
Object-Oriented Modeling and Co-Simulation of
Embedded Systems

F.R.Wagner, M.Oyamada, L.Carro l and M.Kreutz
Universidade Federal do Rio Grande do Sul
Instituto de Infonnätica, IOepartamento de Engenharia Eletrica
Caixa Postal 15064,91501-970 Porto Alegref Brazil
e-mail {flavio.marcio.kreutz}@inf.ufrgs.br.carro@iee.ufrgs.br

Key words: embedded systems, object-oriented modeling, co-simulation

Abstract: This paper presents the modeling and co-simulation capabilities of S3E2S, a
design environment for electronic systems that can be built as a combination
of analog and digital parts and software. S3E2S is based on a distributed,
object-oriented system model, where abstract objects are initially used to
express complex behavior and may be later refined into digital or analog
hardware and software. Co-simulation of any heterogeneous model developed
during a stepwise refinement process is supported. These capabilities are
iIIustrated by the modeling of a crane and its embedded contro!.

1. INTRODUCTION

Embedded electronic systems contain a combination of software and
hardware, both analog and digital. For simple systems, a single off-the-shelf
processor might be sufficient, since there are various available architectures
(microcontrollers, DSP, RISC processors) with different cost / performance
ratios. However, more complex systems, which represent the current trend in
the market, usually have more critical requirements, such as a combination
of behaviors (scalar and DSP processing) and tight low-Ievel characteristics
(area, speed, power dissipation). Typical examples are voice-modems,
cellular phones, and embedded controllers for automotive applications.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
L. M. Silveira et al. (eds.), VLSI: Systems on a Chip

10.1007/978-0-387-35498-9_57

http://dx.doi.org/10.1007/978-0-387-35498-9_57

498 F.R. Wagner, MOyamada, L.Carrol and MKreutz

The design of complex embedded systems should ideally proceed from
an initial, abstract specification, going through a sequence of successive
refinements, until a final detailed solution is achieved. Intermediate,
heterogeneous descriptions generated during this stepwise refinement must
be validated. Co-simulation is the most usual validation too1.

Most existing environments are oriented towards a particular application
domain and have a fixed target architecture. They usually follow one of two
possible approaches for system specification and co-simulation. In the first
approach, system modeling is performed using a single language from a
given domain, such as C, VHDL, or a higher-Ievellanguage, and partitioning
is performed in a later stage. In the second approach, the initial specification
al ready considers a given partitioning, and each part is modeled using a
language which is more appropriate for the corresponding domain.

The S3E2S (Specification, Simulation, and Synthesis of Embedded
Electronic Systems) environment combines the advantages of both
approaches. Complex systems may be modeled as combinations of objects
specified at different domains - abstract object-oriented specification, digital
hardware, analog hardware, and software - and at multiple abstraction
levels. Co-simulation is performed by coupling different simulation engines,
so that the validation of any heterogeneous model developed during a
process of stepwise refinement is supported. Furthermore, the environment
allows an easy exploration of the design space at a multi-processor level,
selecting a combination of processors which best matches the design
requirements. This paper covers the modeling and co-simulation features of
S3E2S. The synthesis capabilities are discussed in detail e1sewhere [1].

This paper is organized as follows. An overview of the design
environment can be found in Section 2. The modeling and co-simulation
capabilities of S3E2S are introduced in Section 3. Section 4 presents a case
study that fully illustrates the application of the environment. Section 5
compares S3E2S to other current approaches for modeling and simulation of
embedded systems. Section 6 draws conc1usions and discusses future work.

2. AN OVERVIEW OF THE S3E2S DESIGN
ENVIRONMENT

Figure 1 presents the design flow in S3E2S. The initial specification is a
set of objects, described as C++ code. A set of support libraries allows not
only the sequential modeling of digital hardware and software behavior, but
also the modeling of linear or discrete time systems (to model analog domain
behavior). If the user wishes, a set of high level VHDL constructs is also
available, like a FIR filter, for example.

Object-Oriented Modeling and Co-Simulation 0/ Embedded Systems 499

Simulation

Initial S pecißcatian
S }'5tern

Object Refinemem

Co-.inulation

Object SyrII:he.i.

Physical S yslern

Figure J. The S3E2S design flow

l:ibrazy

DSP
microcantroller
RISC

conwrters

Once the initial specification is defined, it can be validated using the
simulation engine behind S3E2S. Each object that used a pre-defined set of
methods can then be translated into a VHDL component or a set of analog
components. Simulation can be done mixing hardware descriptions in
VHDL, software descriptions in C++ and analog descriptions developed as a
set of analog components (such as operational amplifiers, converters and
filters). Each intermediate description obtained during this stepwise
refinement process can be co-simulated, whereby each object is simulated by
a dedicated simulator for the corresponding abstraction domain.

There are 3 alternatives for the synthesis of the digital parts. The first one
is based on the library of VHDL methods used during refinement. If taken
from the S3E2S library, all methods are synthesizable. Another possibility is
the use of the initial C++ specification alone. In this case, an internal
compiler analyzes the code of each objet and maps it to an off-the-shelf
processor [1]. A library of processors with different characteristics
(microcontrollers, digital signal processors, RISC machines) is available.
Mapping is done based on the characteristics of the object that best match
processor characteristics. S3E2S performs the parsing of the C++ object
description, obtaining a control-data flow structure. Each function of each
object is checked, and the number of memory accesses, arithmetic operations
and control instructions is verified. Based on the statistics of resource usage,
on the organization of the object code and on the available time to execute a
task, a processor best matching these criteria is chosen.

500 F.R. Wagner, MOyamada, L.Carrol and MKreutz

A third synthesis possibility is to let the system map some objects to off­
the-shelf processors, leaving some other objects as synthesizable VHDL
code. The resulting system is a processor with one or more dedicated ASICs.
A typical situation could be a microcontroller and a dedicated filter.

Presently, in order to synthesize analog circuits, the designer must use
only blocks that are available from the library, which can mapped to physical
components.

3. MODELING AND CO-SIMULATION

S3E2S is built on top of SIMOO [2], an integrated environment for object­
oriented modeling and simulation of discrete systems. SIMOO is composed
of a class library and a model editor. The editor supports the description of
the static and dynamic aspects of the model. The static structure is described
graphically, while the dynamic structure is described either directly in C++
using the library resources or by means of astate diagram annotated with
C++ code. The editor implements extensions to diagrams usually proposed
by object-oriented design methodologies, in order to handle simulation­
related aspects. From the model description, the editor automatically
generates the necessary executable code.

A model is composed of interface and autonomous elements. Interface
elements support tracking of the simulation execution, visualization of
simulation results, interactive input of data, and dynamic modification of
parameters during the experiments. Autonomous elements, on the other side,
are used to model concrete entities. An autonomous element is an active
object, Le., an object with its own execution thread and a message queue. It
may interact with other autonomous and interface elements only through
messages. The model does not support shared variables, so that it may be
also used in distributed environments.

Different objects of the same model may follow different paradigms [3].
A paradigm is defined as a combination of the following modeling
approaches: event orientation or process orientation for the description of the
object behavior, messages or ports for the communication between objects,
and active or passive message handling. These approaches may be extended
or specialized by inheritance.

In order to support a progressive replacement of SIMOO objects by
VHDL entities or by analog components, and to model interactions with the
real analog world, a co-simulation strategy combining SIMOO abstract
models, VHDL descriptions, and analog models is needed.

The SIMOO simulation environment is coupled to the VSS simulator
from Synopsys. Figure 2(a) shows two SIMOO objects (A and B) that

Object-Oriented Modeling and Co-Simulation 0/ Embedded Systems 501

communicate with each other. Object Bis to be refined into a VHDL entity.
The co-simulation environment then automatically generates necessary
interfaces in the SIMOO and VHDL domains. In the SIMOO domain, this
incIudes an interface element. In the VHDL domain, on the other side, the
interface specification of the entity corresponding to object Band an
interface file written in C are generated, as shown in Figure 2(b). These
interfaces in both domains are responsible for data exchange and for
synchronizing the simulators.

SIMOO domain

Figure 2(a). An initial specification in the SIMOO domain

f 1_.) < > I+-t- EntityB
Communicalion .. ' (VHDL)

SIMOO Domain
VHDLDomain

Figure 2(b). The same model, transfonned after generation of interfaces for co-simulation

The communication between the SIMOO and VSS simulators is
performed via sockets. This allows a distributed solution, where each
simulator may run on a different node of a network. In the current version, a
conservative approach [4] is adopted for synchronization between the
SIMOO and VSS simulators. The base time unit is defined by the VSS
simulator, and both simulators advance together their simulation times at
each time step. A more efficient implementation of this co-simulation
mechanism is currently under investigation. In this more optimistic approach
[4], each simulator may run with its own cIock and the synchronization is
not performed at every cIock cycIe.

An analog part may be modeled by a set of differential equations that
define the object behavior at every possible time value. The co-simulation
strategy of the SIMOO environment follows a signal-flow approach, where
objects are modeled as mathematical functions from the inputs to the
outputs, as opposed to a structural approach, where objects are described as
interconnections of analog components. This signal-flow approach is more

502 F.R.Wagner, MOyamada, L.Carrol and MKreutz

convenient for systems that don't have a physical implementation yet, or for
systems whose design has a stronger emphasis at higher abstraction levels,
like PID controllers, converters, filters, transfer functions, etc.

For the integration of an analog part into a SIMOO model, it is thus
necessary that the SIMOO object encapsulating this part implements the
numerical method needed to solve the differential equations, such as Euler or
Runge-Kutta. The SIMOO object must contain attributes such as the time
step for the numerical resolution of the equations, the equations themselves,
and methods for handling state variables.

4. CASE STUDY

In order to illustrate design possibilities using S3E2S, we have modeled a
crane and its embedded control. This system has been proposed in [5] as an
attempt ofbenchmarking in the area ofsystem-level modeling and synthesis.

The physical plant is composed of a crane with a load, moving along a
track, as depicted in Figure 3. The modeling of the physical system is done
by a set of differential equations, which describe the behavior of the crane
with a load and external forces being applied. The control of the system
involves a set of sequential procedures and the control algorithm itself,
which will assure a smooth behavior while the car is moving.

Maximum
position

+- Fe

Load

Minimum
position

Figure 3. Crane moving aIong its track with load [5]

A first version of the modeling of the complete system can be seen in
Figure 4. Object PlantJk is the physical plant itself. It has been described as
a set of differential equations that are solved in continuous time. Object
Actuators is also modeled in the linear (analog) domain. Object M_ Control
performs the discrete step control algorithm and sensor checking. It receives
sensor inputs at each 2 ms, covering the position of the car with some
precision, the limits of the displacement for the car, the angle of the cable,

Object-Oriented Modeling and Co-Simulation 0/ Embedded Systems 503

and the desired position of the load. All these inputs are used to complete
other tasks. For example, the initialization phase of the control algorithm
itself and the sensor verification are performed by this major block.

Figure 4. The initial crane and embedded control model

The control algorithm itself is implemented as a discrete computation of
the state-variable method. In the control algorithm the goal is to move the
crane with a linear displacement, without bumps and oscillations. A set of
matrix multiplications must be performed at a fixed time step of 10 ms. If
q n =[q 1 n, q2 n, q3 n, q4 n, q5 n] T is the discrete state vector of the crane, then

qn+t=A*qn+B*[Motor_Voltage Car_Position]T (1)
is the next discrete state of the control algorithm. Coefficient matrixes A

and B have dimensions 3x5 and 2x5, respectively.
The object M_Control is also responsible for performing sensor

checking. When the system enters this mode, the car is driven until extreme
positions are found, where sensor inputs should detect its presence. This
mode thus allows checking if any sensor function is missing.

Object Diagnosis is responsible for continuously checking plausibility of
sensor values in parallel to the control algorithm. The position of the car and
the value of the angle of the load with regard to the vertical axis are
informed by the object M_Control and checked for plausible values. In case
any discontinuity is verified, the emergency mode is entered immediately.

The control algorithm outputs the value of the force to be applied to the
crane, and this is passed to the object Actuators. This object is responsible
for driving the dc motor that controls the speed, the breaks, and the
emergency break, that stops the crane until a power-on-reset is performed.

It is interesting to notice that the proposed benchmark problem allows
various modeling solutions, as in almost any real life situation. For example,
modeling of the crane behavior should be developed in the analog domain,
by solving a set of differential equations that model its behavior. Besides, the

504 F.R. Wagner, MOyamada, L.Carrol and MKreutz

control itself could also be developed in the analog world, as some control
systems still are. On the other hand, even if one modeled the control circuit
as a differential equation in the analog domain, some digital hardware would
still be present, due to the finite state machines required to perform sensor
checking, system diagnosis, and emergency control. S3E2S allows any
combination of these different modeling domains and a stepwise refinement
ofthe solution, as it will be described in the next paragraphs.

In Figure 4, which showed our initial modeling of the proposed system,
the behavior of all objects is described as e++ methods. Table 1 illustrates
the methods implemented for the object PlantJk. Figure 5 shows the main
code for this same object.

Table J. Methods for obiect Plant rk
Method Description
Eval
Rk4 Diff
Diff
Send sensor

Called in each integration step; invokes functions to solve diff. equations
Implements the Runge-Kutta integration method, to evaluate car distance
Describe the car position, over the time
Send the plant state to objects Control A and AD

1* state[0] = xdot, state[1] = x,
state[2] = alphadot, state[3] = alpha *1

Parameters par;
MSGEA m; II port definition
double xdot, x, dxdot dt, dx dt;
double alphadot, alpha, dalphadot dt, dalpha dt; II derivatives
xdot = state[0] ; I I initial values -
x = state[1] ;
a1phadot = state[2] ;
alpha = state[3] ;
t = Cloek() I 1000;
par.Set(time-t); II step
m.Set (Id(), aetuator, "FORCE", NORMAL_PR, par);
SendReeeiveNow(&m);
Fe = m.GetData() .GetParAsRea1(0); II get data
dxdot dt = (feime) + (g*(m1/me)*a1pha) - «de/mc)*xdot);
dx dt;; xdot;
dalphadot dt = ««dc/mc)-(d1/ml»* (xdot/r»-g/5* (l+(ml/mc»* (alpha»
-«dl/ml)*alphadot) _ (fc/(mc*r» + (fd/(ml*r»; II differ.equations
dalpha dt = alphadot;
state[0] = dxdot dt; I I next step
state[1] = dx dt;
state[2] = dalphadot dt;
state[3] = da1pha_dt;

Figure 5. Differential equation describing the crane in object PlantJk

In Figure 6 we have split M_Control into two different objects. Since the
control algorithm has many arithmetic operations, we described it in a
separate object ControCA. The finite state machine that performs sensor

Object-Oriented Modeling and Co-Simulation 0/ Embedded Systems 505

checking is modeled in object Job _ Control. All objects of the model are still
described using e++ methods.

Figure 6. Refining the initial model: control algorithm as aseparate object

In order to allow co-simulation and to start a first version of the synthesis
of some system parts, Job _ Control and Diagnosis are moved to VHDL. This
requires the insertion of analog to digital and digital to analog converters, as
shown in Figure 7. Notice that all FSMs, formerly implemented by separate
objects Control_A and Diagnosis, have been grouped in the object
Control_Diag, although this would not be mandatory. The collapsing of the
different FSMs was done because possibly a better synthesis result could be
obtained, since all FSMs have many common inputs.

Figure 7. Synthesizing the system: Control_ Diag as a VHDL object

The synthesis results for the FSMs are a total of 102 logic cells and 41
flip-flops, occupying an area of 8% of an Altera lOk 1 0 FPGA.

506 F.R.Wagner, MOyamada, L.CarroJ and MKreutz

5. COMP ARISON WITH RELATED WORK

The specification and simulation of application-specific embedded
systems is an area of active research. In the case of complex systems, which
cannot be implemented by a single processor or controller and its associated
software, it is difficult to specify the designer's intention. Many specification
languages, or combinations oflanguages, are being used in industry [6].

The description of complex systems through a single, abstract language
has been proposed [7,8]. Some approaches that follow this strategy adopt an
object-oriented specification to describe both hardware and software [9-12].
In these cases, design partitioning is left to later design stages. The system is
modeled as a set of objects, and each one of them may be later implemented
as software or hardware, either digital or analog (as in [13]).

In these object-oriented approaches, system behavior is described by
some procedural language, such as C++. The specification of embedded
systems using procedural languages is a natural consequence of
microprocessor-based system design. An important advantage of this
approach is that the specification can be simulated and validated. However,
this kind of specification is more appropriate for a software-based synthesis,
where the target architecture is fixed and based on a given processor, and the
specification is compiled into the processor's code. On the other side, these
descriptions have an inherently sequential nature and are not appropriate for
describing hardware semantics. Some extensions that allow the description
of hardware features like parallelism and communication mechanisms have
been developed [14]. Java has been also proposed, not only as a language for
describing the abstract system behavior, but also as a basis for a target
architecture based on multiple threads [15].

Although the S3E2S environment is also based on object-oriented
specifications, where abstract behavior is given in C++, the drawbacks of
this approach are partially avoided, because heterogeneous specifications
mixing C++, VHDL and analog descriptions can be created.

This alternative approach of supporting modeling of heterogeneous
systems is also followed by Ptolemy [16], an environment for simulation and
prototyping of heterogeneous systems which also uses object-oriented
technology. Ptolemy implements the combination of different simulation
mechanisms, called domains (such as Synchronous Data Flow, Dynamic
Data Flow, discrete event, and analog). Another environment allowing the
specification and simulation of heterogeneous systems is described in [17],
where a backbone in the operating system implements communication
among dedicated simulators that are needed for heterogeneous objects
specified in different languages.

Object-Oriented Modeling and Co-Simulation 0/ Embedded Systems 507

S3E2S combines the advantages of the multi-Ianguage and heterogeneous
simulation approach with the abstract, object-oriented specification. Objects
can be modeled regardless of their future implementation as digital or analog
hardware or software. Then, any object may be specified in any of these
domains or refined into any of them, and every possible intermediate model
generated during this stepwise refinement process may be co-simulated.

6. CONCLUSIONS AND FUTURE WORK

The automatie design of embedded electronie systems is an open area of
research. A design environment must consider important aspects such as
system specification, partitioning, validation, and synthesis. Regarding the
specification, current design environments either propose a multi-Ianguage
approach, where each component is modeled in a language which is suitable
for a given implementation domain, or a single language approach, where all
components must be modeled using a language from a single domain.

This paper presented S3E2S, an environment combining the advantages of
both approaches in a flexible way. An abstract, object-oriented, initial
specification may be created, and each object may be later refined into a
different domain, using a suitable language (C, VHDL, differential
equations). Any heterogeneous model created during the process of stepwise
refinement may be co-simulated for validation. The paper illustrated these
modeling and co-simulation capabilities by means of a concrete example.

We are currently implementing the automation of the synthesis
capabilities of S3E2S. From a manual characterization of available processors
and an automatic characterization of the application objects (specified as
SIMOO abstract objects), the environment is capable of selecting the best
multi-processor platform for implementing the application.

We are also developing a more efficient implementation of the co­
simulation strategy. An optimistie synchronization mechanism will allow
each object to have its own local time. Each object encapsulating an analog
behavior will have a time step most appropriate for the numerical integration
of the differential equations, while synchronization among objects will occur
only as objects have to communicate events on interface signals.

ACKNOWLEDGMENTS

Special thanks are deserved to B.Copstein, J.F.HJomada and C.E.Pereira
for the development of the SIMOO environment. Thanks are also due to
F.B.Lima, who helped implementing the crane model.

508 F.R.Wagner, MOyamada, L.Carrol and MKreutz

REFERENCES

[1] L.Carro, M.Kreutz, F.RWagner and M.Oyamada. "System Synthesis and Processor
Selection in the S3E2S Environment". In: Ith Symposium on Integrated Circuits and
Systems Design. Natal, Brazil, 1999. Proceedings, SBC, 1999.

[2] B.Copstein, F.RWagner and C.E.Pereira. "SIMOO - An Environment for the Object­
Oriented Discrete Simulation". In: 9th European Simulation Symposium. Passau,
Germany, 1997. Proceedings, SCS, 1997. pp 21-25

[3] B.Copstein, C.E.Pereira and F.R.Wagner. "The Object-Oriented Approach and the Event
Discrete Simulation Paradigms". In: 10th European Simulation Multiconference. Budapest,
Hungary, 1996. Proceedings, SCS, 1996. pp 57-61

[4] RFujimoto. "Parallel Discrete Event Simulation". In: Communications ofthe ACM, Vol.
33, No. 10, Oct. 1990. pp 30-53.

[5] E.Moser and W.Nebel. "Case Study: System Model of Crane and Embedded Control". In:
Design, Automation and Test in Europe, 1999. Proceedings, IEEE Computer Society
Press, 1999. pp 721-723.

[6] W.Nebel and G.Gorla. "JAVA, VHDL-AMS, ADA or C for System Level Specification?"
In: Design, Automation and Test in Europe, 1999. Proceedings, IEEE Computer Society
Press, p. 720.

[7] J.K.Adams and D.E.Thomas. "The Design of Mixed Hardware/Software Systems". In:
ACMlIEEE Design Automation Conference, 1996. Proceedings, ACM Press, 1996. pp
515-521.

[8] G.Martin. "Design Methodologies". In: Design, Automation and Test in Europe, 1998.
Proceedings, IEEE Computer Society Press, 1998. pp 286-289.

[9] J.Böttger et al. "An Object-Oriented Model for Specification, Prototyping, Implementation
and Reuse". In: Design, Automation and Test in Europe, 1998. Proceedings, IEEE
Computer Society Press, 1998. pp 303-310.

[lO]W.Wolf. "An Architectural Co-Synthesis Algorithm for Distributed, Embedded
Computing Systems". IEEE Transactions on VLSI Systems, June 1997. pp 218-229.

[ll]N.Woo, ADunlop and W.Wolf. "Codesign from Cospecification". IEEE Computer, Jan.
1997. pp 42-47.

[l2]M.Aiguier et al. "ECOS: A Generic Codesign Environment for the Prototyping of Real
Time Applications". In: Hardware/Software Co-Design and Co-Verification. Edited by
M.Berge, O.Levia and J.Rouillard. Kluwer Academic Publishers, 1997. pp 23-58.

[l3]J.Z.Pino and K.Kalbasi. "Cosimulating Synchronous DSP Applications with Analog RF
Circuits". In: 32nd Asilomar Conference on Signals, Systems and Computers, 1998.

[14] I.Page. "Design ofFuture Systems". In: Design, Automation and Test in Europe, 1998.
Proceedings, IEEE Press, 1998. pp 343-347.

[15] M.Mrva, K.Buchenrieder and RKress. "A Scalable Architecture for Multi-Threaded Java
Applications". In: Design, Automation and Test in Europe, 1998. Proceedings, IEEE
Computer Society Press, 1998. pp 868-874.

[16] AKalavade and E.Lee. "Hardware/Software Codesign Using Ptolemy". In: Codesign.
Edited by J.Rozenblit and K.Buchenrieder. IEEE Press, 1995. pp 397-413.

[17] AA.Jerraya and R.Emst. "Multi-language System Design". In: Design, Automation and
Test in Europe, 1999. IEEE Computer Society Press, 1999. pp 696-699.

	Object-Oriented Modeling and Co-Simulation ofEmbedded Systems
	1. INTRODUCTION
	2. AN OVERVIEW OF THE S3E2S DESIGNENVIRONMENT
	3. MODELING AND CO-SIMULATION
	4. CASE STUDY
	5. COMP ARISON WITH RELATED WORK
	6. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

