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IMPACT OF DECISION-REGION BASED 
CLASSIFICATION MINING ALGORITHMS ON 
DATABASE SECURITY 

Tom Johnsten and Vijay V. Raghavan 

Abstract In this paper, we investigate issues pertaining to the assessment of the impact 
of classification mining on database security. Specifically, the security threat 
presented by a category of classification mining algorithms that we refer to as 
decision-region based is analyzed. Providing safeguards against this threat re­
quires, in part, the development of new security policies. Our specific contri­
butions are the proposal of a set of security policies for use in the context of 
decision-region based classification mining algorithms along with the specifica­
tion and implementation of a security risk measure that allows for the realization 
of a subset of the proposed policies. 
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Introduction 

Chris Clifton and Don Marks are among a small number of researchers who 
have examined the potential impact of KDD technology on database security. 
In their paper, Security and Privacy Implications of Data Mining, Clifton and 
Marks outline several general strategies designed to eliminate or reduce the 
security risk presented by this new technology [2]. Their strategies include 
allowing users access to only a subset of data, altering existing data or intro­
ducing additional (spurious) data. They contend that the application of such 
policies is most effective in the context of specific learning tasks. These tasks 
include classification, estimation, clustering, characterization and association 
[1, 4, 3]. Of special interest to the current work are the classification mining al­
gorithms, which have the potential to disclose sensitive information whenever 
a database contains both "sensitive" and "non-sensitive" data [2]. Specifically, 
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our current work has focused upon the need to develop security policies de­
signed to minimize or eliminate the threat presented by classification mining 
in the context of the relational data model. 

A valid security policy with respect to classification mining is the protection 
of all the attribute values of a tuple whenever a tuple includes at least one sen­
sitive, or protected, data element. That is, the tuple is entirely eliminated from 
the user's view. In general, such a policy unnecessarily restricts a user's access 
to the data. An alternative policy, which is the one we propose, is to protect 
only data elements that need to be concealed in order to prevent the disclosure 
of sensitive information through classification mining. This type of policy has 
the obvious advantage of allowing maximum use of the data and at the same 
time protecting sensitive information. However, the implementation of such 
a policy requires an accurate assessment of the data in order to determine a 
protected data element's risk of disclosure and the need to conceal additional 
data elements. 

A possible assessment strategy is to assess a protected data element's risk of 
disclosure in the context of a specific classification algorithm. Then, based on 
the results for several selected methods, a decision can be made with regards 
to a protected data element's risk of disclosure. An alternative strategy is to 
make a generic assessment of a protected data element's risk of disclosure that 
is independent of a specific classification method. This strategy has a number 
of potential advantages over the former. These include: 

• Producing security policies that are applicable to a general set of classi­
fication methods. 

• Providing insight on how to modify the protection level of a protected 
data element. 

• Reducing the time complexity of the process of assessing the risk of 
disclosure. 

Unfortunately, a completely generic assessment that is independent of a spe­
cific classification method is in all likelihood an impossibility as a result of 
variations among classification mining algorithms. However, such an assess­
ment becomes feasible when the scope of the evaluation is limited to a specific 
group of classification algorithms and/or certain restrictions are placed on the 
domain of the given attributes. The realization of this condition requires, of 
course, the partitioning of classification algorithms into groups that have uni­
form assessment properties of a protected data element. We have currently 
identified one such group of algorithms, which we will refer to as decision­
region based. 
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The primary focus of this paper is on the assessment of a protected data 
element's risk of disclosure with respect to the decision-region based classifi­
cation algorithms. To that end, the rest of this paper is organized as follows. 
Section one presents a general overview of classification mining along with an 
example to illustrate the security threat presented by classification mining algo­
rithms. Section two proposes a set of security policies that when implemented 
have the potential to provide a high level of protection against classification 
mining and at the same time maximize access to the given data. Section three 
characterizes the decision-region based classification algorithms and describes 
the uniform assessment properties possessed by this group of algorithms. Sec­
tion four proposes a security measure designed specifically for assessing a 
protected data element's risk of disclosure with respect to the decision-region 
based algorithms. Section five presents an outline of an evaluation algorithm, 
called Orthogonal Boundary (OB), which when executed results in the appli­
cation of the proposed security measure against a given relation instance. The 
application of the measure allows for the implementation of the security poli­
cies presented in section two. Section six presents the results of experiments 
that were conducted in order to assess the validity of both the proposed security 
measure and a subset of the proposed security policies. Section seven presents 
an outline of future research projects. 

1. CLASSIFICATION MINING AND SECURITY 

The goal of classification mining is to discover patterns that classify objects, 
or tuples in the context of the relational data model, into predefined classes 
[1, 4, 3]. This goal is achieved, in part, through the successful completion 
of three specific tasks. The first task is the selection of an attribute from the 
given relation. The selected attribute is typically referred to as the decision 
variable since its purpose is to partition tuples into disjoint sets or classes. The 
next task is to generalize, if needed, the current values of the selected decision 
variable to form a set of named classes. Table 1.1 shows a generalized instance 
of.a relation in which the values of the decision variable Mileage have been 
replaced by the class labels, low, med and high. The final task is to partition 
the available data into two disjoint sets, a training set and a validation set [7]. 
The training set is analyzed by a classification mining algorithm to discover 
patterns that are relevant to the classification of objects into the predefined 
classes, while the validation set is used to judge the validity of the discovered 
patterns. Obviously, the generalizability (or predicatability) of the results are 
only as good as the extent of agreement of patterns or relationships between 
the training and validation sets as judged by the validation process. 

We now illustrate how the disclosure of sensitive information may occur 
through the execution of a classification mining algorithm. Our example is 
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Table 12.1 Relation instance. 

Id Fuel Cyl Power Prod Tran Mileage 

Tl efi 4 high n manu med 
T2 efi 6 high n manu med 
T3 2-bbl 6 high n auto low 
T4 efi 6 med n manu med 
T5 efi 4 high n manu high 
T6 2-bbl 4 med n manu high 
T7 efi 6 high n auto low 
T8 efi 6 med n manu low 
T9 efi 4 med n auto med 
TlO 2-bbl 4 high n manu high 
Tll efi 4 med n manu med 
T12 efi 4 high n auto high 
T13 2-bbl 4 low n manu high 
T14 efi 6 high n auto med 
T15 2-bbl 4 high y auto high 
T16 efi 6 med y auto low 
T17 2-bbl 4 low y auto med 

based on the data shown in Table 1.1. In particular, suppose that the car com­
pany that owns the data has implemented the following security policy: "junior 
engineers may not access the mileage class of pre-production cars". This pol­
icy might be the result of company officials attempting to reduce the chance 
that someone outside the company will learn the mileage class of a newly de­
signed car. Therefore, company officials have concealed from junior engineers 
the mileage value associated with the tuples Tl5, T16 and T17. In the resulting 
instance, the Mileage attribute is referred to as the protected attribute since it 
contains the protected data elements; and, the attributes Id, Fuel, Cyl, Power, 
Prod, and Tran are referred to as non-protected attributes since they contain no 
protected data elements. Similarly, we refer to the tuples that contain a pro­
tected data element as protected tuples. In this case the protected tuples are 

T15, T16 and T17. 

The security risk presented in this example is the extent to which the volun­
tarily released data facilitates the disclosure of a protected mileage value. The 
disclosure of that information can be achieved through the process of solving 
a classification problem. In other words, a junior engineer may be able to cor­
rectly infer a protected mileage value through the application of a classification 
mining algorithm to instances with a known mileage value. For example, ac-
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cess to the rule set in Table 1.2 would allow a junior engineer to infer with a 
relatively high degree of confidence the protected data element of the protected 
tuple T15 since this tuple satisfies the antecedent of Rule-2 and the predicted 
accuracy of Rule-2 is higher than that of a simple naive prediction that always 
predicts a med mileage value (since Pr(Mileage = med) = ). In contrast, the 
risk of disclosure of the protected data element in tuple T17 is relatively low 

Table 12.2 Production rules. 

Rule-1: IF (Cyl = 6) 1\ (Tran =auto) THEN 
(Mileage= low) [31.4%] 

Rule-2: IF (Fuel= 2-bbl) 1\ (Cyl = 4) THEN 
(Mileage= high) [63.0%] 

Rule-3: IF (Cyl = 4) 1\ (Power= high) THEN 
(Mileage= high) [45.3%] 

Rule-4: IF (Fuel = efi) THEN 
(Mileage = med) [ 44.1%] 

with respect to the given rule set since it is assigned an incorrect class label by 
Rule-2. 

This example motivates the need for security policies to minimize security 
violation through classification mining. 

2. INFERENCE BASED SECURITY POLICIES 

It is possible to view the security threat presented by a classification mining 
algorithm in terms of the expected occurrence of an unauthorized inference 
[2]. The inputs into a classification inference system are a set of tuples having 
a defined security classification at or below some level L and a protected tu­
ple that contains a protected data element with a defined security classification 
level at some level £, where £ > L. The output of the system, referred to as a 
class-accuracy set, is a set of ordered pairs (Ci,ai), where Ci is the ith attribute 
value (class label) in the domain of the protected attribute, and ai is the pre­
dicted accuracy, according to the classification mining algorithm, of assigning 
to the protected tuple the class label Ci· Suppose, for example, that c1, c2, c3, 
and c4 are the attribute values of a protected attribute. In this case, if a clas­
sification inference system produces the class-accuracy set, {(cit .5), (c2, .2), 
(c3, .8), (c4, .1)}, then the protected tuple is assigned the class label c1, c2, c3 
and c4 with predicted accuracy .5, .2, .8 and .1, respectively. The behavior of a 
set of classification inference systems can be simulated through the specifica-
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tion of an accuracy measure based on which the accuracy values, ai's, can be 
predicted. 

We have identified two general criteria for assessing the security risk asso­
ciated with the output of a classification inference system. The first criterion is 
based on a chosen threshold value. This criterion involves security policies that 
require predicted accuracy values to be below a specified threshold. The other 
criterion is to assess the output of the system based on a ranking of predicted 
class-accuracy values. This particular criterion involves security policies that 
require the ranked position of the protected data element to lie within a spec­
ified range. These two criteria are referred to as threshold and rank criteria, 
respectively. 

The threshold and rank criteria have led to the development of four 
inference-based security policies. Two of the four policies, maximum thresh­
old and maximum range, are defined independently of the predicted accuracy 
value of the protected data element. Specifically, an instance of a maximum 
threshold policy is satisfied for some threshold value, c, and for some class­
accuracy set, {(e1, a1), (e2, a2), ... ,(en, an)}, if all ai (1 i n) are less than 
c . In this paper, "c" is assumed to represent either an organization defined 
constant, expression or function whose value depends, in part, on the desired 
level of protection. The other type of security policy, which is also defined 
independently of a protected data element, called maximum range, is satisfied 
for some threshold value, E, and for some class-accuracy set, { ( e1, a 1 ), ( e2, 
a2), ... ,<en. an)}, if [MAX (a1, a2, ... ,an)- MIN (a1, a2, ... ,an)] < E. To 
illustrate the maximum threshold and maximum range policies consider again 
the class-accuracy set, {(e1, .5), (e2, .2), (e3, .8), (e4, .1)}. In this particular 
case the maximum threshold and maximum range policies are violated if the 
specified E-value is less than or equal to .8 and .7, respectively. 

The remaining two identified policies, protected threshold and protected 
rank, are both defined in terms of the predicted accuracy value of the protected 
data element. In particular, the protected threshold policy is satisfied for some 
threshold value, c, and for some class-accuracy set, { (e1, a1), (e2, a2), ... , 
(en, an)}, if ai < c, where ai is the predicted accuracy value associated with 
the protected data element. The protected rank policy is satisfied for some 
class-accuracy set, {(e1, a 1), (e2, a 2), ... ,(en, an)}, if the ranked position of 
the protected data element is not within the range [L, U], where L and U are 
positive integers such that 1 L U and L U I { a1, a2, ... ,an} I· We refer 
to the interval [L, U] as the non-secure rank range. We illustrate the protected 
threshold and protected rank policies using the previously given class-accuracy 
set, {(e1, .5), (e2, .2), (e3, .8), (e4, .1)}. In this case, assuming q is the actual 
value of the protected data element, the protected threshold policy is violated 



Decision-Region Based Classification Mining Algorithms 183 

if the specified .s-value is less than or equal to .5 and the protected rank policy 
is violated if the specified non-secure rank range is greater than [L= 1, U=1]. 

3. DECISION-REGION BASED CLASSIFICATION 
ALGORITHMS 

Decision-region based classification algorithms share a common set of prop­
erties that give rise to a uniform assessment of the predicted accuracy values 
of a class accuracy set. Before stating these properties, we first characterize 
the decision-region based class of algorithms. A classification algorithm, A, is 
a decision-region based algorithm if and only if the following two conditions 
are satisfied: 

• Condition-]: It is possible to identify a priori a finite set of descrip­
tions, D, in terms of the properties present in an object 0 such that the 
particular description d used by A to classify 0 is an element of D. 

• Condition-2: The predicted accuracy of assigning an object 0 satisfying 
a description d E D to a class C is dependent on the distribution of class 
label C relative to all other class labels among the objects that satisfy d 
in the training set. 

The first condition leads to the property that the effective assessment of 
the security risk for decision-region based classification algorithms requires 
explicit or implicit determination of the predicted accuracy values of the class­
accuracy set associated with each description d E D. The second condition 
enables us to select a particular method of computing the predicted accuracy 
values of a class-accuracy set. In general, inference-based security policies 
may be applied at two levels. If it is known a priori that a particular description 
d will be selected relative to the protected tuple in a protected relation, then 
we can apply a policy just to that description. This case is referred to as the 
description level security policy. This form of evaluation is possible only if 
we wish to do the assessment for a particular classification algorithm. An 
alternative to this approach is referred to as description space level security 
policy. In this case, we must ensure that a chosen security policy is satisfied no 
matter which d is chosen by a class of classification algorithms. 

Given the above definitions and Condition-], we concluded that the speci­
fication of inference-based security for decision-region based classification al­
gorithms should be carried out at the description space level. In the following 
section, we propose a measure for computing the predicted accuracy values of 
a class-accuracy set with respect to an arbitrary decision-region based classifi­
cation algorithm. 
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4. COMPUTING PREDICTED ACCURACY VALUES 

The proposed measure for computing the predicted accuracy values of a 
class-accuracy set in the context of a decision-region based algorithm is as 
follows. Let C be a class label in the domain of a protected attribute. Given a 
description d E D, the predicated accuracy ai of assigning the protected tuple 
T the label C is the ratio of the number of tuples that are assigned label C 
and satisfy d to the number of tuples that satisfy d. The proposed measure is 
equivalent to the classification accuracy measure defined in [5]. 

We now illustrate the application of the measure using the description, (Fuel 
=e.fi) A (Cyl = 4), applied against Table 1.1. In this instance there are zero 
tuples with a low gas mileage label that satisfy the description, three tuples 
with a med gas mileage label that satisfy the description, and two tuples with a 
high gas mileage label that satisfy the description. Thus, the prediCted accuracy 
value for low, med and high is 0.0, 0.6 and 0.4, respectively. The Orthogonal 
Boundary (OB) algorithm, presented in the next section, is designed, in part, 
to compute the class accuracy values using the proposed measure with respect 
to an arbitrary description dE D that might be chosen by a specific subset (see 
next section) of the decision-region based algorithms. 

5. ORTHOGONAL-BOUNDARY (OB) ALGORITHM 

The Orthogonal-Boundary (OB) algorithm has been designed for use with 
decision-region based classification algorithms that produce a specific type of 
class description. In particular, we require that each description, d E D, repre­
sent a logical conjunction of attribute name value pairs that are sufficient, but 
may or may not be necessary. For example, this type of description is produced 
by decision tree classifiers. 

The set of such descriptions D, corresponding to a protected tuple T, is the 
set of all logical conjunctions formed from one or more non-protected attribute 
name value pairs that appear in T. We refer to this set of descriptions as the 
description space, D*, of the protected tuple T. It follows from Condition-] that 
the assignment of a class label to tuple T, by a decision-region based algorithm 
that produces a description space equivalent to D*, is necessarily a label that it 
associates with one of the descriptions d E D*. Obviously, there is no way to 
identify a priori the description d E D* chosen by a classifier without making 
explicit assumptions about the operation of such an algorithm. Unfortunately, 
the number of descriptions belonging to a protected tuple's description space, 
D*, is exponential in terms of the number of non-protected attributes. There 
are, however, several conditions that can be exploited in order to reduce the 
number of inspected descriptions (e.g. reduce the size of the search space). 
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One such condition is the recognition of a special set of descriptions that 
we refer to as zero descriptions. The classes constructed from these descrip­
tions contain no tuples with a class label corresponding to the protected data 
element. The recognition of a zero description implies that there is no need to 
inspect any description that is a specialization of the zero description since the 
resulting class will also contain zero instances of the protected data element. 

Another condition that can also reduce the number of inspected descriptions 
is the transformation of a non-secure description into a secure description. A 
description is considered secure if its computed class-accuracy set satisfies the 
chosen security policy. Based on our measure of predicted accuracy and either 
a protected threshold or protected rank security policy, a transformation of a 
non-secure description into a secure description requires a percentage reduc­
tion in the number of tuples satisfying the description with a class label equal 
to the protected data element. Obviously, such a reduction occurs when either 
the number of tuples satisfying the description with a class label equal to the 
protected data element is decreased, or the number of tuples satisfying the de­
scription with a class label that is not equal to the protected data element is 
increased. A possible transformation scheme, especially when the objective is 
to maximize the amount of accessible data without altering non-protected data 
values, is to "protect" additional values of the protected tuple so as to prevent 
the assignment of the tuple to the class defined by the non-secure description. 
This particular solution has the added benefit of reducing the required number 
of inspected descriptions. 

Unfortunately, the protection of additional attribute values of a protected 
tuple T, in general, causes a decision-region based algorithm to violate 
Condition-] in the assignment of a class label to T. Such a case occurs in the 
application of C4.5's "consult" interpreter which is designed to classify previ­
ously unseen tuples based on a constructed decision tree and to output a rank­
ing of the possible class labels that correspond to the tuple [8]. The interpreter 
is able, through the use of conditional probabilities, to assign a class label to a 
tuple that contains unknown or concealed attribute values. It is this latter fea­
ture that potentially results in a violation of Condition-] since the assignment 
of a class label to a protected tuple T may not be based on a specific descrip­
tion d E D*. An alternative scheme to transforming a non-secure description 
into a secure description is to protect a subset of attribute values not belonging 
to the protected tuple. This solution requires the protection of attribute values 
such that a decrease occurs in the number of tuples satisfying the non-secure 
description with a class label equal to that of the protected data element. The 
advantage of the alternative scheme is that it ensures that the assignment of 
a class label to a protected tuple satisfies Condition-]; however, this scheme 
does not support maximum access to the data. The current implementation of 
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the OB algorithm adheres to the first transformation scheme, the protection of 
additional attribute values of the protected tuple. 

A third condition that can reduce the number of inspected descriptions is the 
establishment of an upper bound on the number of descriptions. By statically 
or dynamically protecting a subset of a protected tuple's non-protected attribute 
values, we can reduce the size of the tuple's description space. Of course, the 
disadvantage of such a strategy is that it does not guarantee maximum access 
to the data. 

A high-level description of the OB algorithm is shown below. A more de-
tailed description can be found in [6]. 

OB algorithm 
k=l 

while (3 descriptions to inspect) 

D = k-level descriptions requiring inspection 

for each description d E D 

if (d = zero_description) 

append all specializations of d to zero_description list 

else if (d == non_secure description) 

append d to non_secure description list 

end_for 

transform non_secure descriptions to secure descriptions 

k=k+1 

end_ while 

In the above algorithm, a k-level description represents a description defined 
in terms of k attributes. The result of executing the OB algorithm is the implicit 
or explicit inspection of a protected tuple's description space. The inspection 
process ensures that all descriptions belonging to the tuple's description space 
satisfy the user's specified description level security policy. 

6. EXPERIMENTAL INVESTIGATION 

In this section, experiments are conducted to validate a proposed approach 
to establish security policies based on the proposed class-accuracy measure 
and their results are reported. The objective of the experiments is to test the 
following hypothesis: there exist a protected threshold policy applied at the 
description level that produces a protected rank policy at the description space 
level with a non-secure rank range of [L = 1, U = 1]. In other words, we wish 
to identify a description level protected threshold policy that, when applied to 
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the individual descriptions of a protected tuple's description space, results in 
an appropriate description space level protected rank policy. In general, the 
determination as to whether a specific description space level policy has been 
successfully implemented must be based on an evaluation of the output from 
one or more decision-region based algorithms that have been applied to the 
protected tuple. In conducting the experiments, we restricted the evaluation of 
the description space level protected rank policy, [L = 1, U = 1], to the C4.5 
decision tree classifier [8]. The application of the classifier is described in the 
next section. 

We anticipate that the implementation of the description space level pro­
tected rank policy, [L = 1, U = 1], will provide a high level of protection. This 
statement is based on the assumption that a user will assign the protected tuple, 
or more specifically the protected data element, the class label that is assigned 
the top rank by the chosen decision-region based algorithm. In addition, the 
non-secure rank range, [L = 1, U = 1], introduces a relatively high degree of 
uncertainty in a user's assignment of a class label to a protected tuple. This 
is because, even a user who has knowledge of the fact that the implemented 
description space level protected rank policy is [L = 1, U = 1] can only logi­
cally eliminate from consideration the class label that has been assigned the top 
rank by the decision-region based algorithm. Hence, a user is at best forced to 
make a random guess from n - 1 class labels; where n is the number of possible 
labels. 

6.1 EXPERIMENTAL PARAMETERS 

The execution of the experiments required the construction of several pro­
tected relation instances. We define a protected relation instance as a relation 
consisting of at least one non-protected attribute and exactly one protected 
data element. A relation instance that contains n-protected data elements is 
viewed as n-instances of a protected relation. The protected relations used in 
this investigation were constructed through the insertion of a protected tuple 
into non-protected relation instances constructed through the execution of the 
Synthetic Classification Data Set (SCDS) program [9]. A total of four non­
protected relation instances were constructed through the use of the program 
and each instance was produced with the parameter values shown in Table 1.3. 

The protected tuples, unlike the non-protected relation instances, were man­
ually generated from randomly selected attribute values. Specifically, six pro­
tected tuples were constructed with respect to Relation-!, six with respect to 
Relation-2, four with respect to Relation-3, and five with respect to Relation-4. 
Each protected tuple was evaluated against a set of protected threshold poli­
cies applied at the description level. The implemented policies included those 
defined at an E-value of 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1. These 
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description level policies were applied to each protected tuple, T, through the 
execution of the OB algorithm. The result in each case was the transformation 
of a protected tuple, T, into a protected tuple T' such that each description, 
d, belonging to T 's description space D* satisfied the stated policy as defined 
in section three. In general, the implementation of the individual description 
level policies resulted in a protected tuple, T', that contained multiple protected 
attribute values. 

In order to assess the generality of the implemented description level poli­
cies, two distinct decision tree models were generated for each of the four 
non-protected relation instances. One set of models corresponded to the gain 
attribute selection criterion, while the other set of models corresponded to the 
gain ratio attribute selection criterion [8]. These two criteria are both sup­
ported by C4.5 and provide a decision rule for selecting the interior nodes of a 
decision tree. Each protected tuple T' was evaluated against instances of both 
models using C4.5's "consult" interpreter. In conducting the experiments, an 
attribute value was specified as unknown if the interpreter requested a con­
cealed attribute value. 

Table 12.3 Construction of non-protected relation instances. 

Relation-] Relation-2 Relation-3 Relation-4 

Tuples 5000 5000 5000 5000 
Classes 5 5 5 5 

Relevant Attrs. 15 10 15 15 
Irrelevant Attrs. 3 0 2 0 

Masked Relevant Attrs. 1 2 0 3 

6.2 EXPERIMENTAL RESULTS 

The results of the experiments, with respect to nineteen of the twenty-one 
protected relation instances, are summarized in Tables 1.4 and 1.5. The two 
tables display the average, highest and lowest rank positions of the protected 
data elements across all nineteen protected relation instances. Specifically, 
the tables display statistics about the rank positions produced by the "consult" 
interpreter when applied to the individual protected tuples, T', that were gener­
ated by the application description level threshold policies using the 
OB algorithm. 

If the assumption is made that a valid description space level protected rank 
policy is one defined with respect to a non-secure rank range, [L = 1, U = 
1], then a valid protected rank policy is achievable based on the above results 
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through the application of a description level protected threshold policy de­
fined at a threshold value (c) of approximately 0.45. We suspect that when a 
description level protected threshold policy is defined in terms of a relatively 
high E-value, (0.9, 0.8, 0.7, or 0.6), the percentage limit on the number of tuples 
with a class label equal to the protected data element is insufficient to ensure 
an adequate level of protection at the description space level. On the other 
hand, description level protected threshold policies defined in terms of a low 
c-value (0.3, 0.2, or 0.1) over protect the protected data element. As a result, 
the assignment of a class label to a protected tuple is based entirely upon the 
dominant relationships, or patterns, that exist within the data, independent of 
the accessible attribute values of the protected tuple. 

The two protected relation instances not represented in Tables 1.4 and 1.5 
are exceptions to the notion of a valid description space level protected rank 
policy defined in terms of a description level protected threshold policy. The 
rank position of the two tuples' protected data element as specified by the "con­
sult" interpreter consistently occupied the top position across all implemented 
description level protected threshold policies. We refer to such protected rela­
tion instances as inherently non-secure. In the case of such a relation instance 
the only logical course of action is to entirely eliminate the protected tuple 
from the user's view. Our preliminary work (not reported in this paper) in this 
area indicates that such relation instances are avoidable if the transformation of 
a non-secure description to a secure description is accomplished by protecting 
additional attribute values not belonging to the protected tuple (no violation of 
Condition- I); or, such relation instances are identifiable through the applica­
tion of an alternative predicated class-accuracy measure. 

Table 12.4 Rank positions (gain ratio criterion). 

Threshold( c) Avg. Rank Highest Rank Lowest Rank 

1.0 2.00 1 5 
0.9 2.76 1 5 
0.8 3.05 1 5 
0.7 2.86 1 5 
0.6 3.19 1 5 
0.5 3.33 2 5 
0.4 3.52 2 5 
0.3 3.14 1 5 
0.2 4.10 1 5 
0.1 3.48 1 5 



190 DATABASE AND INFORMATION SYSTEMS SECURITY 

Table 12.5 Rank positions (gain criterion). 

Threshold( c) Avg. Rank Highest Rank Lowest Rank 

1.0 2.67 1 5 
0.9 2.86 1 5 
0.8 3.05 1 5 
0.7 3.19 1 5 
0.6 3.38 1 5 
0.5 3.48 2 5 
0.4 3.52 2 5 
0.3 3.33 1 5 
0.2 4.00 2 5 
0.1 3.67 1 5 

7. FUTURE WORK 

We have several research projects planned with respect to this new and chal­
lenging research area. Our immediate plans include, addressing the issue of 
inherently non-secure relation instances, improvement of the efficiency of the 
OB algorithm, mapping of continuously valued attributes on to the description 
space, D*, and development of additional security measures for other groups 
of classification mining algorithms. 
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