
24

WEBSA: DATABASE SUPPORT FOR
EFFICIENT WEB SITE NAVIGATION*

Isabel F. Cruz, Lijun Leo Liu, and Tony Y. Wu
ADVIS Research Group

Computer Science Department

Worcester Polytechnic Institute

USA

ifc@cs.wpi.edu

Abstract WebSA (Web Site Agent) is a web page recommendation system that
helps users navigate efficiently within a web site. The system discovers
the users' access patterns by mining the raw data from a web log file.
The user interface of WebSA presents the weighted recommendations in
a separate frame of the web page. Two types of recommendations are
given: one based on the user's access patterns and the other based on
the overall pattern of all the users of that web site. To support the visual
interface and the discovery process, WebSA uses database technology to
manage, query, update, and concurrently access the web log data. The
bulk of the computations for mining and updating the information are
done on a daily basis in advance. This method together with the fine
tuning of the database guarantees high performance, even when the raw
access log data is in the order of 1 GB.

Keywords: collaborative filtering, visual interface, web, data mining, access pattern,
database

1. INTRODUCTION
To aid visitors in navigating within a web site, commonly used tech­

niques include site maps, lists of topics, and general keyword search
mechanisms. However, these approaches have some drawbacks. First,
there could be several interactions required from visitors, such as loading
the pages that host those search services. Visitors are also responsible
for locating the target page by providing related keywords, or choosing

"Research supported in part by the National Science Foundation CAREER Award IRI-
9896052 and CISE Research Instrumentation Grant 9729878.

H. Arisawa et al. (eds.), Advances in Visual Information Management
© Springer Science+Business Media New York 2000

388 VISUAL DATABASE SYSTEMS

categories. Secondly, many search engines are relatively poor in filter­
ing out the "noise". Therefore, a large list of links could be generated.
Occasionally, either the keywords are not found or irrelevant results are
generated.

Information filtering, whereby information is supplied to the user by
means of a static query embodying the user's preferences on a set of dy­
namic documents [2], and in particular collaborative filtering have been
used to recommend relevant documents to users. Collaborative filtering
makes use of preferences of other people to predict the documents that
may be of interest to a particular user [8, 14, 15].

As summarized by Paul Resnick at the Collaborative Filtering Work­
shop:l

"Guiding people's choices of what to read, what to look at, what to
watch, what to listen to (the filtering part); and doing that guidance
based on information gathered from some other people (the collaborative
part)."

In this paper, we explore a particular collaborative filtering technique
as embodied by the Web Site Agent (WebSA) that can be used to aid
visitors in navigating within a web site. The WebSA system provides
recommendations to web users through the use of collaborative filtering.
Our approach has been deployed within the web site of the Computer
Science Department of the Worcester Polytechnic Institute (herein ab­
breviated as CSD-WPI). The approach can be easily transported to any
other web site, provided that the access log for that site is made avail­
able.

To improve the quality of collaborative filtering services, one has to
design an effective data mining strategy to automate information discov­
ery from the raw data and to be able to supply information to the users
in a timely fashion. To meet these requirements, we deploy database
technology to manage, query, update, and concurrently access the web
log data. The bulk of the computations for updating and mining the
information are done on a daily basis in advance. This method together
with the fine tuning of the database guarantees high performance, even
when the raw access log data is in the order of 1 GB.

This paper is organized as follows. In Section 2 we mention related
work and compare our approach with those more closely related to it.
Section 3 describes the overall architecture of WebSA. Section 4 de­
scribes the raw data, the mining algorithm, and the relational schema
used. The design of the user interface and of a preliminary usability
study is discussed in Section 5. Implementation details encompassing

1 http://www .sims. berkeley.edu/resources/ collab/ collab-report .html.

WEBSA: Database Supportfor Efficient Web Site Navigation 389

performance issues, tools used, and solutions to specific problems are
outlined in Section 6. Finally, we summarize and present directions for
future work.

2. COMPARISON WITH RELATED WORK

Software tools sometimes called "agents" are being deployed for speed­
ing up the information retrieval process on the web in general [1, 3, 4, 6,
9, 10, 11, 16, 17] and within individual web sites in particular [7, 12, 13].

Such agents issue recommendations by modeling the user's browsing
progress incorporating heuristics to model the user's behavior [9]. In
some systems, the user is also asked to give feedback on the retrieved
documents [3, 4] in some cases for the purpose of training a learning
algorithm [1].

Other agents concentrate on particular web sites, since they require
knowledge of the users' actions such as that captured in the log files for
that web site [7, 12, 13]. For example, in [7] a user's interest is inferred
by the actions of the user on the web pages (such as following links out of
that page, mouse and scrolling activity). The approach that is closer to
our own (and has provided motivation to WebSA) is by Perkowitz and
Etzioni [12, 13] who analyze in detail the links that are followed by the
users and propose the "Adaptive Web Sites" approach, the name being
derived from web sites whose organization changes to reflect the users'
preferences. They have realized that different users have distinct goals
and that the original layout of pages in a web server site might hide the
most important or frequently used pages in "unlikely" places, making it
inconvenient for users to retrieve them. Another realization is that the
web site designer's original expectation of usage may be violated. Since
a site is used in many ways in practice, it is hard for the designer of a
site to cover every aspect in the initial development.

To address these concerns, they propose web sites that automatically
improve their organization and presentation by learning from visitor
access patterns. The sites may adapt their presentation to satisfy indi­
vidual users' needs by observing their individual information, which is
sometimes called customization or to satisfy overall users' interactions,
which is called optimization.

In their paper, they propose to improve users' information retrieval
speed in a particular site by creating an index page, i.e., a page contain­
ing links to a set of related pages, which are estimated to be the users'
most favorable pages. To achieve this, they present a cluster mining al­
gorithm that takes Web server logs as input and outputs the contents of
candidate index pages. The web access log is processed into visits, one

390 VISUAL DATABASE SYSTEMS

day counts as one visit. For each visit, the co-occurrence frequencies be­
tween pages are computed and represented in a similarity matrix. Next,
a graph is generated corresponding to the matrix. By finding cliques,
or connected components in the graph, the graph is then divided into
sub-graphs, where each sub-graph is considered as a cluster of related
pages of a particular topic. For each cluster found, an index page is
created.

In our paper we mine the access logs in a different way by considering
trees that model the users' traversals of the site. New pages are rec­
ommended ranked in decreasing order by the probability of those pages
having been visited after a page currently being observed by the user was
visited. Excluded from the recommended list are the links that appear
on the current page. There are two types of recommendations. One of
the recommendations is solely based on that particular user past pattern
of access to that site. The other recommendation looks at all the users
that have visited that site. In this way, new users to a site can follow
the most popular traversal paths of that site, hoping to find relevant
information fast. Notice that since the interface displays the name of
the page, users can perform a simple "content-based filtering" on a small
list of links. Returning users to the site, on the other hand, could trace
back their previous steps.

Another difference from the work Perkowitz and Etzioni [12] is that
we do not change the organization of the site or of each individual page.
Both approaches have potential merits and drawbacks. Without exten­
sive user studies, it is difficult to exactly evaluate the two approaches.
However, it is well-known that consistency is one of the golden rules of
user interface design. The reorganization of a slowly evolving web site
could result in unwanted inconsistency. On the other hand, frequently
updated web sites, such as those that provide news, sports events, and
stock quotes might benefit from constant rearrangement based on overall
users' interest.

3. WEBSA OVERVIEW
The user interface that we propose for WebSA is a simple modification

of the current web pages of the CSD-WPI web site. WebSA delivers a
recommendation service in a separate frame as illustrated in Figure 1.

Our "raw" data to analyze comes from the web server logs, which is
basically "semi-structured" data. For the purpose of organizing the raw
data in the logs and of increasing the performance of the data mining
process, we use an Oracle database for managing the log data. The
analysis of the visitors' past accesses can be accomplished in two basic

WEBSA: Database Support for Efficient Web Site Navigation 391

€ii) ITlTlE',~-.:o-!"P,~~'" .'~.~" , .. 6,~_. T"!'.s,,!'"- 1Il1JXJ
fram e • ___ on l lP otollotlcs

Figure 1 The WebSA interface, as provided by a separate frame at the bottom of a
browser page.

ways: customization and optimization. In the former, the analysis will
be done on an individual visitor's past accesses, and its results will be
presented only to that user. In the latter, past accesses for all visitors
are analyzed.

Both the customization and optimization phase aim at discovering the
access patterns of the visitors, and based on the discovered patterns, a
ranked list of links is produced. Such lists are generated in highest to
lowest recommended order. Furthermore, additional information such as
the hit frequency, hit probability and time spent on each of the recom­
mendation links are provided as references to visitors. These references
help visitors locate their desired sites in less time and view their past
access statistics as well.

All the heavy computation of these statistical values and recommen­
dation links were done by a Java program in our server. Instead of pro­
cessing all the computations at the time that the visits occur, WebSA
discovers the access patterns in advance on a nightly basis. In this way,
the list of recommendations can be directly retrieved from Oracle upon
request, to save processing time. This information can be acquired from

392 VISUAL DATABASE SYSTEMS

the Oracle Database by a Java server program through the Java Data­
base Connectivity (JDBC) facility.

For the front end, there is a Common Gateway Interface (CGI) pro­
gram, for each visitor using WebSA. This program gathers the necessary
identification information from visitors, such as IP addresses and the
URL of the visitors' current site. These identification arguments will
be delivered to the J ava server program for retrieving the recommenda­
tions. Furthermore, the CGI program outputs the recommended links
and the statistic values to the visitor's current site.

An overview of the implemented architecture is shown in Figure 2.

Ditta
Server'

occess_ og
:lHJ.14.1" · ltlll\loolJ ' Ii, •. Hll • •
WlU40 m .. 10111000/"",.,\4, ,. -NII . _
·IfUUIn . .. lIIiwn ,lu • . 1Ift-­
at.»l. \tl .. ,.fIIwI"",.,Ifii!!JMI_

·~··-~_M_'_.~~ __ -"'··"-~

Figure 2 The WebSA Architecture

4. DATA MINING

In this section we describe the data mining process, starting from
the analysis of the semi-structured log file, the extraction of the user
patterns, and the database modeling of the data that is extracted and
therefore made structured.

4.1. LOG FILE DATA

As mentioned previously, a way to provide useful recommendations
is to analyze the users' past access behavior. The access patterns of all

WEBSA: Database Support/or Efficient Web Site Navigation 393

visitors to a site can be found in the web server's log file. A partial view
of the CSD-WPI web server log is shown in Figure 3.

131.246.91.47 • . 1 .0500) "GET I-matll.ow-ru/.dUIc.$63.IItmJ HITPI •. I" 200 ~828 "Jot :
205.163.212.96· • (011N",,/1"8:00:0Z:0. ·0500) "GtT I-lu.zeRl'P.achiprev.glfHTIl'Il.I" 200 296 ''http://www j .
"'.4.83.36· · (OllNoym9.:10:03:36 .0500) "GET 111I'.t..txtHITP/I.O· 404 204··" ". . '
19U.s1.3 ·. (011N""/l".:OO:D3:4J .0500) "GET lRe.earehl~~nlt'''''tlirl.lo.tmJ HITP/I.O" 20015509 ". ' :
198.4.83.36 •• (0 IlNoylma :00 :0.3:47 .0500) .• GET I-blIPL TIPL n.l.Z.AtmI HITPIl.O" 200 2683 "." " ••
206. 16J.212.9~ .. (OllNoyll99.:00:0':44 ·0500) "GET I-hueRl'Peachhpace.plHITPII.1 "200 117 .. h ... ·/Ju.

196.3.51.241 • • (011N",,'I''':8I:I' :21..oS00) "GET !-cewkew-re.IJOlJ.html HTIl'Il.1" 404 228·."
146.115.60.180 • • (OllNovll".:00:10:30 .0500) "GET IImace.ittuWrolIthab'P plHITPll.1 ..
20U.14.197· · (011N""ng98:00:11:Jt .0500) "GET 'M otlenlcID.lntlro·2482.htJn HITPII.I" 200 4889 -AtlD"~"", .,-
20'.5.14.197 · · (011N",,/19'. :.O:Il:40 -0500) "GET l ... tlenlcID.iAtIlcIDwn.cifHITPIU" 200 145 "hf1p:lIliN'A" Ct ~

· 20U.74.197·· (OllN""/I'9.:80:1J:41·0500J "GET l-otlenlcID.iAtIlup.&i!HITPII •• • 200 145 ·hf1':lIINWII' .••. ''''l ~ ,,,I
· 209.5.74.191 . • (011N",,/1998:'0:iJ:41 .0S00J "GtT • 304· "hf1u:JIINWII"""" ,
· 2.09.5.14.197 •• (OllNovll99.:00:lJ:41 .0500J "GtT i-<ltfenldo.iintlbllue.Une.plIITIPII

Figure 3 A fragment of the access Jog file of the CSD-WPI web site.

In the access log file, each line represents a transaction of transferring
a file , which can be a HTML file, a picture image , a TXT format file,
an executable file, or many others types of files. When a user accesses a
web page at the CSD-WPI web site, one or more access lines are added
to the end of the access log file, depending on how many files need to
be loaded for forming that target page. Due to the nature of recording
new accesses to the end of access log, the access log is already ordered
sequentially by access time. Furthermore, each access line in the log is
uniformly recorded. A decomposition of the fixed structure of each line
is illustrated in Figure 4. There are cases for which some of the fields
are unavailable: users may explicitly configure their web browser not
to send out header information to the web server for privacy reasons,
or sometimes instead of following links, users type in a URL to reach
a page, or sometimes users reload a page. For each of the unavailable
fields , its contents will be indicated with a "-" character in the access
log.

130.215,8,152 - 10HNO'II'19G3:01 :3ll:42 ·05001 "GET Hfcl H1TPi1.O" 200 21S0 "http://wli/W,t:$,wpl,oduHfCiOlllP,hlh'l'' "Mozll~I4.5lcnIIWln9B; U)"

L--.Jtt U t er~r t t t t t
IF Access Tim e Next Page code Current Page Browser

HTTP bytes
version transferred

Figure 4 The format of each access line in the CSD-WPI's web server log file.

By carefully studying the access log's properties, as described above,
we consider only the helpful fields in each access line for our further

394 VISUAL DATABASE SYSTEMS

analysis, including IP, access time, current page, next page and browser
fields.

The IP field can be used to identify a user. We assume that each
user will have a fixed IP address. This implies that a bias might occur
in reflecting ones' individual past access patterns, if they are sharing
the same proxy server, computer, or dial in connection. Note that for
dial-in accesses through an Internet Service Provider, a random IP is
generated each time. We are targeting users of fixed computers with
broadband connections. Alternatives to our approach, with their own
drawbacks, are: storing a cookie in the users browser, in which case
further analysis is precluded by users refusing cookies, or asking users
to sign up, an extra step (which often involves the use of cookies) that
makes the recommendation service less transparent and may therefore
discourage certain users.

The access time stamp field will allow us to calculate the duration a
user has spent on a particular page. Since the access lines in the log file
are ordered by time, we can simply compute the time difference between
the entering and leaving time stamp of a page to figure out the duration
of access to that page. From the current and next page fields in each
access line, we can find out the hit frequency on each page in the past
and their direct links to other pages. Furthermore, the hit probability of
each page can be computed from the hit frequency and the paths users
followed to get to that page by tracing the direct links from previously
visited pages using a breadth-first search method.

4.2. ACCESS PATTERN EXTRACTION
In this project, a tree modeling method is deployed for extracting

patterns in the otherwise seemingly unorganized collection of log data.
For each IP address and each page, a tree is constructed to represent
the possible paths from that page. An example of such a tree model is
illustrated in Figure 5.

The page being currently examined by the user is the root node of the
tree. Each internal node in the tree represents a page that is at most
five links away from the current page.

The edges indicate direct links between two pages. For each internal
node, the hit frequency, hit probability, time spent, and percentage of
time spent are calculated. In the CSD-WPI web site, the average page
contains more than ten links. Therefore, the tree may grow exponentially
down each level. For storage space and retrieval performance concerns,
only the top five levels of the tree are considered. Only pages at levels
3, 4, and 5 are considered as recommendations to the users, since pages

WEBSA: Database Support for Efficient Web Site Navigation 395

Level 1==>

Level 2==>

eve13==>

eve 1 4==>

Level 5==>

I
25'10

8'10
5.4'/0

paael.hlrul

orhi ••

50% hit p,obobilitr

2.5%

with '''poet •• p URL

hit probabi~tr
with respell to Cur URI.
Normalited hit pr.bahi~tr
with ,_eel,. Cur URL

Figure 5 A tree model of all possible paths from page1.html, corresponding to the
INDIVIDUAL2 table of Figure 6.

in level 2 are direct links from the current page, which are just one click
away. Therefore level 2 is excluded to avoid repetitive links within the
original page.

4.3. DATABASE MODELING

Data is stored into the Oracle database after the mining operation
from the access log. Figure 6 shows the tables in the Oracle database,
which contain all the intermediate and final recommendation data. For
simplicity, only the data for a single IP address is displayed (while the
actual tables hold data of all IPs). The WEBLOG table stores all the
useful fields from the access log, each tuple corresponds to one access
line. Tuples in the WEB LOG table are sorted by time in ascending
order, like the access lines in the access log file . The difference is that
the WEBLOG table contains only accesses after filtering out the "noise"
that results from requesting image files, direct access from outside the
CSD domain and the CGI pages .

The INDIVIDUALl table combines all tuples with same IP, CurPage
and NextPage in the WEBLOG table. The number of the occurrences
of each of these tuples is stored in the Hits attribute. The HitProb
attribute, which stands for hit probability, is computed by dividing the
hit number of the CurPage to the NextPage by the total hit number from

396 VIS VAL DATABASE SYSTEMS

WEBLOG
10 IPAddress CurPage NextPage Date Browser
1 130.215.8,152 .~1.hlml aae2.hlml 10:00:00 IE 4,5
2 130.215.8152 a~.' . hlml age3.hlml 10:00:01 IE4.S
3 130.215.8.152 age2.htmt alte4.html 10:00:02 IE 4.5
4 130.215,8.152 aae2,hlml .aoS.hlml 10:00'10 IE 4.5
5 130.215,8.152 agoS,html age7.html 10:00:12 IE 4.5
6 130,215.8,152 aae7.html aaeS.html 10;00:17 IE 4.5
7 130.215.8.152 age3 html ageS,hlml 10:00:17 IE 4,5

. INDIVIDUAL 1
10 IPAddress CurPag. NextPage Hit, HltProp TlmeSpent
1 130.215.8152 a!!81.hlml ~ge2 . hlml 1 33% 2
2 130.215.8,152 agel .hlml aceJ.hlml 2 66% 16
3 130.215.8,152 a!!82.hlml age'.hlml 1 25% 50
4 130.215.8152 age2.hlml ageS,hlml 3 75% 2
5 130.215.8.152 ageS. him) age7.hlml 2 100% 5
6 130.215.8.152 age7.hlm) ageB,hlml 4 100% 50
7 130.215.0.152 age3.hlml ageS,hlml 2 100% 43

' INDIVIDUAL2
10 IPAddress CurPage RelatedPage Hits Hitprop NormHltProb TlmeSpent TlmePercent
1 130.215.8.152 a •• 1.hlm) aae4,hlml 1 8% 5,4% 50 33.0%
2 130.215,8.152 agel .hlml .geS,hlml 3 25% 16,7% 2 1,3%
3 130.215.8.152 a.e1.hlml !!te7.hlml 2 25% 16,7% 5 3.3%
4 130.215.8.152 ag.1.hlml ageB,hlml 4 25% 16.7% 50 33.0%
5 130.215,8.152 aael ,hlml ageS.hlml 2 66% 44.3% 43 28.3%

OVERALL
10 CurPage RelatedPage Hit' HltProp Tlm.Spen TImePercent
1 ag.1.hlml alte4,hlml 1 8.3% 50 33.0%
2 agel .hlml .gaS,hlml 3 25.0% 2 1.3%
3 aa.1.hlml aaa7.hlml 2 16.6% 5 3.3%
4 age1.hlml ageS.hlml 4 33,3% 50 33,0%
5 ag.1.hlml aaeS.html 2 16.6% 43 28.3%

Figure 6 Database tables of processed access logs, which contain all the intermediate
and final recommendation data.

CurPage to all other direct next pages. The values for the TimeSpent
attribute are calculated by evaluating the time difference between time
stamps for entering and leaving the NextPage in the WEBLOG table.
If more than one access to that page is found, the all access times are
combined. We have chosen to give a greater weight to the most recent
access. Older access patterns will , in this way, be phased out more
quickly.

Both the WEBLOG and INDIVIDUAL 1 tables are used to store in­
termediate values for computing the final results in INDIVIDUAL2 and
OVERALL tables. INDIVIDUAL2 table contains the recommendation
trees for each page an individual user has visited. An illustration of
the tree model is shown in Figure 5. The contents in the RelatedPage
attribute are the candidates of recommendation pages, as in the levels
3, 4 and 5 in the tree model.

In the INDIVIDUAL2 table, the Hits attribute can be directly ob­
tained from INDIVIDUALl, where the HitProb attribute is calculated
by multiplying each node's HitProb value with its parent nodes' Hit-

WEBSA: Database Support/or Efficient Web Site Navigation 397

Prob value from INDIVIDUALl. This yields the hit probability on each
internal node with respect to the current page, or root page of the tree.
This algorithm is intended to avoid the possible bias produced by over­
lapping trees, in which case the hit number is higher but does not reflect
the users' past choices starting from the current page. To make the sum
of the hit probabilities from all candidate pages be 100%, the HitProb
column is normalized. The TimeSpent column is fetched directly from
the INDIVIDUAL1 table by querying for the same IP and NextPage.
The TimePercent, which stands for the percentage of time spent on a
page, is calculated by dividing each TimeSpent value by the total Time­
Spent of all the candidate pages in the tree in INDIVIDUAL2.

The OVERALL table combines all IPs' trees with the same cur­
rent/root page. The Hits column is computed by summing all the Hits
with the same CurPage and RelatedPage in INDIVIDUAL2. In the
OVERALL table, the hit probability, the HitProb attribute, is based on
the hit number instead of the percentage approach for INDIVIDUAL2's
HitProb column. For the OVERALL table, the HitProb column is cal­
culated by dividing each node's hit number by the total hit number of
all candidate nodes in the tree. The TimeSpent for each page can be
directly fetched from the INDIVIDUAL2 table, where as the time spent
percentage can be obtained by dividing each node's TimeSpent by the
total time spent of all candidate nodes in the tree.

5. USER INTERFACE AND PRELIMINARY
USABILITY STUDY

The WebSA's user interface (see Figure 1) is provided by a CGI appli­
cation. It takes care of the overall layout, page design and the interaction
between the user and WebSA.

The first interface design rationale considered was to avoid layout
modifications of the original web page design. Therefore, the display of
the original page is not modified. The services of WebSA are provided
in a separated frame of the browser window, which will keep the original
structure and design intact, yet the services will always be presented to
the users in the bottom frame.

The second rationale of interface design is to minimize the space of
the recommendation service in the browser, as browser space is lim­
ited. Thus, instead of itemizing and listing all the recommendation, the
CGI application of WebSA provides the recommendations in a pull-down
menu.

The third rationale of our interface design is to attract the user's
attention to the services provided by WebSA. This can be accomplished

398 VISUAL DATABASE SYSTEMS

with simple means, such as, background color choice, color scheme of
the service page and also the icons and logo design.

The last rationale and also the golden rule of interface design is the
consistency of the interface. The frame layout is set by WebSA, where
the height of the bottom frame is fixed and occupies the least possible
space. The design of both service pages adopts the least variation, which
will increase the users' familiarity to the user interface of WebSA.

Figure 7 shows the WebSA frame for the detailed service where: (1)
both individual- and overall-based recommendations are provided; (2)
for each of them, ten ranked links are given instead of the five links for
the default service shown in Figure 1.

detailed
service-

Figure 7 The WebSA detailed interface, as provided by a separate frame i!-t the
bottom of a browser page.

We have conducted a preliminary user survey where ten users from
CSD-WPI participated. 80% of the people surveyed were using fixed
IP addresses accessing the Internet. Therefore most people could take
full advantage of the personal recommendation service (based on their
IP address). All of the people surveyed were accessing the CSD-WPI
web pages as least O.S-hour everyday so they were in a good position to
compare the effectiveness of the service with regular browsing without
the service. From all the data we collected, 69% of the users agree that
WebSA is helpful or somewhat helpful for browsing the CSD-WPI web

WEBSA: Database Supportfor Efficient Web Site Navigation 399

sites, 78% feel the interface design of WebSA is intuitive, and 80% are
satisfied with the performance of WebSA.

6. IMPLEMENTATION

6.1. PERFORMANCE ISSUES

Performance was a major concern in designing WebSA. If users had
to wait significantly for the services, they will probably prefer not to use
them. Another objective was that the backend computations for updat­
ing the service data should not take too long as not to unduly overload
our Oracle server or local network. To eliminate the delay in delivering
services to the users, we choose to pre-calculate service data on a daily
basis. In this way, no major computations are performed while recom­
mendations are provided to the users. To offer the recommendations,
the CGI application simply queries the pre-computed results from the
database and then displays them to users. The query process was made
efficient, since appropriate indices are used that match the queries.

The background process for preparing the service needs to be opti­
mized too. The web log's size is increasing at the rate of 2.6 megabytes
per day. After a couple of months, the log file would be in the magnitude
of hundreds of megabytes. Data mining for useful recommendations re­
quires the repetitive retrieval of certain patterns from the large log file.
These operations can be very expensive, since loading the log file will
take up most of the memory in the operating system and will yield
tremendous disk access, which is 1000 times slower than memory access
on average. We used an Oracle database to store the web log data.
Furthermore, we conveniently used the built-in utilities provided by the
database, including indices for faster data retrieval and the concurrent
retrieval synchronization feature.

When doing database computations using Java, some special tech­
niques were deployed. These techniques includes using prepared state­
ments, sending a set of SQL commands in one transition to avoid over­
head costs, and dropping indices before heavy modification on database
tables and adding indices after finishing updating database tables for
optimal retrieval services.

The detailed architecture of WebSA is shown in Figure 8.

6.2. SOFTWARE TOOLS

For the database implementation we used an Oracle database server
installed on an NT server. Configuration settings were adjusted in order
to increase the performance, e.g., cache memory size, rollback buffer,

400 VISUAL DATABASE SYSTEMS

Figure 8 Functional model of WebSA

etc. For the purposes of monitoring and administering the database, we
also installed an Oracle 8 SQL client application on the development
machine.

The major development languages in our project are Java and Visual
C++ Java is a very handy development language because it provides the
developer with rich built-in libraries. Visual C++ was also used because
it provides a very easy handle to sockets in the WIN32 environment. The
communications to and from the Oracle database server are relying on
the connection built with JDBC. We used the Xitami web server, which
is lightweight and supports CGI.

6.3. PROBLEMS AND SOLUTIONS
In this section, we discuss some of the problems that arose during the

implementation and the chosen solutions.
The connection between the Query Server and CG I application is a

TCP socket. However, these two applications are implemented using dif­
ferent development languages. Due to the easy connection to the Oracle
database with JDBC, the Query Server is written in Java, while the CGI
application is written in C++ as we consider C++ a better CGI pro­
gramming language than Java. The problem arises when the sockets are

WEBSA: Database Support for Efficient Web Site Navigation 401

created using different programming languages. The Java server socket
and the WIN32 socket created by C++ do not work properly together.
There were always some data-transfer errors in the communication. In
order to guarantee the correctness of data transfer between these two
sockets, some extra user defined control signals are added into the com­
munication between client and server sockets. There is a parser sitting
on both sides to check for the messages received, that request recovery
if the corruption of the message is detected. And the start and end
transfer signals are added to the message exchanges. The user-defined
controls guarantee the socket communication on the TCP connection
without noticing the difference of the internal mechanism. In retrospect
(and for a future implementation), accessing the database directly with
a CGI application would have been simpler.

Another problem arose when the interface of WebSA was expanded to
take arguments from different HTML formats. The arguments passed
to the CGI application were input from direct argument parsing, i.e.,
filtered links, and form submission, i.e., recommendations from the pull­
down menu of WebSA. This gave the CGI application a certain degree
of difficulty to cope with the arguments. The direct argument parsing
and form submission should be dealt differently, otherwise it will crash
the CGI application. The solution for this problem is to set an extra
argument checking in the CGI application. Once the CGI application
performs the checking, there is a direct argument, which will be taken as
the user request. If the direct argument is absent, the CGI application
will then obtain the argument from the form submission through CGI
environment variables.

An interesting problem arises when users access the CSD-WPI web
site through WebSA. In this case, the information of the IP address
of the user's local machine was lost. Also, due to the missing HTTP
header information, which usually will not happen with browsers like
Internet Explorer and Netscape Navigator, the user's current page is
not recorded into the CS access Jog file. Examining the lines recorded
into the access Jog file, we can clearly identify the information loss when
using WebSA:

130.215.8.113 - - [17 /Mar /1999:16:03:42 -0500] "GET / HTTP/1.0"
200 5653 "-" "-"

The IP address field is always recorded as the IP address of our host
(http://cleo . wpi . edu) , which is the NT server machine of WebSA.
The field of the currently browsed page and the browser information
are therefore missed. This would, in the long term, affect the analysis
performed by WebSA, especially if it became heavily used. The solution
we used to resolve this problem was to submit additional HTTP header

402 VISUAL DATABASE SYSTEMS

information while requesting the document from the web server. The
additional HTTP header information is included in the current page
and the browser information. We also noticed that the CGI application
has no way to keep track of the current web page's URL. Therefore a
new tag, <REFERRER>, is introduced for the specific use of WebSA.
This tag is used to record the browsing page's URL, for the reference of
the CGI application. This tag avoids setting cookies on the user's local
machine. After performing such changes, the corresponding line in the
access Jog of the above example is changed to

130.215.8.113 - - [17 /Mar /1999:16:03:42 -0500] "GET / HTTP/1.0"
200 5653 " http://www.cs.wpi.edu!,, "Mozilla/4.5 [en] (WinNT; I)
&&130.215.8.113"

The Data Server of WebSA was also adjusted in order to work with
the extra piece of information appended at the end of the browser field
of the access Jog file.

7. CONCLUSIONS
The goal of the Web Site Agent (WebSA) is to provide a recommen­

dation service to help web users better browse sites according to the
analysis of the data available from the access log file. The analysis takes
into account the access probability for the pages of the site, with the
page currently under examination as a starting point. The WebSA is
dynamic in that it incorporates pattern changes on a daily basis.

The WebSA interface, differs from the Adaptive Web Site inter­
face [12, 13] in that the layout of the web site pages does not change
according to the recommendations. From a human-computer interaction
perspective, where consistency of the interface is one of the principal di­
rectives, our approach seems more adequate, although studies would
have to be conducted to confirm this, otherwise, "universal principle" in
the context at hand.

Providing WebSA with database support is also a contribution of our
work. In this way, recommendations are answers to declarative queries
that could be changed or extended easily. Moreover, database technology
provides us with fast performance and concurrent access to the data,
which can deliver fast performance even when the accumulated raw data
is in the order of 1GB.

8. FUTURE WORK

After collecting suggestions from our surveys and from colleagues,
extensions to the current work have become apparent, which can be
in some cases directly implemented given the data already collected.

WEBSA: Database Supportfor Efficient Web Site Navigation 403

Furthermore, the user interface can be extended to be more flexible and
graphical. We group the directions for future work as follows:

1 Some people's access patterns might be totally different from oth­
ers. Therefore, one could attempt to categorize users into commu­
nities by examining the similarity between users' access tree and
provide recommendations based on the community the user "falls"
in. The similarity of access trees can be evaluated, for example,
by observing the number of nodes that are common to different
users' access trees.

2 Instead of providing the recommended links in a flat listing, one
could use a Java applet to produce a graphical representation of
the access tree. The graphical access tree can be expanded further
levels down by clicking on it, similarly to the hierarchy for the
folders in the Windows Explorer application (which is available in
Swing). Different user interface styles could be customizable to
the specifications of the user [5].

3 WebSA does not support multi-framed pages. Multi-framed pages
are currently not common in the CSD-WPI web site, but they
might become common in the near future. One can extend our
agent's ability in this direction.

4 Another possible direction for future work is to deploy WebSA in
a larger, more complex, and less organized web site. This would
be beneficial for further testing its robustness and usefulness.

Acknowledgments We are thankful to Andreas Koeller for his assis­
tance with the Oracle server and to Daniel Fox for initial discussions on
the prototype implementation.

404 VISUAL DATABASE SYSTEMS

References

[1] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell. Web­
Watcher: A Learning Apprentice for the World Wide Web. In
Working Notes of the AAAI Spring Symposium: Information Gath­
ering from Heterogeneous, Distributed Environments, pages 6-12,
Stanford University, 1995. AAAI Press.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Re­
trieval. Addison-Wesley Publishing Company, Reading, Mass.,
1999.

[3] M. Balabanovic. An Adaptive Wep Page Recommendation Ser­
vice. In Proc. of the First International Conference on Autonomous
Agents. AAAI Press, 1997.

[4] M. Balabanovic and Y. Shoham. Learning Information Retrieval
Agents: Experiments with Automated Web Browsing. In Work­
ing Notes of the AAAI Spring Symposium: Information Gather­
ing from Heterogeneous, Distributed Environments, Stanford Uni­
versity, 1995. AAAI Press.

[5] I. F. Cruz and G. T. McGuire. Publication and Customization
of Electronic Documents Using PANDA. In Proc. ACM SIGDGC
Conference, pages 58-64, 1999.

[6] O. Etzioni. Moving Up the Information Food Chain: Deploying
Softbots on the World Wide Web. In Proc. of AAAI '96, 1996.

[7] J. Goecks and J. Shavlik. Automatically Labeling Web Pages Based
on Normal User Actions. In Proc. IJCAI Workshop on Machine
Learning for Information Filtering, 1999.

[8] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using Collabora­
tive Filtering to Weave an Information Tapestry. Communications
of the ACM, 35(12):61-70, December 1992.

[9] H. Lieberman. Letizia: An Agent that Assists Web Browsing. In
Proc. IJCAI '95, pages 924-929, 1995.

[10] S. Luke and J. Hendler. Web Agents that Work. In Proc. IEEE
Multimedia 97, pages 76-80, 1997.

[11] S. Luke, L. Spector, D. Rager, and J. Hendler. Ontology-based
Web Agents. In Proc. of the First International Conference on
Autonomous Agents. AAAI Press, 1997.

[12] M. Perkowitz and O. Etzioni. Adaptive Web sites: an AI Challenge.
In Proc. IJCAI '97, 1997.

WEBSA: Database Support for Efficient Web Site Navigation 405

[13] M. Perkowitz and O. Etzioni. Adaptive Web Sites: Automatically
Learning from User Access Patterns. In Proc. of the Sixth Interna­
tional WWW Conference, Santa Clara, CA, 1997.

[14] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl.
GroupLens: An Open Architecture for Collaborative Filtering of
Netnews. In Proc. of the Conference on Computer Supported Co­
operative Work, pages 175-186, 1994.

[15] P. Resnick and H. R. Varian. Recommender Systems. Communica­
tions of the ACM, 40(3):56-58, March 1997.

[16] J. Rucker and M. J. Polanco. Siteseer: Personalized Navigation for
the Web. Communications of the ACM, 40(3):73-75, March 1997.

[17] A. Wexelblat and P. Maes. Footprints: History-Rich Web Browsing.
In Proc. Conf. Computer-Assisted Information Retrieval (RIA 0),
pages 75-84, 1997.

406 VISUAL DATABASE SYSTEMS

Biographies

Isabel F. Cruz is a faculty member in the Computer Science Depart­
ment of the Worcester Polytechnic Institute in Massachusetts, where she
heads the Information Systems Research Group (ADVIS). She received
her Ph.D. in Computer Science from the University of Toronto in 1994
and was a postdoctoral fellow in the Department of Computer Science
at Brown University.

She has been invited to give more than 30 talks worldwide and has
published more than 40 research articles in Databases, Visual Languages,
Graph Drawing, Multimedia, and Information Retrieval. Her editorial
activities include being the founding editor of the ACM SIGMOD Digital
Symposium Collection since 1998 and an associate editor of the Journal
of Visual Languages and Computing (Academic Press) since 1995. She
serves regularly on the program committees of the main conferences in
her field including ACM SIGMOD, ACM Multimedia (once as associate
program chair), VLDB, IEEE Visual Languages, and the IEEE Inter­
national Conference on Data Engineering. She has also organized and
co-chaired several international conferences and workshops.

She has received numerous awards including a CAREER Award from
the National Science Foundation and a Government of Canada Award.
In addition, her research has been funded by grants from the National
Science Foundation, DARPA, NATO, and the CRA.

Lijun Leo Liu is a design engineer in the Corporate Internet Technology
Department at the EMC Corporation in Massachusetts. He received his
B.S. in Computer Science from the Worcester Polytechnic Institute in
1999 and is the recipient of a Computer Science Outstanding Senior
Award. He worked on this paper while he was a member of the ADVIS
Research Group at the Worcester Polytechnic Institute. His research
was partially supported by an REU Award from the National Science
Foundation.

Tony Y. Wu is a technical staff member in the Communication Software
Management System Department at Lucent Technologies in New Jersey.
He received his B.S. in Computer Science with High Distinction from
the Worcester Polytechnic Institute in 1999. He worked on this paper
while he was a member of the ADVIS Research Group at the Worcester
Polytechnic Institute. His research was partially supported by an REU
Award from the National Science Foundation.

