the solution x(P) of (2) must belong to FO. It is weIl known 
(see, for example, Wright [40, Theorem 5]) that for any sequence {Pd 
with Pk 4- 0, all limit points of {X(Pk)} are solutions of (1). 

The traditional SUMT approach of Fiacco and McCormick [9] ac­
counts for equality constraints by ineluding a quadratic penalty term in 
the objective. When the constraints are linear, as in (1), it is simpler 
and more appropriate to handle them explicitly. By doing so, we devise 
a primal barrier algorithm in which a projected Newton method is used 
to find an approximate solution of (2) for a certain value of p, and then 
P is decreased. The projected Newton step from a point x satisfies 
the following system: 

-AT] [ ] = _ [ c - pX-Ie ] 
0),+ Ax-b' (3) 

where X = diag(xI, X2, ... ,xn ) and e = (1,1, ... ,1)T. Note that 

so that the equations (3) are the same as those that arise from a sequen­
tial quadratic programming algorithm applied to (2), modulo the scaling 
by P in the first line of (3). A line search can be performed along to 
find a new iterate x + where a > 0 is the step length. 

The prototype primal barrier algorithm can be specified as follows: 

primal barrier algorithm 
Given xO E FO and Po > 0; 
Set k 0; 
repeat 

Obtain xk+1 by performing one or more Newton steps (3), 
starting at x = xk, and fixing P = Pk; 

Choose Pk+1 E (0, Pk); k k + 1; 
until some termination test is satisfied. 

A short-step version of this algorithm takes a single Newton step at 
each iteration, with step length a = 1, and sets 

(4) 

It is known (see, for instance, Renegar [34, Section 2.4]) that, if the 
feasible region of (1) is bounded, and xO is sufficiently elose to x (Po) in 
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a certain sense, then we obtain a point x k whose objective value cT x k is 
within c of the optimal value after 

o ( y'nlog iterations, (5) 

where the constant factor disguised by the 0(·) depends on the properties 
of (1) but is independent of n and c. 

The rate of decrease of fi, in short-step methods is too slow to al­
low good practical behavior, so long-step variants were proposed that 
decreased fi, more rapidly, while possibly taking more than one New­
ton step for each fi,k and also using a line search. Although long-step 
algorithms have better practical behavior, the complexity estimates as­
sociated with them typically are no better than the estimate (5) for the 
short-step approach; see Renegar [34, Section 2.4] and Gonzaga [17]. In 
fact, arecurring theme of worst-case complexity estimates for linear pro­
gramming algorithms is that no useful relationship exists between the 
estimate and the practical behavior of the algorithm. 

Better practical algorithms are obtained from the primal-dual frame­
work. These methods recognize the importance of the path of solutions 
x(p,) to (2) in the design of algorithms, but differ from the approach 
above in that they treat the dual variables explicitly in the problem, 
rather than as adjuncts to the calculation of the primal iterates. 

The dual problem for (1) is 

max bT).. s.t. AT).. + s = c, s 0, 
(>.,8 ) 

(6) 

where s E IRn and ).. E IRm . The optimality conditions for x* to be a 
solution of (1) and ()..*,s*) to be a solution of (6) are that (x,)..,s) = 
(x* , ).. * , s*) satisfies 

Ax b, (7a) 
AT)..+s = c, (7b) 

XSe = 0, (7c) 
(x, s) > 0, (7d) 

where X = diag(xl, X2, ... , xn) and S = diag(sl, S2, ... , sn), and where 
(x, s) ° indicates that all the components of x and s are nonnegative. 
Primal-dual methods solve (1) and (6) simultaneously by generating a 
sequence of iterates (xk,)..k, sk) that in the limit satisfies the conditions 
(7). As mentioned above, the central path defined by the following per­
turbed variant of (7) plays an imporant role in algorithm design: 

Ax = b, (8a) 
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AT>. + s c, 

XSe fj,e, 

(x,s) > 0, 

(8b) 

(8c) 

(8d) 

where fj, > 0 parametrizes the path. Note that these conditions are 
simply the optimality conditions for the problem (2): If (x(fj,), >'(fj,) , s(fj,)) 
satisfies (8), then x(fj,) is a solution of (2). We have from (8c) that a key 
feature of the central path is that 

XiSi = J.L, for all i = 1,2, ... ,n, (9) 

that is, the pairwise products XiSi are identical for all i. 
In primal-dual algorithms, steps are generated by fixing fj, at some 

appropriate value (discussed below) and applying a perturbed Newton 
method to the three equalities (8a), (8b), and (8c), which form a non­
linear system in which the number of equations equals the number of 
unknowns. We constrain all iterates (xk,>.k,sk) to have (xk,sk) > 0, so 
that the matrices X and S remain positive diagonal throughout, ensur­
ing that the perturbed Newton steps are well defined. Supposing that 
we are at a point (x, >., s) with (x, s) > 0 and the feasibility conditions 
Ax = band AT>. + s = c are satisfied, the primal-dual step (.6.x, .6.>', .6.s) 
is obtained from following system: 

[ 
0 A 

AT 0 

o S 
(10) 

where J.L = xT sln, a E [O,lJ, and r is a perturbation term, possibly 
chosen to incorporate higher-order information about the system (8), or 
additional terms to improve proximity to the central path. If the per­
turbation r were not present, (10) would simply be the Newton system 
for (8a), (8b), and (8c), where the value of fj, is fixed at aJ.L. 

Using the general step (10), we can state the basic framework for 
primal-dual methods as follows: 

primal-dual algorithm 
Given (XO, >.0, sO) with (xO,sO) > 0; 
Set k +--- ° and J.L0 = (xO)T sO In; 
repeat 

Choose ak and r k; 
Solve (10) with J.L = J.Lk, a = ak and r = r k 

to obtain (.6.xk, .6.>.k, .6.sk); 
Set 
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choosing ak E (O,IJ to ensure that (xk+l,sk+1) > 0; 
Set f-Lk+l +- (xk+l)T sk+l In; k +- k + 1; 

until so me termination test is satisfied. 

The various algorithms that use this framework differ in the way that 
they choose the starting point, the centering parameter O"k, the pertur­
bation vector r k , and the step ak. The simplest algorithm-a short­
step path-following method similar to the primal algorithm described 
above--sets 

and, for suitable choice of starting point, achieves convergence to a fea­
sible point (x, A, s) with xT sln E for a given E in 

o (Vii log iterations. (11) 

Note the similarity of both the algorithm and its complexity estimate 
to the corresponding primal algorithm. As in that case, algorithms with 
better practical performance, but not necessarily better complexity es­
timates, can be obtained through more aggressive, adaptive choices of 
the centering parameter (that is, O"k eloser to zero). They use a line 
search to maintain proximity to the central path. The proximity re­
quirement dictates, implicitly or explicitly, that while the condition 
(9) may be violated, the pairwise products must not be too differ­
ent from each other. Many such algorithms, ineluding path-following, 
potential-reduction, and predictor-corrector algorithms, are discussed in 
Wright [42J. 

Most interior-point software for linear programming is based on Meh­
rotra's predictor-corrector algorithm [22], often with the higher-order 
enhancements described by Gondzio [14J. This approach uses an adap­
tive choice of O"k, selected by first solving for the pure Newton step (i.e., 
setting r = 0 and 0" = 0 in (10). If this step makes good progress in 
reducing f-L, we choose O"k small so that the step actually taken is quite 
elose to this pure Newton step. Otherwise, we enforce more centering 
and calculate a conservative direction by setting O"k eloser to 1. The 
perturbation vector r k is chosen to improve the similarity between the 
system (10) and the original system (8) that it approximates. Gondzio's 
technique furt her enhances r k by performing furt her solves of the system 
(10) with a variety of right-hand sides, where each solve reuses the fac­
torization of the matrix, and is therefore not too expensive to perform. 
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To turn this basic algorithmic approach into a useful piece of soft­
ware, we must address many issues. These include problem formulation, 
presolving to reduce the problem size, choice of the step length, lin­
ear algebra techniques for solving (10), and user interfaces and input 
formats. 

Possibly the most interesting issues are associated with the linear 
algebra. Most codes deal with a partially eliminated form of (10), either 
eliminating ßs to obtain 

or eliminating both ßs and ßx to obtain a system of the form 

(13) 

to which a sparse Cholesky algorithm is applied. A modified version of 
the latter form is used when dense columns are present in A. These 
columns may be treated as a low-rank update and handled via the 
Sherman-Morrison-Woodbury formula or, equivalently, via a Schur com­
plement strategy applied to a system intermediate between (12) and 
(13). In many problems, the matrix in (13) becomes increasingly ill­
conditioned as the iterates progress, eventually causing the Cholesky 
process to break down as negative pivot elements are encountered. A 
number of simple (and in some cases counterintuitive) patches have been 
proposed for overcoming this difficulty while still producing useful ap­
proximate solutions of (13) efficiently; see, for example, Andersen [2] and 
Wright [43]. 

Despite many attempts, iterative solvers have not shown much pro­
mise as a means to solve (13), at least for general linear programs. A 
possible reason is that, besides its poor conditioning, the matrix lacks 
the regular spectral properties of matrices obtained from discretizations 
of continuous operators. Some codes do, however, use preconditioned 
conjugate gradient as an alternative to iterative refinement for improving 
the accuracy, when the direct approach for solving (13) fails to produce 
a solution of sufficient accuracy. The preconditioner used in this case is 
simply the computed factorization of the matrix A(S-l X)AT . 

A number of interior-point linear programming codes are now avail­
able, both commercially and free of charge. Information can be obtained 
from the World-Wide Web via the URL mentioned earlier. It is difficult 
to make blanket statements about the relative efficiency of interior-point 
and simplex methods for linear programming, as improvements to the 
implementations of both techniques continue to be made. Interior-point 
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methods tend to be faster on large problems and can better exploit mul­
tiprocessor platforms, because the expensive operations such as Cholesky 
factorization of (13) can be paraIlelized to some extent. They are not 
able to exploit "warm start" information-a good prior estimate of the 
solution, for instance-to the same extent as simplex methods. For this 
reason, they are not weIl suited for use in contexts such as branch-and­
bound or branch-and-cut algorithms for integer programming, which 
solve many closely related linear programs. 

Several researchers have devised special interior-point algorithms for 
special cases of (1) that exploit the special properties of these cases in 
solving the linear systems at each iteration. For network fiow problems, 
Mehrotra and Wang consider preconditioned conjugate-gradient meth­
ods for solving (13), in which the preconditioner is built from a spanning 
tree for the underlying network (see Mehrotra and Wang [23]). For mul­
ticommodity fiow problems, Castro [6] describes an algorithm for sohring 
aversion of (13) in which the block-diagonal part of the matrix is used to 
eliminate many of the variables, and a preconditioned conjugate-gradient 
method is applied to the remaining Schur complement. Techniques for 
stochastic programming (two-stage linear problems with recourse) are 
described by Birge and Qi [4] and Birge and Louveaux [3, Section 5.6]. 

3. SIMPLE EXTENSIONS OF THE 
PRIMAL-DUAL APPROACH 

The primal-dual algorithms of the preceding section are readily ex­
tended to convex quadratic programming (QP) and monotone linear 
complementarity (LCP), both classes being generalizations of linear pro­
gramming. Indeed, many of the convergence and complexity properties 
of primal-dual algorithms were first elucidated in the literat ure with 
regard to monotone LCP. 

We state the convex QP as 

mln cT x + s.t. Ax = b, x 2 0, (14) 

where Q is a positive semidefinite matrix. The monotone LCP is defined 
by square matrices M and N and a vector q, where M and N satisfy a 
monotonicity property: all vectors y and z that satisfy My + N z = 0 
have yT z 2 o. This problem requires us to identify vectors y and z such 
that 

My+Nz=q, (y,z) 20, yTz=O. (15) 

With so me transformations, we can express the optimality conditions 
(7) for linear programming, and also the optimality conditions for (14), 
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as a monotone LCP. Other problems fit under the LCP umbrella as well, 
induding bimatrix games and equilibrium problems. The central path 
for this problem is defined by the following system, parametrized as in 
(8) by the positive scalar J.L: 

My+Nz = q, 

YZe J.Le, 

(y,z) > 0, 

(16a) 

(16b) 

(16c) 

and a search direction from a point (y, z) satisfying (16a) and (16c) is 
obtained by solving a system of the form 

where J.L = yT zln, (J E [0,1], and, as before, r is a perturbation term. 
The corresponding search direction system for the quadratic program 
(14) is identical to (10) except that the (2,2) block in the coefficient 
matrix is replaced by -Q. The primal-dual algorithmic framework and 
the many variations within this framework are identical to the case of 
linear programming with the minor difference that the step length should 
be the same for all variables. (In linear programming, different step 
lengths can be, and often are, taken for the primal variable x and the 
dual variables (A, s).) 

Complexity results are also similar to those obtained for the corre­
sponding linear programming algorithm. For an appropriately chosen 
starting point (yO, zO) with J.Lo = (yO)T zO In, we obtain convergence to a 
point with J.L f in 

o (nT log :0) iterations, 

where T = 1/2, 1, or 2, depending on the algorithm. Fast local con­
vergence results typically require an additional strict complementarity 
assumption that is not necessary in the case of linear programming (see 
Monteiro and Wright [27]), although some authors have proposed su­
per linear algorithms that do not require this assumption. Algorithms 
of the latter type require accurate identification of the set of degener­
ate indices before the fast convergence becomes effective. This property 
makes them of limited interest, since by the time the degenerate set has 
been identified, the problem is essentially solved. 

The LCP algorithms can, in fact, be extended to a wider dass of 
problems involving so-called sufficient matrices. Instead of requiring M 
and N to satisfy the monotonicity property defined above, we require 



Developments in Interior-Point Methods 321 

that there exist a nonnegative constant /'i, such that 

yT Z 2:: -4/'i, L YiZi, for all y, Z with My + Nz = O. 
i I YiZi>O 

The complexity estimate for interior-point methods applied to such prob­
lems depends on the parameter /'i,; that is, the complexity is not polyno­
mial on the whole dass of sufficient matrices. 

Primal-dual methods have been applied to many practical applica­
tions of (14) and (15). For example, an application to Markowitz's 
formulation of the port folio optimization problem is described by Take­
hara [36]; applications to optimal control and model predictive control 
are described by Wright [41] and Rao, Wright, and Rawlings [33]; an 
application to f 1 regression is described by Portnoy and Koenker [31]. 

The interior-point approach has a number of advantages over the 
active-set approach from a computational point of view. It is difficult 
for an active-set algorithm to exploit any structure inherent in both Q 
and A, without redesigning most of the complex operations that make 
up this algorithm (adding a constraint to the active set, deleting a con­
straint, evaluating Lagrange multiplier estimates, calculating the search 
direction, and so on). In the interior-point approach, on the other hand, 
the only complex operation is the solution of the linear system (17)-and 
this operation is fairly straightforward by comparison with the opera­
tions in an active-set method. Since the structure and dimension of the 
linear system remain the same at all iterations, the routines for solv­
ing the linear systems can be designed to fully exploit the properties of 
the systems arising from each problem dass. In fact, the algorithm can 
be implemented to high efficiency using an object-oriented approach, in 
which the programmer of each new problem dass needs to supply only 
code for the factorization and solution of the systems (17), optimized for 
the structure of the new dass, along with a number of simple operations 
such as inner-product calculations. Code that implements upper-level 
decisions (choice of parameter a, vector r, steplength a) remains effi­
cient across the gamut of applications of (15) and can simply be reused 
by all applications. 

We note, however, that active-set methods may still require much less 
execution time than interior-point methods in many contexts, especially 
when "warm start" information is available, and when the problem is 
generic enough that not much benefit is gained by exploiting its struc­
ture. 

The extension of primal-dual algorithms from linear programming to 
convex quadratic programming is so straightforward that a number of 
the interior-point linear programming codes have recently been extended 
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to handle problems in the dass (14) as well. In their linear algebra 
calculations, these codes treat both Q and A as general sparse matrices, 
and hence are efficient across a wide range of applications. By contrast, 
as noted in Gould and Toint [18, Section 4], implementations of active­
set methods for (14) that are capable of handling even moderately sized 
problems have not been widely available. 

4. SEMIDEFINITE PROGRAMMING 
Here we discuss extensions of interior-point techniques to broad dasses 

of problems that indude semidefinite programming (SDP) and second­
order cone programming. The SDP problem can be stated as 

min C. X, s.t. X >-- 0, Ai. X = bi , i = 1,2, ... ,m, (18) x -

where X, C, and Ai, i = 1,2, ... , m, are n x n symmetric matrices 
smnxn , X 0 denotes the constraint that X be positive definite, and 
"." denotes the inner product P.Q = I:i,j PijQij. By furt her restricting 
X, C, and Ai all to be diagonal, we recover the linear programming 
problem (1). The dass (18) has been studied intensively during the past 
seven years, in part because of its importance in applications to control 
systems and because many combinatorial problems have powerful SDP 
relaxations. The second-order cone programming problem is 

mlllx1 .tl, ... ,XN,tN cr Xi + ßiti s.t. (19) 

Bixi + diti = b, Ilxil12:::; ti, i = 1,2, ... , N, 

where each Xi is a vector of length ni 2': 1, each Bi is an mo x ni matrix, 
band each d i are vectors of length mo, and each ti is a scalar. Convex 
quadratically constrained quadratic programs can be posed in the form 
(19), along with sum-of-norms problems and many other applications 
(see Lobo et al. [21]). 

The key to extending efficient interior-point algorithms to these and 
other convex problems was provided by Nesterov and Nemirovskii [28]. 
The authors explored the properties of self-concordant functions. They 
showed that algorithms with polynomial complexity could be constructed 
by using barrier functions of this type for the inequality constraint, and 
then applying a projected Newton's method to the resulting linearly 
constrained problem. 

Self-concordant functions are convex functions with the special prop­
erty that their third derivative can be bounded by some expression in­
volving their second derivative at each point in their domain. This prop­
erty implies that the second derivative does not fluctuate too rapidly in 
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a relative sense, so that the function does not deviate too much from the 
second-order approximation on which Newton's method is based. For 
this reason, we can expect Newton's method to perform reasonably weIl 
on such a function. 

Given a finite-dimensional real vector space V, an open, nonempty 
convex set S C V, and a closed convex set T c V with nonempty 
interior, we have the following formal definition. 

Definition 1 The function F : S lR is self-concordant if it is convex 
and if the foltowing inequality holds for alt x E Sand alt h E V: 

(20) 

where Dk F[h1 , h2, ... ,hk] denotes the kth differential of F along the 
directions h 1, h2, ... , hk. 

F is calted strongly self-concordant if F(Xi) 00 for all sequences 
xi E S that converge to a point on the boundary of S. 

F is a '!9-self-concordant barrier for T if it is a strongly self-concordant 
function for intT, and the parameter 

is finite. 

'!9 sup F'(x)T [F"(x)r1 F'(x) 
xEintT 

(21) 

Note that the exponent 3/2 on the right-hand side of (20) makes the 
condition independent of the scaling of h. It is shown by Nesterov and 
Nemirovskii [28, Corollary 2.3.3] that, if T i= V, then the parameter '!9 
is no smaller than l. 

It is easy to show that log-barrier function of Section 2 is an n-self­
concordant barrier for the positive orthant (that is, it satisfies (21) 
for'!9 = n) if we take 

n 

V = lRn, S = F(x) = - Llogxi' 
i=l 

where denotes the strictly positive orthant. Another interesting 
case is the second-order cone (or "ice-cream cone"), for which we have 

V = lRn +!, S = {(x, t) IIIxll2 t}, F(x, t) = -log (t2 - IIx112) , 
(22) 

where t E lR and x E lRn. In this case, F is a 2-self-concordant barrier 
and is appropriate for the inequality constraints in (19). A third im­
portant case is the cone of positive semidefinite matrices, for which we 
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have 

v 
S 

F(X) 

n x n symmetrie matriees 

n x n symmetrie positive semidefinite matriees 
-logdetX, 

where F is an n-self-concordant barrier. This barrier function can be 
used to model the constraint X t: 0 in (18). 

Self-concordant barrier functions allow us to generalize the primal 
barrier method of Section 2 to problems of the form 

min (c, x) S.t. Ax = b, xE T, (23) 

where T is a closed convex set, (c, x) denotes a linear functional on the 
underlying vector space V, and A is a linear operator. Similarly to (2), 
we define the barrier sub problem to be 

min f(x;J1,) .!.(c, x) +F(x) S.t. Ax = b, (24) 
x J1, 

where F(x) is a self-concordant barrier and J1, > 0 is the barrier pa­
rameter. Note that, by the Definition 1, f(x; J1,) is also a strongly self­
concordant function. The primal barrier algorithm for (23) based on 
(24) is as foHows: 

primal barrier algorithm 
Given xo E intT and J1,o > 0; 
Set k t- 0; 
repeat 

Obtain xk+l E intT by performing one or more projected 
Newton steps for f(·; J1,k), starting at x = xk; 

Choose J1,k+l E (0, J1,k)j k +- k + 1; 
until some termination test is satisfied. 

Remarkably, the worst-case complexity of algorithms of this type de­
pends on the parameter {} associated with F, but not on any properties 
of the data that defines the problem instance. For example, we can de­
fine a short-step method in which a single fuH Newton step is taken for 
each value of k, and J1, is decreased according to 

J1,k+l = J1,k / (1 + . 
Given a starting point with appropriate properties, we obtain an iterate 
x k whose objective (c, x k ) is within c of the optimum in 

o ( VJ log iterations. 



Developments in Interior-Point Methods 325 

Long-step variants also are discussed by Nesterov and Nemirovskii [28J. 
The practieal behavior of these methods does, of course, depend strongly 
on the properties of the partieular problem instance. 

The primal-dual algorithms of Section 2 can also be extended to more 
general problems by means of the theory of self-scaled cones developed 
by Nesterov and Todd [29, 30J. The basie problem considered is the 
conic programming problem 

min(c,x) S.t. Ax = b, xE K, (25) 

where K c 1Rn is a closed convex cone, that is, a closed convex set for 
whieh x E K => tx E K for all nonnegative scalars t, and Adenotes a 
linear operator from 1Rn to 1Rm . The dual cone for K is denoted by K* 
and defined as 

K* {s I (s, x) 0 for all x E K}, 

and we can write the dual instance of (25) as 

max(b,.>..) S.t. A*.\+s=c, SEK*, (26) 

where A* denotes the adjoint of A. The duality relationships between 
(25) and (26) are more complex than in linear programming, but if 
either problem has a feasible point that lies in the interior of K or K*, 
respectively, the strong duality property holds. That is, if the optimal 
value of either (25) or (26) is finite, then both problems have finite 
optimal values, and these values are the same. 

K is a self-scaled cone when its interior intK is the domain of a 
self-concordant barrier function F with certain strong properties that 
aHow us to define algorithms in which the primal and dual variables are 
treated in a perfectly symmetrie fashion and play interchangeable roles. 
In partieular, we have K* = K for such cones. The fuH elucidation ofthe 
properties of self-scaled cones is quite complieated, but it suffices to note 
here that the three cones mentioned above-the positive orthant the 
second-order cone (22), and the cone of positive semidefinite symmetrie 
matriees-are the most interesting self-scaled cones. Their associated 
barrier functions are the logarithmie functions already mentioned. 

To build algorithms from the properties of self-scaled cones and their 
barrier functions, the Nesterov-Todd theory defines a scaling point for 
a given pair x E intK, s E intK to be the unique point w such that 
H(w)x = s, where H(.) is the Hessian of the barrier function. In the 
case of linear programming, it is easy to verify that w is the vector in 
IRn whose elements are Jxi/si. The Nesterov-Todd search directions 
are obtained as projected steepest descent directions for the primal and 
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dual barrier subproblems (that is, (24) and its dual counterpart), where 
a weighted inner product involving the matrix H ( w) is used to define the 
projections onto the spaces defined by the linear constraints Ax = band 
A * A + s = c, respectively. The resulting directions satisfy the following 
linear system: 

[ 1* 1 [ 1 = - [ 1 o H(w) I s + (J/.L'\lF(x) 
(27) 

where /.L = (x, s) Ir;. (The correspondence with (10) is complete if we 
choose the perturbation term to be r = 0.) By choosing the starting 
point appropriately, and designing schemes for choosing the parameters 
(J and step lengths to take along these directions, we obtain polynomial 
algorithms for this general setting. 

Primal-dual algorithms for (25), where K is a self-scaled cone, are 
also studied by Faybusovich [8], who takes the viewpoint of differential 
geometry and, in particular, uses a Jordan algebra framework. 

In the important case of semidefinite programming (18), the Nesterov­
Todd framework is far from the only means for devising primal-dual 
methods. Many algorithms proposed before and since this framework 
was described do not fall under its umbrella, yet have strong theoretieal 
properties and, in some cases, much better practical behavior. To outline 
a few of these methods, we write the dual of (18) as 

m 

L AiAi + S = C, S t 0, (28) 
i=l 

where S E SIRnxn and A E IRm . Points on the central path for (18), 
(28) are defined by the following parametrized system: 

Ai .X bi , i = 1,2, ... ,m, (29a) 
m 

L AiAi + S C, (29b) 
i=l 

XS /.LI, (29c) 

X tO, S t 0, (29d) 

where as usual /.L is the positive parameter. Unlike the corresponding 
equations (8) for linear programming, the system (29b), (29a), (29c) is 
not quite "square," sinee the variables reside in the space SIRnxn x IRm x 
SIR n x n W hile the range space of the equations is SIR n x n X IR m x IR n x n. In 
particular, the product of two symmetric matrices (see (2ge) is not nec­
essarily symmetrie. Before Newton's method can be applied to (29b)­
the fundamental operation in primal-dual algorithms-the domain and 
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range have to match. The different primal-dual algorithms differ in the 
ways that they reconcile the domain and range of these equations. 

The paper of Todd [37] is witness to the intensity of research in SDP 
interior-point methods: It describes twenty techniques for obtaining 
search directions for SDP. In many of these, the equation (29c) is re­
placed by one whose range lies in SlRnxn . That is, it is "symmetrized" 
and replaced with a mapping 

8(X,S) = O. (30) 

In deriving the step (.6.X, 6.'\, .6.S), we approximate the mapping 8(X + 
.6.X, S + 6.S) with a linear approximation of the form 

8(X,S) +E6.X +F.6.S, (31) 

for certain operators E and F. We derive primal-dual methods by using 
(31) along wi th the linear equations (29 b) and (29a). The heuristics 
associated with linear programming algorithms-Mehrotra and Gondzio 
corrections, step length determination, and so on-translate in a fairly 
straight forward way to this setting. The implementations are much more 
complex, however, since the linear problem to be solved at each iteration 
has a much more complicated structure than that of (10). It is noted 
in Haeberly, Nayakkankuppam, and Overton [19] that the benefits of 
higher-order corrections in the SDP context are even more pronounced 
than in linear programming, since the cost of factoring the coefficient 
matrix relative to the cost of sohring for a different right-hand side is 
much greater for SDP. 

Examples of the symmetrizations (30) include the Monteiro-Zhang 
family, in which 

for some nonsingular P. The Alizadeh-Haeberly-Overton direction [1], 
which appears to be the most promising one from a practical point of 
view, is obtained by setting P = I, while the Nesterov-Todd direction 
is obtained from 

A survey of the applications of SDP, ranging across eigenvalue opti­
mization, structural optimization, control and systems theory, statis­
tics, and combinatorial optimization, is given by Vandenberghe and 
Boyd [38]. The paper of Wolkowicz [39] in this volume discusses the the­
ory and algorithms associated with applications to combinatorial prob­
lems. The main use of SDP in combinatorial optimization is in finding 
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SDP relaxations (that is, problems of the form (18) that contain all the 
feasible points of the underlying combinatorial problem in their feasible 
sets) that yield high quality approximate solutions to the combinatorial 
problem. We illustrate the technique with possibly the most famous in­
stance to date: the technique of Goemans and Williamson [12], which 
yields an approximate solution whose value is within 13% of optimality 
for the MAX CUT problem. 

In MAX CUT, we are presented with an undirected graph with N 
vertices whose edges have nonnegative weights Wij. The problem is to 
choose a subset S C {I, 2, ... ,N} of the vertices so that the sum of 
weights of the edges that cross from S to its complement is maximized. 
In other words, we aim to choose S to maximize the objective 

W(S) '" L.J Wij· 

This problem can be restated as an integer quadratic program by in­
troducing variables Yi, i = 1,2, ... , N, such that Yi = 1 for i E Sand 
Yi = -1 for i rf- S. We then have 

max S.t. YiE{-I,I}, i=I,2, ... ,N. (32) 
Y .. 

Z<J 

This problem is NP-complete. Goemans and Williamson replace the 
variables Yi E lR by vectors Vi ERN and consider instead the problem 

This problem is a relaxation of (32), because any feasible point Y for 
(32) corresponds to a feasible point 

Vi = (Yi, 0, 0, ... , O)T, i = 1,2, ... ,N, 

for (33). The problem (33) can be formulated as an SDP by changing 
the variables VI, V2,'" ,VN to a matrix Y E lRNxN, such that 

y = VTV, where V = [VI, V2, . .. ,VN]. 

The constraints Ilvill = 1 can be expressed simply as Yii = 1, and, since 
y = VTV, we must have Y semidefinite. The transformed version of 
(33) is then 

max L wij(l- Yij) S.t. Yii = 1, i = 1,2, ... ,N, Y t 0, 
i<j 
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which has the form (18) for appropriate definitions of C and Ai, i = 
1,2, ... ,N. We can recover V from Y by performing a Cholesky fac­
torization. The final step of recovering an approximate solution to the 
original problem (32) is performed by choosing a random vector r E lRN , 

and setting 

{ I, ifrTvi > 0, 
Yi = 'f T -1, 1 r Vi O. 

A fairly simple geometrie argument shows that the expected value of the 
solution so obtained has objective value at least .87856 of the optimal 
solution to (32). 

Similar relaxations have been obtained for many other combinatorial 
problems, showing that is possible to find good approximate solutions 
to many NP-complete problems by using polynomial algorithms. Such 
relaxations are also useful if we seek exact solutions of the combinatorial 
problem by means of a branch-and-bound or branch-and-cut strategy. 
Relaxations can be solved at each node of the tree (in which some of 
the degrees of freedom are eliminated and some additional constraints 
are introduced) to obtain both abound on the optimal solution and in 
some cases a candidate feasible solution for the original problem. Since 
the relaxations to be solved at adjacent nodes of the tree are similar, 
it is desirable to use solution information at one node to "warm start" 
the SDP algorithm at a child node. Mitchell [25] discusses an efficient 
strategy along these lines for the branch-and-cut strategy. 

5. CONCLUSIONS 
Interior-point methods remains an active and fruitful area of research, 

although the frenetie pace that has characterized the area has slowed in 
recent years. Linear programming codes have become mainstream and 
continue to undergo development, although they face continuing stift' 
competition from the simplex method. Semidefinite programming has 
proved to be an area of major impact. Applications to quadratie pro­
gramming show considerable promise, because of the superior ability of 
the interior-point approach to exploit problem structure efficiently. The 
infiuence on nonlinear programming theory and practice has yet to be 
determined, even though substantial research has already been devoted 
to this topie. Use of the interior-point approach in decomposition meth­
ods appears promising, though no rigorous comparative studies with 
alternative approaches have been performed. Applications to integer 
programming problems have been tried by a number of researchers, but 
the interior-point approach is hamstrung here by competition from the 
simplex method with its superior warm-start capabilities. 
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