
21

A LOGICAL FORMALIZATION FOR
SPECIFYING AUTHORIZATIONS IN
OBJECT-ORIENTED DATABASES

Yun Bai and Vijay Varadharajan

Abstract In this paper, we propose a logic formalization to specify authorizations in
object-oriented databases. Our formalization has a high level language struc­
ture, and it can be used to specify various types of authorizations associated
with object oriented databases. Formal syntax and semantics are also provided
for the formalization.

Keywords: Authorization policy, formal specification, logic reasoning, object-oriented
database, security

1. INTRODUCTION

Authorization specification in object-oriented databases has being investi­
gated by many researchers [4, 6, 8, 9]. However, most of the work to date
suffers from a lack of formal logic semantics to characterize different types of
inheritance properties of authorization policies among complex data objects.
In this paper, we address authorizations in object -oriented databases from a
formal logic point of view. In particular, we propose a logical language that
has a clear and declarative semantics to specify the structural features of object­
oriented databases and authorizations associated with complex data objects in
databases. Our formalization characterizes the model-theoretic semantics of
object-oriented databases and authorizations associated with them. A direct
advantage of this approach is that we can formally specify and reason about
authorizations on data objects without loosing inheritance and abstraction fea­
tures of object-oriented databases. We first propose a logical language for
specifying object -oriented databases. This language has a high level syntax
and its semantics shares some features of Kifer et al's F-logic [7]. We then

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
V. Atluri et al. (eds.), Research Advances in Database and Information Systems Security

10.1007/978-0-387-35508-5_22

http://dx.doi.org/10.1007/978-0-387-35508-5_22

318 DATABASE AND INFORMATION SYSTEMS SECURITY

extend this language for authorization specification. The semantics of the re­
sulting language is defined in such a way that both the inheritance property in
an object-oriented database (OODB) and authorization rules among different
data objects can be formally justified.

The paper is organized as follows. In section 2, we first propose a formal

language £that can be used to specify object-oriented databases. A model­
theoretic semantics of £ is also provided in this section. In section 3, we
extend £ to language e,a by combining authorization specification associated
with data objects into a database. The semantics of e,a is also provided. Finally,
we discuss some related work and our future work in section 4.

2. FORMAL LANGUAGE L FOR OBJECT-ORIENTED
DATABASES SPECIFICATION

2.1 SYNTAX OF L

The vocabulary of language £ which is used to specify object-oriented

database consists of:

1. A finite set of object variables OV = { o, o1 , o2 ,. · ·} and a finite set of
object constants OC = { 0, 0 1 , 0 2 , · · ·}. We will simply name 0 =
OV U OC as object set.

2. A finite set :F of function symbols as object constructors or methods
where each f E :F takes objects as arguments and maps to an object or a
set of objects.

3. Auxiliary symbols=> and t-t.

An object proposition is an expression of the form

0 has method h (· · .) => IT 1 ,

fm(· · ·) => ITm,

fm+1(· · ·) 1-t ITm+1,

fn (· · ·) 1-t ITn. (1)

In ((1)) 0 is an object from 0 and h, · · ·, fn are function symbols. Each
function symbol f takes objects as arguments and maps to some IT that is an

object or a set of objects. In an object proposition, a method with the form
f (· ..) => IT indicates that f 's arguments represent the types of actual objects
that should be taken in any instance of this object proposition, and f returns a

A Logical Formalization for Specifying Authorizations in OODBs 319

set of types of the resulting object/objects. On the other hand, a method with
the form f (· · ·) II indicates that f takes actual objects as arguments and
returns an actual object or a set of objects.

An isa proposition of£ is an expression of one of the following two forms:

0 isa member of C,

0 isa subclass of C,

(2)

(3)

where 0 and Care objects from 0, i.e., 0 and C may be object constants
or variables. Clearly, isa propositions (1.2) and (1.3) explicitly represent the
hierarchy relation between two objects. An isa proposition without containing
any object variables is called ground isa proposition.

We call an object or isa proposition a data proposition. A data proposition
is called ground data proposition if there is no object variable occurrence in it.
We usually use notation ¢> to denote a data proposition. We assume that any
variable occurrence in a dataproposition is universally quantified.

A constraint proposition is an expression of the form

(4)

where ¢>, ¢>1, · · ·, ¢k are data propositions. A constraint proposition represents
some relationship among different data objects. With this kind of proposition,
we can represent some useful deductive rules of the domain in our database.
A database proposition is an object proposition, isa proposition, or constraint
proposition.

We can now formally define our object-oriented database as follows.

Definition 23 An object-oriented database E is a triplet (r,.6.,0), where r
is a finite set of ground object propositions, .6. is a finite set of ground isa
propositions, and n is a finite set of constraint propositions.

Example 11 We consider a simplified domain about research people in a com­
puter science department. The structure of such domain is illustrated as the
following figure.

In Figure 21.1, line arrows indicate subclass relations while dot-line arrows
indicate membership relations in the database.

Using our language £, our database E = (r, .6., n) is specified as follows:
(1) the set of ground object propositions r consists of'

ResPeople has method name=> String,

age=> Integer,

firstdegree => 'Bachelor', (5)

320 DATABASE AND INFORMATION SYSTEMS SECURITY

' '
"'

(, Sue .. _ ..,'

---'- .. ,' '
Faye ___ '

,- '
Peter

' '

Figure 21.1 A research people database.

Postgraduate has method id::::} Integer,

degree::::} String,

area(Staf f) ::::} String,

Tutor has method topsalary 1----t '$45,000',

Tom has method name 1----t 'Tom',

age 1----t 21,

id 1----t 96007,

degree 1----t 'Master',

· area(Peter) 1----t 'Database',

(2) the set of ground isa propositions of"

Tom isa member of Postgraduate,

Sue isa member of Postgraduate,

Sue isa member of Tutor,

Faye isa member of Tutor,

Ann isa member of Lecturer,

James isa member of Professor,

Postgraduate isa subclass of ResPeople,

Staff isa subclass of ResPeople,

Tutor isa subclass of Staf J,
Lecturer isa subclass of Staf J,

(6)
(7)
(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

A Logical Formalization for Specifying Authorizations in OODBs 321

Professor isa subclass of Staf j, (21)

(3) n consists of two constraint propositions:

y isa member of Staff

if x isa member of Postgraduate,

x has method area(y) 1---t z,

y has method research 1---t { ... , z, ... }

if x isa member of Postgraduate,

x has method area(y) 1---t z,

(22)

(23)

where x, y and z are object variables, and notation { ... , z, ... } means that set
{ ... , z, ... } includes element z while other elements in the set are not interested
in here.

In :E, r and /:l. represent explicit data object descriptions and hierarchical
relations among these objects, while n describes constraints of the domain
which characterize some implicit data objects an d their properties. By using
these rules in n and facts in r u /:l., we actually can derive new data objects
with some clear properties. For instance, in the above database, we do not
give explicit description about object Peter. But from proposition ((/0)) and
((1I)) about object Tom, we can derive the facts that Peter is a member of
Staff and has a research field 'Database'.

2.2 SEMANTICS OF L

In this subsection, we define the semantics of our database language £, by
following a similar way in classical logic.

Definition 24 Let C be an object-oriented database language we defined ear­
lier. A structure of Cis a tuple I= (U,:FI, c;;.u, Eu,::::? I. 1---t I), where

I. U is a nonempty set called the universe of I that representing the set of
all actual objects in the domain.

2. For each n-ary function symbol f in :F, there exists a n-ary function fi:
un-+ U in :FI. For n = 0, !I is an element ofU.

3. c;;.u is a partial ordering on U and Eu is a binary relation on U. We
require that if a Eu band b c;;.u c, then a Eu c.

4. For symbol ::::? in C, ::::? I is a map: ::::? I: U-+ (Ho, ···,Hi,···), where
each Hi is a set of (i + 1)-ary anti-monotonic functions with respect to

322 DATABASE AND INFORMATION SYSTEMS SECURITY

ordering such that for every hiE Hi,

(24)

in which P t (U) is the set of all upward-closed subsets ofU with respect
to

5. For symbol t-+ in .C, t-+1 is a map: U-+ (Go,···, Gk, ···),where Gk is a
set of (k + 1)-ary functions such that for every 9k E G k·

9k: Uk+1 -+ UUP(U), (25)

in which 'P(U) is the set of all subsets ofU.

Now let us look at this definition more closely. In a structure I, U represents
all possible actual objects in the domain. That is, each element in U is a real
object in our world. Then a function symbol (i.e. object constructor) fin :F
is corresponding to a function !I in :F1. Note that f takes object constants
or variables in 0 as arguments while !I takes elements in U as arguments
and returns an element of U. The function of ordering is to represent
the semantics of isa subclass proposition in .C. For example, a b is the
counterpart of proposition A isa subclass of B, while A and B are elements
in 0 (i.e. object constants or variables) and are mapped to a and b, which are
the elements of U respectively. We also write a Cu b if a b but a # b.
The semantics of isa membership proposition in .C is provided by E u in I in a
similar way.

The semantics of=?, however, is not quite straightforward. As we men­
tioned earlier, a method with the form f (· · ·) =? IT actually defines the function
type of f. That is, f takes objects that represent types of actual objects and re­
turns an object (or a set of objects) that indicates the type (or types) of resulting
actual object (or objects). Suppose f is a i-ary function. Then the semantics

of=? is provided by mapping =?}i) 2 that maps the resulting object represented
by /(· · ·) to a (i + 1)-ary function hi: Ui+1 -+ 'P t (U), where the first ith
arguments in Ui+ 1 are objects that corresponds to the i arguments taken by f,
and the (i + 1) -th argument in Ui+ 1 is the object that corresponds to the object
associated with function f (· · ·) in the proposition (we also call the host object
of f). In f (· · ·) =? IT, IT denotes the type/types of resulting object/objects for
which we use a subset of U to represent all the possible actual objects that have
type/types indicated by IT.

1That is, ifu,v E Ui+1 and v u, then h;(v) 2 h;(u).
2Jn expression =>I: U-+ (Ho, · · ·, H;, · · ·), we use notation => }i) to denote the i-th component of=> I,
. (i) U H t.e. =>I : -+ ;.

A Logical Formalization for Specifying Authorizations in OODBs 323

It is important to note that we require the subset of U to be upward-closed
with respect to ordering A subset V of U is upward-closed if for v E V
and v v', then v' E V. The purpose of this requirement is that if V is viewed
as a set of classes, upward closure ensures that for each class v E V, V also
contains all the superclasses of v, which will guarantee the proper inheritance
property of types.

A similar explanation for f--7 I can be given for the semantics of f--7. We now
show that ::::} I actually provides the type of the corresponding f--7 I.

To simplify our formalization, we will use Herbrand universe in any struc­
tures of £. That is, the Herbrand universe U H is formed from the set of all
object constants in OC and the objects built by function symbols on these ob­
ject constants.

Definition 25 Let I = (U H, :FI, EI, ::::} I, f--7 I) be a structure. We define
entailment relation f= as follows.

1. For a ground isa membership proposition, I f= 0 isa member of C if
0 Eun C, and for an isa subclass proposition, If= 0 isa subclass of C
ifO C3.

2. For a ground object proposition,

I f= 0 has method fr (.. ·) ::::} II1 ,

J n (- ") ::::} IIn,

if the following conditions hold:

• for each j(01, .. ·, Op) where f is in {fr, .. ·, fn},

::::}r) (O')(OI, ... ,op,O) =II, where JI(OI, ... ,Qp) = 0', and

3. For a ground constraint proposition, I f= ¢ if ¢1, · · · , ¢k if I f= ¢1,
.. · ,I f= ¢k implies I f= ¢.

4. For any proposition '1/J including object variables, I f= '1/J if for every
instance¢ of '1/J (i.e. ¢is obtained from '1/J by substituted each variable
in '1/J with some element of U H), I f= ¢.

Now we can formally define the model of a database 2: as follows:

3Note that under Herbrand universe U H, an object constant is mapped to itself in U H.

324 DATABASE AND INFORMATION SYSTEMS SECURITY

Definition 26 A structure M of£ is a model of a database 2; = (r, n) if

1. For each proposition '1/J in r U U !1, M I= ¢.

2. For each object proposition ¢, if M I= ¢, then M I= ¢' where ¢' is ob­
tained from ¢ by omitting some methods of¢.

3. For any isa proposition 0 isa member of C and object propositions C
has method f (· · ·) ::::} II and C has method f (· · ·) t-t II,
(1) M I= 0 isa member of C and M I= C has method f (· · ·) ::::} II
imply M I= 0 has method f (· · ·) ::::} II;
(2) M I= 0 isa member of C and M I= C has method f(· ··) t-t II
imply M I= 0 has method f (· · ·) t-t II.

4. for any isa proposition 0 isa subclass of C and object proposition C
has method f (· · ·) t-t II, M I= 0 isa subclass of C and M I= C has
method f (· · ·) t-t II imply M I= 0 has method f (· · ·) t-t II.

Condition 1 in the above definition is the basic requirement for a model. Con­
dition 2 allows us to partially represent an object with only those methods that
are of interest in a given context. Condition 3 is a restriction to guarantee
necessary inheritance of membership, whereas Condition 4 is needed for the
purpose of subclass value inheritance.

Let 2; be a database and ¢ be a database proposition. If for every model M
of 2;, M I= ¢, we also call that ¢ is entailed by 2;, denoted as 2; I= ¢.

3. DATABASES WITH AUTHORIZATIONS

3.1 SYNTAX OF LA

The vocabulary of .ca includes the vocabulary of £ together with the fol­
lowing additions:

1. A finite set of subject variables SV = { s, s1 , s2 , · · ·} and a finite set of
subject constants SC = { S, S1 , S2, · · · }. We denoteS= SV USC.

2. A finite set of access-rights variables AV = { r, r1 , r2, · · ·} and a finite
set of access-right constants AC = {R,R1,R2,···}. We denote A=
AVUAC.

3. A ternary predicate symbol holds taking arguments subject, access­
right, and object/method respectively.

4. Logic connectives 1\ and •.

A Logical Formalization for Specifying Authorizations in OODBs 325

In language e,a, a fact that a subject S has access right R for object 0 is
represented using a ground atom holds(S,R,O). A fact that S has access
right R for object O's method f (· · ·) Y. IT is represented by ground atom
holds(S, R, Olf).

In general, we define an access fact to be an atomic formula holds(s,r,o)
(or holds(s,r,olf), where olf indicates a method associated with object o.)
or its negation. A ground access fact is an access fact without any variable
occurrence. We view -.-.F as F. An access fact expression in e,a is defined as
follows: (i) each access fact is an access fact expression; (ii) if 'ljJ is an access
fact expression and </> is an isa or object proposition, then 'ljJ 1\ </> is an access
fact expression; (iii) if 'ljJ and </> are access fact expressions, then 'ljJ 1\ </> is an
access fact expression. A ground fact expression is a fact expression with no
variable occurrence in it. An access fact expression is pure if it does not have
an isa proposition occurrence in it.

Based on the above definition, the following are access fact expressions:

holds(S,R,O) 1\0 isa subclass ofC,

-.holds (S, R, o) 1\ o isa member ofC

where o is an object variable.

Now we are ready to define propositions in language e,a. Firstly, e,a has the
same types of database propositions as £, i.e. object proposition, isa proposi­
tion and constraint proposition. It also includes the following additional type
of access proposition:

'ljJ implies </> with absence 1, (26)

where 'ljJ is an access fact expression, and</> and 1 are pure access fact expres­
sions. Note that '1/J, </>and 1 may contain variables. In this case, as before, ((26))
will be treated as a set of access propositions obtained by replacing¢,</> and 1
with their ground instances respectively.

There is a special form of access proposition ((26)) when 1 is empty. In this
case, we rewrite ((26)) as

'ljJ provokes </>, (27)

which is viewed as a causal or conditional relation between 'ljJ and ¢. For
instance, we may have an access proposition like:

holds(s, r, c) 1\ oisa subclass of c

provokes holds(s,r,o).

This access proposition expresses that for any subject s, access right r and
objects o and c, if s has access right r on c and o is a subclass of c, then s also
has access right r on o. This is also an example of access inheritance.

326 DATABASE AND INFORMATION SYSTEMS SECURITY

On the other hand, there is also a special form of ((26)) when 'ljJ is empty. In
this case, we rewrite ((26)) simply as

always¢. (28)

For example, we can express a fact that the database administrator (DBA)
should have any access right on any object as follows:

always holds(DBA,r,o).

It is clear that our access propositions ((26)), ((27)) and ((28)) provide flex­
ibility to express different types of authorization policies on objects. However,
to ensure the proper inheritance of access policies on different objects, some
specific types of access policies are particularly important for all databases.
The set of these kinds of authorization policies is referred to as the generic
authorization scheme for databases. Consider

holds(s,r,o) implies holds(s,r,olf)

with absence •holds(s,r,ojf). (29)

Intuitively, ((29)) says that if s has access right ron object o, then s also has ac­
cess right ron each of its methods under the assumption that •holds(s, r, olf)
is not present.

We also have the following two generic access propositions:

and

holds(s,r,c) 1\ o isa subclass of c

implies holds(s,r,o)

with absence •holds(s,r,o),

holds(s,r,clf) 1\o isa subclass of c

implies holds(s,r,olf)

with absence •holds(s,r,ojf).

(30)

(31)

((30)) and ((31)) guarantee the proper inheritance of access policies on sub­
classes.

Finally, the following two propositions ensure the membership inheritance
of access policies.

holds(s,r,c) 1\ o isa member of c

implies holds(s,r,o)

with absence •holds(s,r,o), (32)

A Logical Formalization for Specifying Authorizations in OODBs 327

and

holds(s,r,cif) 1\o isa member of c

implies holds(s,r,olf)

with absence -,holds(s,r,oif). (33)

Now we can formally define our database with associated authorizations as
follows. We will refer to this kind of database as extended object-oriented
database.

Definition 27 An extended object-oriented database in e,a is a pair A =
(:E,B), where :E = is the database as defined in Definition 1, and
B = G A U A is an authorization description on :E where G A is a collection
of generic authorization propositions ((29))- ((33)), and A is a finite set of
user-defined access propositions.

3.2 SEMANTICS OF LA

Now we consider the semantics of language e,a. To define a proper seman­
tics of our access proposition ((26)), we need to employ a fix-point semantics
that shares the spirit of fix-point semantics used for extended logic programs
[2, 5].

Formally, a structure p\ of e,a is a pair (fE,f3), where IE is a structure of
£ as defined in Definition 2 and l 3 is a finite set of ground literals with forms
holds(S,R,O), holds(S,R,OIJ). -,holds(S,R,O) or -,holds(S,R,OIJ).
Now we can define the entailment relation f=.x of r,a.

Definition 28 Let I A = (fE, l 3) be a structure of e,a. We define the entailment
relation f=.x of r,a as follows.

1. For a database proposition '1/J, I .X f= .x t/J iff I'E f= '1/J.

2. For a pure ground access fact expression t/J = F1 1\ · · · 1\ Fk, where each
Fi is a ground access fact, I A f= .x t/J iff for each i, Fi E l 3 .

3. For a ground access fact expression '1/J, I A f= .x t/J iff for each is a or object
proposition <P occurring in '1/J, I'E f= ¢, and for each ground access fact
<P' occurring in '1/J, <P' E l 3 .

4. For an access fact expression '1/J, I A f= .x t/J iff for each ground instance
t/J' oft/J, IA F=.x '1/J'.

Now we are in the position to formally define a model of A= (:E,B).

328 DATABASE AND INFORMATION SYSTEMS SECURITY

Definition 29 Consider an extended database A = (:E, B) and a structure
IA = (I"£ ,t=} Let B' be an authorization description obtained from B in
the following way:

(i) by deleting each access proposition tjJ implies ¢ with absence 'Y from B
if for some Fi in 'Y· FiE 13 4,-

(ii) by translating all other access propositions tjJ implies¢ with absence 'Y
to the form t/J provokes ¢, or to the form always ¢ if tjJ is empty.

Definition 30 Consider an extended database A = (:E, 3) and a structure
IA = (I"£, 13). Let 3' be an authorization description obtained from 3 as
described in Definition 5. IA = (I"£, 13) is a model of A = (:E, B) if and only

if

(i) I"£ is a model of:E;

(ii) 13 is a smallest set satisfying the following conditions:

(a) for each access proposition always¢ in 3', IA I=¢;

(b) for each access proposition of the form t/J provokes ¢ in 3 1, if
IA I= t/J, then IA I=¢.

Due to space limit, we are unable to specify reasoning about authorizations
in object -oriented databases and the theorems about these reasoning. Refer
to our full paper [1] for reasoning about authorizations and a case study for
describing authorization on data object using our formalization.

4. DISCUSSIONS AND FUTURE WORK

Here, we briefly review some related work, discuss the different approaches
used in object-oriented database security, and outline our future work.

In [3], a security model for object-oriented databases was proposed. This
model consists of a set of policies, a structure for authorization rules and an al­
gorithm to evaluate access requests. The database is composed of objects that
include a collection of facts and a collection of relevant rules. An object binds
knowledge rules to database facts. The database is specified by the OSAM*
[10, 11] model, in which the generic properties are defined through a general­
ization association and the set of attributes of a class is defined by an aggre­
gation association. Derived classes(subclasses) are viewed as generic. Class

4Recall that 'Y := Ft A··· A Fk is a pure access fact expression, i.e. each F; (1 ::; i::; k) is a ground access
fact.

A Logical Formalization for Specifying Authorizations in OODBs 329

inheritance properties suggest that access to some attributes of a class also im­
plies access to the corresponding values in its subclass. Generally, there are
three types of access policies:

1. A user who has access to a class is allowed to have similar type of access
in the corresponding subclasses to the attributes inherited from that class.

2. Access to a complete class implies access to the attributes defined in that
class as well as to attributes inherited from a higher class.

3. An attribute defined for a subclass is not accessible by accessing any of
its superclass.

In our model, we have considered similar access policies via subclass and
membership relationship authorization rules [1]. These rules are specified by
the theorems of subclass authorization, membership authorization, overriding
subclass authorization and overriding membership authorization. They can
capture the above three types of access policies. Our model is based on our
previous work of formal specification for authorization policies and their trans­
formations, and is discussed from authorization specification point of view.
However, in practice, the access policies are organizational dependent. They
can vary from organization to organization and can also vary depending on the
type of applications.

The access policies that we have considered in this paper are based on sub­
ject authorization viewpoint. In practice, both subject and object can be in a
hierarchy structure. t,From object-oriented system viewpoint, access propaga­
tion is also data structure related. In our model, authorization propagation from
object viewpoint can also be specified.

In our future work, we intend to consider attributes for other types of asso­
ciations. In particular, we will consider in more detail the generalization and
aggregation associations. In addition, the placement of the authorization poli­
cies also needs to be addressed. They may be placed in a special class or a
class they refer to, or propagated through the hierarchy structure. Furthermore,
we have not investigated the access to the authorization system itself yet. This
will also be considered in our future work.

References

[1] Bai, Y. and Varadharajan, V. (1998). A Logical Formalization for Specify­
ing Authorizations in Object-Oriented Databases. Manuscript.

[2] Bai, Y. and Varadharajan, V. (1997). A language for specifying sequences
of authorization transformations and its applications. Proceedings of the

330 DATABASE AND INFORMATION SYSTEMS SECURITY

1997 International Conference on Information and Communication Secu­
rity. Lecture Notes in Computer Science, Springer-Verlag, 1334, pp. 39-
49.

[3] Fernandez, E.B., Gudes, E. and Song, H. (1989). A security model for
object-oriented databases. Proceedings of the IEEE Symposium on Re­
search in Security and Privacy, pp. 110-115.

[4] E.B. Fernandez, R.B. France and D. Wei (1995). A formal specification of
an authorization model for object-oriented databases. Database Security,
IX: Status and Prospects (eds. Spooner et al.), Elsevier Science Publishers
B. V., pp. 95-109.

[5] Gelfond, M. and Lifschitz, V. (1991). Classical negation in logic programs
and disjunctive databases. New Generation Computing, 9, pp. 365-385.

[6] Gudes, E., Song, H. and Fernandez, E.B. (1991). Evaluation of negative,
predicate, and instance-based authorization in object-oriented databases.
Database Security, IV: Status and Prospects (eds. S. Jajodia and C.E.
Landwehr), Elsevier Science Publishers B. V., pp. 85-98.

[7] Kifer, M., Lausen, G. and Wu, J. (1995). Logical foundations of object­
oriented and frame-based languages. Journal of the ACM, 42(4), pp. 741-
843.

[8] Lunt, T.F. (1990). Discretionary Security for Object-Oriented Database
Systems. Technical Report 7543, Computer Science Laboratory, SRI In­
ternational.

[9] Millen, J.K. and Lunt, T.F. (1992). Security for object-oriented database
systems. Proceedings of the IEEE Symposium on Research in Security and
Privacy, pp. 260-272.

[10] Su, S.Y.W. and Raschid, L. (1985). Incorporating knowledge rules in a
semantic data model: An approach to integrated knowledge management.
Proceedings of the AI Applications Conference.

[11] Su, S.Y.W., Krishnamurthy, V. and Lam, H. (1998). An objected-oriented
semantic association model (OSAM*), AI in Industrial Engineering and
Manufacturing: Theoretical Issues and Applications (eds. S. Kumara, R.
Kashyap and A.L. Soyster), ALLE.

	21 A LOGICAL FORMALIZATION FORSPECIFYING AUTHORIZATIONS INOBJECT-ORIENTED DATABASES
	1. INTRODUCTION
	2. FORMAL LANGUAGE L FOR OBJECT-ORIENTEDDATABASES SPECIFICATION
	2.1 SYNTAX OF L
	2.2 SEMANTICS OF L

	3. DATABASES WITH AUTHORIZATIONS
	3.1 SYNTAX OF LA
	3.2 SEMANTICS OF LA

	4. DISCUSSIONS AND FUTURE WORK
	References

