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Abstract: A high quality surface representation is indispensable for a hydrodynamic 
numerical model, which is related to nature. Standard algorithms for meshing 
are not able to guarantee these requirements. Applied methods approximate 
the surface by patches. As a result an implementation for a b-spline surface 
was realised and tested. The used method "tensor product b-spline surface" is 
defined by an array of control points, called de Boor points. The associated b­
spline functions are defined in every local segment. Changes at one point of 
the control point mesh result only in local changes of the b-spline surface. 

1. INTRODUCTION 

To provide a sufficient hydrodynamic model in coastal engineering a 
high quality representation of the bathymetry and the topography of the 
coast line is required. The geometric description of the bathymetry is based 
on measurements, and include a number of uncertainties. These are the usual 
errors in measuring, but also overlapping and blanking of measurement 
areas. For the description of the surface, methods are required that offer a 
unique and gapless information on the geometric charactertics of the natural 
surface. 

Furthermore discontinuities in the bathymetry, like break lines, are an 
additional problem in coastal engineering. Because for a point on the 
surface, with preselected x- and y- coordinates, multiple z- coordinates can 
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not be assigned, the geometric description and also the automatic mesh 
generation is complex. The presented methods for the description of the 
surface are tested for their suitability in coastal engineering. The 
mathematical basics for the description of free form geometry are presented 
first for curves, because of the more vivid description. At next the necessary 
equations are developed for surfaces. 

2. BtZIER CURVES 

The algorithm described in this section is probably the most fundamental 
one in the field of curve and surface design, yet is surprisingly simple. Its 
main attraction is the beautiful interplay between geometry and algebra: a 
very intuitive geometric construction leads to a powerful theory.Bezier 
curves can be defined by a recursive algorithm, which de Casteljau 
developed at first in 1959 for the geometric construction of free form curves 
(de Casteljau, 1959). However, it is also necessary to have an explicit 
representation of the curves, i.e. to express a non recursive formula rather in 
terms of a recursive algorithm. This will facilitate further theoretical 
development considerably. 

The curve b(t) is given by the parameter t to get a description for 
any free fonn curve. This means, the coordinates of a curve point b(t) 
are independent functions of the curve parameter t. The parameter 
interval is usually nonnalised into the interval 0.0 to 1.0. 

b(t) = [x(t),y(t),z(t)f withx E E 3 , t E [0.0,1.0] (1) 

According to the de Casteljau algorithm, Bezier curves are presented as 
linear, recursive interpolation with the curve parameter t between the control 
points b i or between the control points b;-l of the rth recursion step (Farin, 
1993, Hoschek & Lasser, 1992) 

(2) 

If a Bezier curve is described by n+1 control points bo, ... ,bn, then the 
control point b 7 of the nth recursion step can be found on the curve. The 
control points bo and bn are the endpoints of the Bezier curve. The directions 
of the tangents of these points are defined by the start and end edges of the 
control polygon (bl-bo) and (bn-bn-l). Bezier curves will be expressed in 
terms of Bemstein polynomials, as explicitly defined by: 
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b(t) = IbjBjn(t) with bo, ... ,bn E E3 andBjn(t) tj(l-t)n-j fori =0, ... n. 
I 

(3) 

The binomial coefficients are given by: 

() { 
n! 

n if 0$ i $ n 
i = i!(n-i)! ° else. (4) 

The intermediate de Casteljau points can be expressed In terms of 
Bernstein polynomials of degree r: 

r 

b; (t) = L bi+jB; (t) with r E {O, ... , n}, i E {O, ... ,n - r}. 
j=O (5) 

3. B-SPLINE CURVES 

To get the flexibility needed for the modelling of a bathymetry for the 
curve, respectively for the surface, a number of Bezier curve segments of the 
same degree are connected (Farin, 1993, Hoschek & Lasser, 1992). Two 
Bezier functions defined by [Ui-h Ui] and [Ub ui+d are C2 continuity at Ui if an 
auxiliary point di can be constructed of both curve segments. 

(6a) 

(6b) 

(6c) 

Therefore, the control points near every connection of the curve segments 
can not be freely chosen. A curve notation where only the freely choosen 
control points are taken into consideration is called basis spline curve or b-
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spline curve. These control points are named de Boor points. With N as the 
number of segments and K as the degree of the b-spline curve the knot 
vector U with the global knot parameters U; is defined as: 

(7) 

The local parameter t; for the ith curve segment is calculated by the linear 
interpolation between the knot parameters Uj and Uj+l. The starting b-spline 
functions are piecewise constant in every segment: 

for i = O, ... ,N 
(8) 

According to the b-spline function of the (r_l)th recursion step the b­
spline function of the rth recursion step is given by: 

(9) 

for r = 1, ... ,N + K; i = O, ... ,N + K - r 

b-spline functions only have a value different from zero in the open 
interval U E ]Uj, Uj+K+l[. Outside this interval the value is always equal to 
zero. This indicates that with a given global parameter U E [uj, uj+d only the 
b-spline functions , ... , N;K (u) have a value larger than· zero, and 
only the control points d j-K, ... , dj influence the shape of the curve. In this 
way, local modelling with b-spline curves is possible. 

The b-spline curve depending on the global curve parameter U with the 
knot vector u, the b-spline functions N;K and the de Boor points dj is given 
by: 

N 

b(u) = 
;=0 (10) 
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The only method to build the sum of (control) points is the affine 
combination, where the sum of all factors of the (control) points is equal to 
1. In the intervals [uo, UK[ and ]UN+h UN+K+l] the sum of the b-spline function 
is not equal to 1 and therefore no affine combination of the control points is 
possible. For b-spline curves the definition of the global parameter U is 
limited to the interval [UK, UN+l], since only in this interval the sum of the b­
spline functions is equal to 1. The knot parameter Uo and UN+K+l have no 
influence on the b-spline functions in the concidered interval [UK, UN+!l of the 
b-spline curve. Therefore, the first and last knot parameter are choosen as Uo 
= Ul and UN+K+l = UN+K . Generally, there is no end point interpolation for the 
b-spline curve at the start and end control points do and dN. Obviously this 
behaviour causes problems during the process of modelling. This problem is 
solved by using a special knot vector u. The shapes of Bezier curves and b­
spline curves are controlled by points b i respectively de Boor points d j • b­
spline curves, in contrast to Bezier curves, influence the shape of the curve 
via the knot vector u. K multiple knots Uj+l = ... = Uj+K = u· effect: 

d j = b(u'} for j = O, ... ,N 
(11) 

The de Boor point dj lies on the curve and the tangents next to dj are the 
edges drdj-1 and dj+1-dj of the control polygon. The end point interpolation is 
possible for K multiple knots Ul = ... = UK and UN+l = ... = UN+K. In the special 
case of Ul = ... = Uk = 0.0 and UN+l = ... = UN+K = 1.0 the b-spline functions 
N j

K (u) are equal to the Bernstein polynomials Bt(t} , with n = K and 
i = 0, ... , n. 

4. B-SPLINE SURFACES 

B-spline surfaces play an important role in current surface design methods 
and will be discussed here in more detail. Using the notation made in section 
3, a parametric tensor product b-spline surface may be written as 

N M 

b(u,v} = IIdjjNjK(u}Nf(v} 
j=O j=O 

with N,M,K,L E N; N K 1; M L 1; 

doo, ... ,d NM E E 3 ;u E [uK,uN+1l;v E [vuvM+ll 

(12) 
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It is assumed that one knot vector u in the u-direction and one knot 
vector v in the v-direction is given. Bezier surfaces and b-spline surfaces 
have a number of advantages compared with the common methods for 
surface description. Two of the most important advantages are: Variation 
diminishing property: The surface is not intersected by any straight line 
more often than is the control grid. An oscillation of the surface is 
impossible. Strong convex hull property: Each point on the surface lies in the 
convex hull of more than n+ 1 nearby control points. This property leads to 
an effectiv estimate and control for the location of the Bezier surfaces and b­
spline surfaces. 

5. MODELLING OF BATHYMETRY 

The recording of the bathymetry is done by sounding the bottom of the 
sea. Therefore, the water depth is measured in intervals and the position of 
the points of measurement is noticed. Afterwards the values are related to 
the reference value and stored in the order of measurement. For the 
modelling of larger areas the data of the patches are simply added. To 
connect the coastal line data sets of land surveying are also added. Because 
of the different measure and store techniques the start up representation is an 
unstructured cloud of points. The job is to approximate an b-spline surface 
on this unstructured cloud of points. Therefore, the position of every point Pi 
on the surface has to be determined: 

Pi = b(u, v) (13) 

This leads to an over determined system of equations: 

A(n,m) * x(m,l) = b(n,l) (14) 

With n>m and rank(A) = n. This system can be solved by using the 
householder transformation. 

6. EXAMPLE 

Figure 1 shows the digitised points of a part of a tidal harbour. In this 
example the process of approximation starts up with more than 8.000 points. 
The result of the approximation is a single surface controlled a by 50x50 
point de Boor grid. The equidistant de Boor point grid is shown in figure 2. 
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Figure J: Digitised Points 

Figure 2: De Boor Point Grid 

The calculated surface is based on all the given points. Because it is just 
one surface element and not patched from a number of elements, there are no 
problems at the edges. To show the quality of the representation a part of the 
surface plot is expanded and shown in figure 3. 
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Figure 3: Detail Plot 

7. ADAPTIVE DE BOOR POINT GRIDS 

The example has illustrate, that bathymetry modelling using b-Spline 
surfaces can be rather simple. Break lines and blanking areas can easily be 
handled. Usually the approximation of a relief is done by a number of 
patches. The problem is to define the topological connections between these 
patches. The presented area is described by a single b-Spline surface. 
Especially the detail shown in figure 4 demonstrates the disadvantage of a b­
spline surface representation with an equidistant de Boor point grid. The 
approximation of break line, which are not parallel to the de Boor point grid, 
leads to an unacceptable deviation of the surface with respect to the break 
lines and has to be improved. A very simple idea to improve the 
approximation is the insertion of additional de Boor points in the areas of 
unacceptable surface deviation. The de Boor point grid has to be regular; this 
means that the control points consist of N columns and M rows. If an 
additional control point should be inserted to improve the approximation, an 
additonal control point has to be inserted in every of the N columns and M 
rows. This leads to great numerical effort if serveral additional points are to 
be inserted. Therefore, a method to improve the approximation quality 
without increasing the number of control points is presented. Instead of 
inserting points, the control points are moved in the u-v-parameter plane for 
a better fit of break lines. In areas with large changes in the surface tangents 
the density of de Boor points is increased. On the other hand, in area with 
small changes in the surface tangents the density of the control points is 
decreased. This method leads to an adaptive de Boor point grid. 

At the first iteration step the surface approximation is based on an 
equidistant de Boor point grid. 

At first iteration step the surface approximation is based on an equidistant 
de Boor point grid. For every value in the knot matrix the associated surface 
point b(uj,vj) are calculated. The changes of the surface tangents in the point 
b(uj,vj) are given by 
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(15) 

The measure of the movement of the parameter Uj is determined by the 
scaling factor a and 

(16) 

The new parameter Ui* for the adaptive de Boor point grid is 

(17) 

Corresponding equations can be derived for parameter v/ in the same 
manner. Tests with a break line with 30° have demonstrated a significant 
improvement with one iteration. 

8. OUTLOOK 

Using b-spline surfaces with adaptive de Boor point grids offers new 
possibilities for dealing with numerical models in hydroinformatics. Because 
of the different origins of the used data, there are problems in handling break 
lines and blanked areas. Using applied methods indicates manual work to 
deal with these problems. Setting up the calculation grid for large models 
costs a lot of time and causes uncertainties on the quality. A b-spline surface 
with an adaptive de Boor point grid is build using determined algorithms 
without any manual work on the data. The opportunity to build up the 
calculation grid automaticly is one of the research targets. This will save a 
lot of time during the setup of a numerical model and guaranties a certain 
quality standard. Adaptive calculation grids can get the values of new points 
or moved points from the b-spline surface, which is a new quality in 
hydronumerical modelling. 

The approximation of a b-spline surface includes a householder 
transformation. The number of rows in householder matrix is the number 
of given points and the number of columns is the number of used de Boor 
points. Setting up large scale models causes the problem to deal with a very 
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large matrix. Before the transformation the matrix contains a lot of zeros, but 
the location of the non zero elements is unstructured. After the 
transformation the matrix is an upper triangle matrix. Storing this matrix and 
solving the transformation costs a lot of performance. Looking for more 
efficient algorithms is one of the next research targets. 

Further methods to improve the approximation quality have to be 
developed and evaluated of efficiency. Additionally, the use of multiple 
knots in the knots matrix and rational b-spline surfaces should be examined 
on sufficiency for modelling the bathymetry. 
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