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Abstract: This paper presents the modeling and co-simulation capabilities of S3E2S, a 
design environment for electronic systems that can be built as a combination 
of analog and digital parts and software. S3E2S is based on a distributed, 
object-oriented system model, where abstract objects are initially used to 
express complex behavior and may be later refined into digital or analog 
hardware and software. Co-simulation of any heterogeneous model developed 
during a stepwise refinement process is supported. These capabilities are 
iIIustrated by the modeling of a crane and its embedded contro!. 

1. INTRODUCTION 

Embedded electronic systems contain a combination of software and 
hardware, both analog and digital. For simple systems, a single off-the-shelf 
processor might be sufficient, since there are various available architectures 
(microcontrollers, DSP, RISC processors) with different cost / performance 
ratios. However, more complex systems, which represent the current trend in 
the market, usually have more critical requirements, such as a combination 
of behaviors (scalar and DSP processing) and tight low-Ievel characteristics 
(area, speed, power dissipation). Typical examples are voice-modems, 
cellular phones, and embedded controllers for automotive applications. 
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The design of complex embedded systems should ideally proceed from 
an initial, abstract specification, going through a sequence of successive 
refinements, until a final detailed solution is achieved. Intermediate, 
heterogeneous descriptions generated during this stepwise refinement must 
be validated. Co-simulation is the most usual validation too1. 

Most existing environments are oriented towards a particular application 
domain and have a fixed target architecture. They usually follow one of two 
possible approaches for system specification and co-simulation. In the first 
approach, system modeling is performed using a single language from a 
given domain, such as C, VHDL, or a higher-Ievellanguage, and partitioning 
is performed in a later stage. In the second approach, the initial specification 
al ready considers a given partitioning, and each part is modeled using a 
language which is more appropriate for the corresponding domain. 

The S3E2S (Specification, Simulation, and Synthesis of Embedded 
Electronic Systems) environment combines the advantages of both 
approaches. Complex systems may be modeled as combinations of objects 
specified at different domains - abstract object-oriented specification, digital 
hardware, analog hardware, and software - and at multiple abstraction 
levels. Co-simulation is performed by coupling different simulation engines, 
so that the validation of any heterogeneous model developed during a 
process of stepwise refinement is supported. Furthermore, the environment 
allows an easy exploration of the design space at a multi-processor level, 
selecting a combination of processors which best matches the design 
requirements. This paper covers the modeling and co-simulation features of 
S3E2S. The synthesis capabilities are discussed in detail e1sewhere [1]. 

This paper is organized as follows. An overview of the design 
environment can be found in Section 2. The modeling and co-simulation 
capabilities of S3E2S are introduced in Section 3. Section 4 presents a case 
study that fully illustrates the application of the environment. Section 5 
compares S3E2S to other current approaches for modeling and simulation of 
embedded systems. Section 6 draws conc1usions and discusses future work. 

2. AN OVERVIEW OF THE S3E2S DESIGN 
ENVIRONMENT 

Figure 1 presents the design flow in S3E2S. The initial specification is a 
set of objects, described as C++ code. A set of support libraries allows not 
only the sequential modeling of digital hardware and software behavior, but 
also the modeling of linear or discrete time systems (to model analog domain 
behavior). If the user wishes, a set of high level VHDL constructs is also 
available, like a FIR filter, for example. 
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Figure J. The S3E2S design flow 
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Once the initial specification is defined, it can be validated using the 
simulation engine behind S3E2S. Each object that used a pre-defined set of 
methods can then be translated into a VHDL component or a set of analog 
components. Simulation can be done mixing hardware descriptions in 
VHDL, software descriptions in C++ and analog descriptions developed as a 
set of analog components (such as operational amplifiers, converters and 
filters). Each intermediate description obtained during this stepwise 
refinement process can be co-simulated, whereby each object is simulated by 
a dedicated simulator for the corresponding abstraction domain. 

There are 3 alternatives for the synthesis of the digital parts. The first one 
is based on the library of VHDL methods used during refinement. If taken 
from the S3E2S library, all methods are synthesizable. Another possibility is 
the use of the initial C++ specification alone. In this case, an internal 
compiler analyzes the code of each objet and maps it to an off-the-shelf 
processor [1]. A library of processors with different characteristics 
(microcontrollers, digital signal processors, RISC machines) is available. 
Mapping is done based on the characteristics of the object that best match 
processor characteristics. S3E2S performs the parsing of the C++ object 
description, obtaining a control-data flow structure. Each function of each 
object is checked, and the number of memory accesses, arithmetic operations 
and control instructions is verified. Based on the statistics of resource usage, 
on the organization of the object code and on the available time to execute a 
task, a processor best matching these criteria is chosen. 
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A third synthesis possibility is to let the system map some objects to off­
the-shelf processors, leaving some other objects as synthesizable VHDL 
code. The resulting system is a processor with one or more dedicated ASICs. 
A typical situation could be a microcontroller and a dedicated filter. 

Presently, in order to synthesize analog circuits, the designer must use 
only blocks that are available from the library, which can mapped to physical 
components. 

3. MODELING AND CO-SIMULATION 

S3E2S is built on top of SIMOO [2], an integrated environment for object­
oriented modeling and simulation of discrete systems. SIMOO is composed 
of a class library and a model editor. The editor supports the description of 
the static and dynamic aspects of the model. The static structure is described 
graphically, while the dynamic structure is described either directly in C++ 
using the library resources or by means of astate diagram annotated with 
C++ code. The editor implements extensions to diagrams usually proposed 
by object-oriented design methodologies, in order to handle simulation­
related aspects. From the model description, the editor automatically 
generates the necessary executable code. 

A model is composed of interface and autonomous elements. Interface 
elements support tracking of the simulation execution, visualization of 
simulation results, interactive input of data, and dynamic modification of 
parameters during the experiments. Autonomous elements, on the other side, 
are used to model concrete entities. An autonomous element is an active 
object, Le., an object with its own execution thread and a message queue. It 
may interact with other autonomous and interface elements only through 
messages. The model does not support shared variables, so that it may be 
also used in distributed environments. 

Different objects of the same model may follow different paradigms [3]. 
A paradigm is defined as a combination of the following modeling 
approaches: event orientation or process orientation for the description of the 
object behavior, messages or ports for the communication between objects, 
and active or passive message handling. These approaches may be extended 
or specialized by inheritance. 

In order to support a progressive replacement of SIMOO objects by 
VHDL entities or by analog components, and to model interactions with the 
real analog world, a co-simulation strategy combining SIMOO abstract 
models, VHDL descriptions, and analog models is needed. 

The SIMOO simulation environment is coupled to the VSS simulator 
from Synopsys. Figure 2(a) shows two SIMOO objects (A and B) that 



Object-Oriented Modeling and Co-Simulation 0/ Embedded Systems 501 

communicate with each other. Object Bis to be refined into a VHDL entity. 
The co-simulation environment then automatically generates necessary 
interfaces in the SIMOO and VHDL domains. In the SIMOO domain, this 
incIudes an interface element. In the VHDL domain, on the other side, the 
interface specification of the entity corresponding to object Band an 
interface file written in C are generated, as shown in Figure 2(b). These 
interfaces in both domains are responsible for data exchange and for 
synchronizing the simulators. 

SIMOO domain 

Figure 2(a). An initial specification in the SIMOO domain 

f ...... 1_. ) < > I+-t- EntityB 
Communicalion .. ' (VHDL) 

SIMOO Domain 
VHDLDomain 

Figure 2(b). The same model, transfonned after generation of interfaces for co-simulation 

The communication between the SIMOO and VSS simulators is 
performed via sockets. This allows a distributed solution, where each 
simulator may run on a different node of a network. In the current version, a 
conservative approach [4] is adopted for synchronization between the 
SIMOO and VSS simulators. The base time unit is defined by the VSS 
simulator, and both simulators advance together their simulation times at 
each time step. A more efficient implementation of this co-simulation 
mechanism is currently under investigation. In this more optimistic approach 
[4], each simulator may run with its own cIock and the synchronization is 
not performed at every cIock cycIe. 

An analog part may be modeled by a set of differential equations that 
define the object behavior at every possible time value. The co-simulation 
strategy of the SIMOO environment follows a signal-flow approach, where 
objects are modeled as mathematical functions from the inputs to the 
outputs, as opposed to a structural approach, where objects are described as 
interconnections of analog components. This signal-flow approach is more 
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convenient for systems that don't have a physical implementation yet, or for 
systems whose design has a stronger emphasis at higher abstraction levels, 
like PID controllers, converters, filters, transfer functions, etc. 

For the integration of an analog part into a SIMOO model, it is thus 
necessary that the SIMOO object encapsulating this part implements the 
numerical method needed to solve the differential equations, such as Euler or 
Runge-Kutta. The SIMOO object must contain attributes such as the time 
step for the numerical resolution of the equations, the equations themselves, 
and methods for handling state variables. 

4. CASE STUDY 

In order to illustrate design possibilities using S3E2S, we have modeled a 
crane and its embedded control. This system has been proposed in [5] as an 
attempt ofbenchmarking in the area ofsystem-level modeling and synthesis. 

The physical plant is composed of a crane with a load, moving along a 
track, as depicted in Figure 3. The modeling of the physical system is done 
by a set of differential equations, which describe the behavior of the crane 
with a load and external forces being applied. The control of the system 
involves a set of sequential procedures and the control algorithm itself, 
which will assure a smooth behavior while the car is moving. 

Maximum 
position 

+- Fe 

Load 

Minimum 
position 

Figure 3. Crane moving aIong its track with load [5] 

A first version of the modeling of the complete system can be seen in 
Figure 4. Object PlantJk is the physical plant itself. It has been described as 
a set of differential equations that are solved in continuous time. Object 
Actuators is also modeled in the linear (analog) domain. Object M_ Control 
performs the discrete step control algorithm and sensor checking. It receives 
sensor inputs at each 2 ms, covering the position of the car with some 
precision, the limits of the displacement for the car, the angle of the cable, 
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and the desired position of the load. All these inputs are used to complete 
other tasks. For example, the initialization phase of the control algorithm 
itself and the sensor verification are performed by this major block. 

Figure 4. The initial crane and embedded control model 

The control algorithm itself is implemented as a discrete computation of 
the state-variable method. In the control algorithm the goal is to move the 
crane with a linear displacement, without bumps and oscillations. A set of 
matrix multiplications must be performed at a fixed time step of 10 ms. If 
q n =[ q 1 n, q2 n, q3 n, q4 n, q5 n] T is the discrete state vector of the crane, then 

qn+t=A*qn+B*[Motor_Voltage Car_Position]T (1) 
is the next discrete state of the control algorithm. Coefficient matrixes A 

and B have dimensions 3x5 and 2x5, respectively. 
The object M_Control is also responsible for performing sensor 

checking. When the system enters this mode, the car is driven until extreme 
positions are found, where sensor inputs should detect its presence. This 
mode thus allows checking if any sensor function is missing. 

Object Diagnosis is responsible for continuously checking plausibility of 
sensor values in parallel to the control algorithm. The position of the car and 
the value of the angle of the load with regard to the vertical axis are 
informed by the object M_Control and checked for plausible values. In case 
any discontinuity is verified, the emergency mode is entered immediately. 

The control algorithm outputs the value of the force to be applied to the 
crane, and this is passed to the object Actuators. This object is responsible 
for driving the dc motor that controls the speed, the breaks, and the 
emergency break, that stops the crane until a power-on-reset is performed. 

It is interesting to notice that the proposed benchmark problem allows 
various modeling solutions, as in almost any real life situation. For example, 
modeling of the crane behavior should be developed in the analog domain, 
by solving a set of differential equations that model its behavior. Besides, the 
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control itself could also be developed in the analog world, as some control 
systems still are. On the other hand, even if one modeled the control circuit 
as a differential equation in the analog domain, some digital hardware would 
still be present, due to the finite state machines required to perform sensor 
checking, system diagnosis, and emergency control. S3E2S allows any 
combination of these different modeling domains and a stepwise refinement 
ofthe solution, as it will be described in the next paragraphs. 

In Figure 4, which showed our initial modeling of the proposed system, 
the behavior of all objects is described as e++ methods. Table 1 illustrates 
the methods implemented for the object PlantJk. Figure 5 shows the main 
code for this same object. 

Table J. Methods for obiect Plant rk 
Method Description 
Eval 
Rk4 Diff 
Diff 
Send sensor 

Called in each integration step; invokes functions to solve diff. equations 
Implements the Runge-Kutta integration method, to evaluate car distance 
Describe the car position, over the time 
Send the plant state to objects Control A and AD 

1* state[ 0] = xdot, state[ 1] = x, 
state[ 2] = alphadot, state[ 3] = alpha *1 

Parameters par; 
MSGEA m; II port definition 
double xdot, x, dxdot dt, dx dt; 
double alphadot, alpha, dalphadot dt, dalpha dt; II derivatives 
xdot = state[ 0] ; I I initial values -
x = state[ 1] ; 
a1phadot = state[ 2] ; 
alpha = state[ 3] ; 
t = Cloek() I 1000; 
par.Set(time-t); II step 
m.Set (Id(), aetuator, "FORCE", NORMAL_PR, par); 
SendReeeiveNow(&m); 
Fe = m.GetData() .GetParAsRea1(0); II get data 
dxdot dt = (feime) + (g*(m1/me)*a1pha) - «de/mc)*xdot); 
dx dt;; xdot; 
dalphadot dt = ««dc/mc)-(d1/ml»* (xdot/r»-g/5* (l+(ml/mc»* (alpha» 
-«dl/ml)*alphadot) _ (fc/(mc*r» + (fd/(ml*r»; II differ.equations 
dalpha dt = alphadot; 
state[ 0] = dxdot dt; I I next step 
state[ 1] = dx dt; 
state[ 2] = dalphadot dt; 
state[ 3] = da1pha_dt; 

Figure 5. Differential equation describing the crane in object PlantJk 

In Figure 6 we have split M_Control into two different objects. Since the 
control algorithm has many arithmetic operations, we described it in a 
separate object ControCA. The finite state machine that performs sensor 
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checking is modeled in object Job _ Control. All objects of the model are still 
described using e++ methods. 

Figure 6. Refining the initial model: control algorithm as aseparate object 

In order to allow co-simulation and to start a first version of the synthesis 
of some system parts, Job _ Control and Diagnosis are moved to VHDL. This 
requires the insertion of analog to digital and digital to analog converters, as 
shown in Figure 7. Notice that all FSMs, formerly implemented by separate 
objects Control_A and Diagnosis, have been grouped in the object 
Control_Diag, although this would not be mandatory. The collapsing of the 
different FSMs was done because possibly a better synthesis result could be 
obtained, since all FSMs have many common inputs. 

Figure 7. Synthesizing the system: Control_ Diag as a VHDL object 

The synthesis results for the FSMs are a total of 102 logic cells and 41 
flip-flops, occupying an area of 8% of an Altera lOk 1 0 FPGA. 
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5. COMP ARISON WITH RELATED WORK 

The specification and simulation of application-specific embedded 
systems is an area of active research. In the case of complex systems, which 
cannot be implemented by a single processor or controller and its associated 
software, it is difficult to specify the designer's intention. Many specification 
languages, or combinations oflanguages, are being used in industry [6]. 

The description of complex systems through a single, abstract language 
has been proposed [7,8]. Some approaches that follow this strategy adopt an 
object-oriented specification to describe both hardware and software [9-12]. 
In these cases, design partitioning is left to later design stages. The system is 
modeled as a set of objects, and each one of them may be later implemented 
as software or hardware, either digital or analog (as in [13]). 

In these object-oriented approaches, system behavior is described by 
some procedural language, such as C++. The specification of embedded 
systems using procedural languages is a natural consequence of 
microprocessor-based system design. An important advantage of this 
approach is that the specification can be simulated and validated. However, 
this kind of specification is more appropriate for a software-based synthesis, 
where the target architecture is fixed and based on a given processor, and the 
specification is compiled into the processor's code. On the other side, these 
descriptions have an inherently sequential nature and are not appropriate for 
describing hardware semantics. Some extensions that allow the description 
of hardware features like parallelism and communication mechanisms have 
been developed [14]. Java has been also proposed, not only as a language for 
describing the abstract system behavior, but also as a basis for a target 
architecture based on multiple threads [15]. 

Although the S3E2S environment is also based on object-oriented 
specifications, where abstract behavior is given in C++, the drawbacks of 
this approach are partially avoided, because heterogeneous specifications 
mixing C++, VHDL and analog descriptions can be created. 

This alternative approach of supporting modeling of heterogeneous 
systems is also followed by Ptolemy [16], an environment for simulation and 
prototyping of heterogeneous systems which also uses object-oriented 
technology. Ptolemy implements the combination of different simulation 
mechanisms, called domains (such as Synchronous Data Flow, Dynamic 
Data Flow, discrete event, and analog). Another environment allowing the 
specification and simulation of heterogeneous systems is described in [17], 
where a backbone in the operating system implements communication 
among dedicated simulators that are needed for heterogeneous objects 
specified in different languages. 
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S3E2S combines the advantages of the multi-Ianguage and heterogeneous 
simulation approach with the abstract, object-oriented specification. Objects 
can be modeled regardless of their future implementation as digital or analog 
hardware or software. Then, any object may be specified in any of these 
domains or refined into any of them, and every possible intermediate model 
generated during this stepwise refinement process may be co-simulated. 

6. CONCLUSIONS AND FUTURE WORK 

The automatie design of embedded electronie systems is an open area of 
research. A design environment must consider important aspects such as 
system specification, partitioning, validation, and synthesis. Regarding the 
specification, current design environments either propose a multi-Ianguage 
approach, where each component is modeled in a language which is suitable 
for a given implementation domain, or a single language approach, where all 
components must be modeled using a language from a single domain. 

This paper presented S3E2S, an environment combining the advantages of 
both approaches in a flexible way. An abstract, object-oriented, initial 
specification may be created, and each object may be later refined into a 
different domain, using a suitable language (C, VHDL, differential 
equations). Any heterogeneous model created during the process of stepwise 
refinement may be co-simulated for validation. The paper illustrated these 
modeling and co-simulation capabilities by means of a concrete example. 

We are currently implementing the automation of the synthesis 
capabilities of S3E2S. From a manual characterization of available processors 
and an automatic characterization of the application objects (specified as 
SIMOO abstract objects), the environment is capable of selecting the best 
multi-processor platform for implementing the application. 

We are also developing a more efficient implementation of the co­
simulation strategy. An optimistie synchronization mechanism will allow 
each object to have its own local time. Each object encapsulating an analog 
behavior will have a time step most appropriate for the numerical integration 
of the differential equations, while synchronization among objects will occur 
only as objects have to communicate events on interface signals. 
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