
Architectural Transformations for Hierarchical
Algorithmic Descriptions

Marcio Yukio Teruya, Marius Strum and Wang Jiang Chau
Department 01 Electronic Enginnering, Escola Politecnica da Universidade de Sao Paulo,
Brazil

Key words: Transformational Design, Architectural Synthesis, High Level Synthesis,
System Synthesis

Abstract: The use of hierarchy on writing algorithmic descriptions of digital systems
allows the implementation of more complex designs since it increases
designer's productivity by introducing important features such as modularity,
encapsulation and reusability. We are particularly interested in the problem of
generating an optimal register transfer logic structure from a hierarchical
algorithmic description. It is relatively straightforward to use High Level
Synthesis (HLS) tools for producing an implementation from hierarchical
algorithmic descriptions; each algorithmic partition is implemented separately
and then linked in a following step. In general, the results are sub-optimal due
to the large gap existing between the specification and implementation. In this
article, we detail a simple architectural model for hierarchical algorithmic
descriptions and a set of architectural transformations, which are the core of a
methodology, Recursive High Level Synthesis (RHLS), aimed to optimise
hierarchical implementations. The transformations are used to reshape the
architecture of pre-existing hierarchical algorithmic descriptions in order to
provide better synthesis results from HLS. We have implemented a suitable
data structure and a set of transformations and tested them over a set of
hierarchical algorithmic examples.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2000
L. M. Silveira et al. (eds.), VLSI: Systems on a Chip

10.1007/978-0-387-35498-9_57

http://dx.doi.org/10.1007/978-0-387-35498-9_57

474 Marcio Yukio Teruya, Marius Strum and Wang Jiang Chau

1. INTRODUCTION

To cope with growing digital system designs complexity, a weIl
established strategy is to represent them hierarchicaIly. It is weIl known that
hierarchy allows introducing some very desirable features into the design
process, such as modularity, encapsulation and reusability, contributing
towards increased productivity and making large projects less expensive.
Although designers may have their task of specifying and describing a
circuit made easier, the results at implementation side may not be as
positive. For instance, the hierarchy of a design entry, containing a
partitioning that aims at productivity, may show to be inefficient if direcdy
reproduced into the implementation, whose partitioning should be driven by
implementation level metrics (timing, power, cost, etc.).

In present methodologies based on higher level descriptions, the design
entry presents a widening gap to the final implementation description what
increases their aforementioned hierarchical incompatibility. This is very
much true for algorithmic level design. Figure la shows an example of a
hierarchical algorithmic description; X is the top level algorithm, Y and Z
are the lower level algorithms that implement operations opY and opZ,
respectively, in algorithm X. To produce a structural level implementation,
we can use High Level Synthesis (HLS) [1] as shown in Figure Ib, where
the synthesised structures from algorithms Y and Z are represented as blocks
composed of smaller basic blocks (A, B, C and D). Figure lc shows the
synthesised structure from algorithm X; it preserves the original algorithmic
hierarchy but it presents some redundancy; for instance, the basic block C
appears 3 tim es, on ce at each partition. Depending on the circuit timing
requirements, there could be some additional block sharing through a
different partitioning, as seen in figure 2.

This example shows that, for the sake of implementation quality, the
hierarchical decomposition at design entry level must be in tune with the
respective one at implementation level, but, usuaIly, when high-level
partitioning is carried out, implementation issues are not visible yet. The
problem here is how to keep the mentioned productivity advantages of
adopting hierarchical methodologies at design entry level and still deli ver
efficient implementations. Some attempts have been made to deal with this
problem but there is no clear solution yet. In [2][3][4], the problem of
generating hierarchical structures was tackled, but the authors did not focus
on productivity issues (as possible component reusability) arisen from a
hierarchical strategy. Even though, their approaches were capable of
producing hierarchical structures containing some optimisation, via
restricted rules in partitioning of data-flow [2] or control-flow [3][4] graphs
derived from plain algorithmic descriptions. In [5], it is shown a structured

Architectural Transformations for Hierarchial Algorithmic 475

methodology capable of dealing with hierarchical algorithmie designs using
a HLS system, but they did not show any automatie means for producing
optimised implementations. More recently, in [6], the authors presented an
extended HLS system, which can allocate components covering different
levels of hierarchy to the algorithmic level descriptions. They have proposed
an extended model for re-configurable functional units (FUs) which includes
their behavioural information; at the scheduling phase redundancies are
detected and optimised hierarchieal structures are produced. The drawback
of this approach is its complexity - a whole new set of efficient algorithrns
must be derived, besides the fact that new generated FUs are problem
dependent what restricts their reuse.

(a) (b) (c)

(HLS Imml
Wy

Immlw
Wy

call oPy
[HLS I l[Alml Imml call opZ EI]z EI] z x

HLS

Figure J. From a hierarchical algorithmic description to a hierarchical structure using HLS.

(a)
....... .

(b) (c)

mmw
m m YZ x

Figure 2. An alternative partitioning for the hierarchical algorithmic description.

In this paper, we follow the Recursive High Level Synthesis (RHLS)
approach, presented elsewhere[7], to solve the problem of generating an
efficient hierarchical register transfer logic (RTL) structure from a
hierarchical algorithmic description. It is based on implementation metries
and transformations over hierarchical algorithmic descriptions very much
like going from the one in figure 1 to the one in figure 2 - the newly created
hierarchieal algorithm should then be suitable for generating, via HLS, an
optimised structure.

The objective of this article is to present details about the foundations of
our methodology for RHLS, whieh are: an architectural model for
hierarchical algorithmic descriptions and a set of Architectural
Transformations (A Ts). Our architectural model establishes a basic
framework for designing hierarchieal algorithmic descriptions and also

476 Marcio Yukio Teruya, Marius Strum and Wang Jiang Chau

establishes a basic vocabulary upon which the transformations will act on. It
was designed to be independent of hardware description languages such as
the VHDL syntax. The architectural transformations provide new modules
which may fulfil better a design implementation level requirements and,
since the transformations are defined on modules operation sets, they make a
strong contribution for FU reuse environments. It should be noted that the
concept of architectural transformations is not new; in [8], the authors
presented an implementation based on an architectural model at RTL level.
We have adopted a higher abstraction level architecture for two reasons:
higher flexibility and simpler implementation. The set of transformations
acts on the hierarchical algorithmic descriptions following our model,
reshaping them for structural level optimisations, particularly by improving
sharing of structural resources, such as FUs, registers and so on, supported
by a HLS system, as exemplified previously.

This article is organised as folIows. Section 2 gives a general explanation
about our architectural model and the transformations. The sections 3 and 4
present details, respectively, of a mathematical formalism for our
architecture model and the algorithms we implemented for the set of
transformations. In section 5 implementation issues are explained and some
results are presented. Finally, section 6 concludes this article.

2. STRATEGY OVERVIEW AND DEFINITIONS

2.1 Recursive High-Level Synthesis

The Recursive High Level Synthesis may be defined as the optimisation
process of a hierarchical RTL structure through the application of a sequence
of transformations on its functional units (FUs). We say hierarchical RTL
structure because it contains FUs which are RTL structures themselves.
Furthermore, these FUs also have behavioural descriptions from which a
RTL structure may be obtained via HLS.

Figure 3. Tasks in RHLS

Architectural Transformations for Hierarchial Algorithmic 477

Figure 3 illustrates the main tasks in RHLS: Structure analysis - the
hierarchical RTL structure is examined in regard to redundancies or any
other inefficiencies through their functional units; Transformations - new
functional units are created based on existing ones in order to solve problems
detected by the structure analysis; and Structure re-synthesis - a new
hierarchical RTL structure is generated using the newly created functional
units. More details about RHLS can be found in [7].

2.2 Architectural Model

Our architectural model establishes the basic framework for writing
hierarchical algorithmic descriptions. In other words, it defines the basic
components and their basic interrelations for building hierarchical
algorithmic descriptions. Therefore, besides providing guidance for writing
these descriptions, it states what the transformations can manipulate.

The basic elements of our architectural model are the behavioural views
(algorithmic descriptions) of complex functional units. We understand
functional unit (FU) as a HLS system library component that is capable of
performing one or more operations. Complex FU is a FU that holds an
algorithmic description for the operation set it is capable of performing.
Inside this algorithmic description, there are calls to operations provided by
either primitive (non-complex) FUs or other complex FUs. This establishes a
relation of hierarchy among complex FUs and, therefore, a relation of
hierarchy among algorithmic descriptions. Hence, our architectural model is
basically a set of intercommunicating (via operation calls) processes
(algorithmic descriptions) hierarchically organised.

entity FU_name is
port (RQ!1 declarations); end FU _name;

anhitecture behavior ofFU_name is begin process
variable dec1arations

begin
case sei is

when 1 => (instruction set/or operation 1)

when n => (instruction set/or operation n)
end case;

end process; end behavior;

Figure 4. BehaviouraI view of a FU represented as a VHDL template.

The architectural model also comprises the architecture of the behavioural
views of complex FUs; we have modelIed it as a set of ports, variables,
instruction sets, internaioperations and a list of FUs (figure 4). The
instruction sets are the algorithmic descriptions of the operations the FU is

478 Marcio Yukio Teruya, Marius Strum and Wang Jiang Chau

capable of performing and there is exactly one instruction set for each
operation of the FU. The interna I operations are the operations used inside
the algorithmic description of the FU's behavioural view. The list of FUs
(not shown in figure 4, but considered part ofthe behavioural view) refers to
the candidate FUs to execute the internaioperations.

The processes (Le. the behavioural views of the FUs) are organised in a
hierarchical fashion, therefore, ·the activation of any sibling process or their
data exchange must be arbitrated by the parent processes using some kind of
communication protocol. Our approach to solve this problem is similar to the
one proposed in [5], where intercommunicating protocol is implemented at
the parent processes as reproduced in figure 5. The protocol is composed of
two operations: the first one (opX) starts the operation and sends the related
parameters to the sibling process and the second one (waitX) runs repeatedly
until the result is ready to be used. This protocol is particularly useful in
processes whose processing time is data dependent.

opX(a,b);
waitX (c,done);
while (done 1= '1') loop

waitX (c,done);
end loop;

- starts the operation with parameters a and b
- reads the fIag (done) (ar operation cornpletion
- Ioops until operation cornpletes
- and reads a result (c)

Figure 5. A interprocess protocol in VHDL

2.3 Architectural Transformations (ATs)

We have implemented three ATs, which, essentially, perform
modifications on the architecture of complex FU behavioural views, in order
to produce new complex FUs with altered operation sets. More elaborate
architectural changes can be achieved through combination of these basic
transformations: The transformations are:
a) Merge: from two pre-existent FUs, Merge produces the behavioural

view of a FU capable of performing the same operations of the two
original FUs. As an optimisation tool, Merge is intended to cluster FUs
with high probability of resource sharing.

b) Extract: from one pre-existent FU, Extract produces the behavioural
view of a FU with one operation removed from the original operation set.
Extract is intended to reshape existing FUs removing redundancies so
they can better fulfil new requirements.

c) Promote: from one pre-existent complex FU (which contains at least one
more FU), Promote produces the behavioural view of a FU with one
extra operation in its operation set (the extra operation is borrowed from
a sibling FU). Promote is intended to add functionality to existing FUs
so they can better fulfil new requirements.

Architectural Transformations for Hierarchial Algorithmic

3. MATHEMATICAL MODEL

The architecture of a FU behavioural view is defined as:
A = < name, 0, P, V, I, 0', A >, where:

name is the name ofthe FU.

479

o is the set of operations executed by the FU; 0=<0/,02, ... ,ono>, where 0,

is the ith operation; o,=<name> meaning it has a name.
P is the set of ports; P= <Po,p/, ... ,PnP>, where p, is the ith port;
p,=<name,width,type> meaning it has a name, a width (in bits) and a type
belonging to the set <"controf',"input","output">; po is of type "controf',
the other ones must be "input" or "output".
V is the set of variables; V=<V/,V2, ... ,Vnv>, where v, is the ith variable;
v,=<name,width> meaning it has a name and a width (in bits).
I is the set of instruction sets; 1= < h h ... , Inl >, where 1.J is the jth
instruction set; It=<i/,i2, ... ,inIJ>, where ik is the kth instruction; ik=<T,B>,
where T is the type of instruction, which can be any instruction of the
adopted hardware design language's (HDL) instruction set, and B is the
body of the instruction which can be a list of arguments (ports, variables,
constants) or another instructions.
0' is the set ofinternal operations; O'={o/,o/ ... ,0nO· '}, where 0,' is the
ith internaioperation; o,=<name,PA> meaning it has a name and a set of
parameters P A=<pa/, pa2, ... , panPA> where pa,=<name,type> is the ith
parameter; each parameter also has a name and a type belonging to the
set <" input" ," output"> .

- A is the set of architectures (it is the list of FUs mentioned in section 2.2)
capable of performing the internaioperations in 0'; A = {A/,A2, ... ,AnA},
where A, is the ith architecture.

Observe that the last element of this mathematical model, A (set of
architectures), makes the model suitable to represent a hierarchical
algorithmic description. The mathematical model has the following
assumptions: 1) FUs are capable of executing one or more operations; 2) all
ports are bit vectors; 3) all input and output ports can exist in any quantity
and there are no width restrietions; 4) bi-directional ports are not allowed; 5)
there is only one control port which is designated to activate the FU and to
select one desired operation; 6) all variables are bit vectors; 7) variables can
exist in any quantity and there are no width restrictions; 8) if the FU is
capable of executing more than one operation, then only one operation can
be executing at a time; and 9) to each instruction set corresponds one, and
only one, operation. Some of these assumptions are restrietions imposed to
simplify the implementation of data structures and, as such, they could be
relaxed to increase the model's generality. An example of use of the
mathematical model is given below for a reciprocal division module.

480 Marcio Yukio Teruya, Marius Strum and Wang Jiang Chau

Listing 1: A behavioural view in algorithmic VHDL.
Entity mrep is

port (input! : in integer; seI: in int2bit; outval: out integer; outdone: out bit);
end mrep;
architecture behavior ofmrep is begin process

variable A, T, X, Q: integer;
begin

case seI is
when I => -- reciprocal operation

T:=constexp20; X:=O; A:=input!; outdone<='O';
while (X/=20) loop Q:=shiftIeft(T); X:=X+I; T:=Q-A;

if(T>O and A>O) then T:=T+I; end if; T:=qsave(Q,T);
Q:=selectlsb(T);

when 2 => -- waiting operation
outval <= Q; outdone <= 'I ';

end case; end process; end behavior;

Listing 2: The corresponding mathematical model for Iisting 1.
Amrep = < "mrep", Omrep, Pmrep, Vmrep, Imrep, Omrep', Amrep >

Omrep = < "rep","wrrep" >
Pmrep = < po, Pl,P2, P3 >, po =<"ser',"contror',2>,pr<"inputl","input",32>,

P2 =<"outvar',"output",32>, P3=<"outdone","output",I>
Vmrep = <1Il,1I2,1I3,1Ii>, 1Il=<"A",32>, 11..=<"1",32>, 1Ij=<"X",32>, V4 =< "Q",32>
Imrep=<11>

11 = <hhhhlsJ6>, 12 = < h 12 >
h1l = <ASSIGN,<1I2,<0/ ,null»>, hl2 = <ASSIGN,<1I3,O»,
Id3 = <ASSIGN,<1Il,[Jl», Id4 = <ASSIGN,<P4,O»,
11.15 = <WHlLE,«NE,<1I3,20», <Ol,<1I4,1Iy>, <0/,<113,113,1», <0/,<112,114,111»,

<IF, «AND,«GT,1I2,O>,<GT,1Il,O»>,< 0 1' ,<112,112,1»», <Os' ,<1I2,1I4,1Iy»>,
11./6 = < O. ,<1I4,1Iy>
hl/ = <ASSIGN,<P3,1I4», hh = <ASSIGN,<p4,1»

Omrep' = {O/, 0/, 0/, Ol, 0;, O.}
0/ = <"+",<pal,pay>, 0/ = <"-",<pal,pay>, 0/ = <"constexp20",null>
0/ = <"shiftleft",<pal,pay>, Os' = <"qsave",<pal,pa2,pa3», O. = <"selectsb",<pa/,pay>,

Amrep = { Aalu, Ashift }

4. ALGORITHMS

In this section we present the main algorithms we have implemented, all
based on the mathematical model just introduced.

The Merge AT receives two architectures as inputs: Al=<namel,Ol,Pl,
VIJl,01',Al> and A2=<name2,02,P2,V2J2,02',A2>, and generates a third
one: Am=<namem,Om,Pm,VmJm,Om' ,Am>, using the following algorithm:
1. namem = a different name from those pre-existent
2. Om' = 01' U 02'
3. <OmJm> = Unite«01Jl>,<02J2»
4. <PmJm> = MergePortSets(P 1 ,P2Jm)
5. <VmJm> = MergeVariableSets(Vl,V2Jm)
6. Am=Al UA2
7. Return Am = <namem,Om,Pm,VmJm,Om' ,Am>

Architectural Transformations for Hierarchial Algorithmic 481

First (line 1), a name different from any other is given to the architecture,
then, the element Om' (line 2), the set of internaioperations, is generated by
simple union of those in the initial architectures; the same occurs for the
element Am (line 6), set of architectures. The elements Om, set of
operations, and Im, set of instruction sets, are produced by the special
function Unite (line 3) which works similarly to the connective set union;
regarding Im, there is an one-to-one correspondence between the sets 0 and
I: Im is generated taking Om as guide, i.e., if the first element of Om is the
first element of 01, then the first element of Im must be the first element of
11, and so on. Finally, the elements Pm and Vm are generated by algorithms
MergePortSets and MergeVariableSets which perforrn four similar tasks.
MergePortSets concatenates the original port sets, minirnises them, creates
a new control port with a suitable width and updates the set of instruction
sets with the new ports. To minimise the port set, an algorithm aimed to
share ports among instruction sets is used- given a pair of ports, one can
substitute the other if they are of the same type (input or output), have the
same width and belong to different instruction sets.

The Extract AT has the form Extract(A,opname). It receives one
architecture as input, A = <name,O,P, V J, 0' ,A >, and the name of the
operation being extracted, opname, and it generates a second architecture:
Ae=<namee,Oe,Pe,Ve,/e,Oe' ,Ae>. The undesired operation is extracted
from the original operation set, 0, to produce the new operation set Oe; Ie is
generated in a similar way. The other elements of the new architecture (Pe,
Ve, Oe and Ae) are derived from the original one by eliminating all the
elements that became unused after removing the instruction set
corresponding to the extracted operation.

The Promote AT has the form Promote(A,opname). It receives one
architecture as input, A = <name,O,P, V,/, 0 ' ,A >, and the name of the
operation being promoted, opname, and it generates a second architecture:
Ap=<namep,Op,Pp,Vp,/p,Op' ,Ap>. The algorithm generates a new operation
set, Op, appending the new operation to the pre-existing set of operations.
The new port set, Pp, is generated by concatenating the existing port set, P,
to a new one, Pnew, containing the exact number of ports required by the
promoted operation. After this, a new instruction set is created for the
promoted operation; it is composed of a simple call to the new operation
having the new ports, Pnew, as parameters and the created port set, Pp, is
minimised. A new control port is generated according to the number of
operations and it is appended to Pp. Finally, the elements Vp, Op' and Ap are
directly copied from the original architecture. It should be observed that a
promoted operation requires a costlier access time compared to a identical
non-promoted operation because promotion implies arbitration through FU's
top controller (one extra cyde dock in our case).

482 Marcio Yukio Teruya, Marius Strum and Wang Jiang Chau

5. RESULTS

The first set of results (tables 1 and 2) illustrates the AT's modus
operandi; they were obtained from transformations over three benchmarks
(gcd, mmul and mrep) and from HLS. Table 1 shows the architectural
characteristics of the benchmarks and resulting architectures from merging,
promoting and extracting. The table shows the operations the FUs are
capable of performing (0), its ports (P), its variables (V) and its architecture
set (A).

Table 1. Architectural characteristics for the benchmarks and the ones produced by the ATs
FU 0 P V A

mgcd gcd, wgcd 2 i[32], 1 0[32], 1 0[1], sel[2] 2[32] alu
mmul mul, wmul 2 i[32], 10[32],10[1], sel[2] 5[32] alubase,shift
mrep rep, wrep 1 i[32], 1 0[32],1 0[1], sel[2] 4[32] alu,shift

Merge(mrep,mmul) mul, wmul, rep, wrep 2 i[32], 1 0[32],1 0[1], sel[3] 5[32] alu,shift,alubase
Promote(mgcd,{-}) gcd,wgcd, - 2 i[32], 1 0[32],1 0[1], sel[2] 2[32] alu
Extract(Promote gcd, wgcd 2 i[32], I 0[32],1 0[1], sel[2] 2[32] alu,alubase
(mgcd,{-}),{-})

Notes: Column P: i designates a input port, 0, an output port and sei, a selection port; the number
between brackets indicates the port's width in bits. Column V: the number between brackets indicates a
variable with that many bits. Alu, alubase and shift are primitive FUs.

Table 2 shows characteristics of RTL structures obtained from the
architectures in table 1, via a HLS system (we have used AMICAL[9]).
Regarding Merge, it can be observed a reduction on FU counting: the
structure for Merge(mrep,mmul) uses 1 alubase and 2 shifts; if mmul and
mrep were taken separately, the total ofFUs would be 1 alubase, 3 shifts and
1 alu. The same can be said about the muxes. Regarding number of registers,
AMICAL allocates one register for each variable and constant, therefore it
closely follows the variable set. The downside is on the controller - it is
larger than the sum of the ones in the original FUs, although the number of
states, transitions and ios (total sum of controller's inputs and outputs) were
smaller as shown in the column 'controller' in table 2. This happened
because controller area are non-linearly dependent on the number of states,
transitions and ios. Adding data-path and controller, the FU produced by
Merge is sm aller than the sum of the originating ones; the column 'gain'
shows the difference. Regarding Promote, it forces the creation of paths
from ports to FUs; this effect can be observed in table 2, which shows an
increased number of muxes and controller hardware when comparing
transformed units to the original ones. However, using Promote may still be
advantageous; for instance, if a data-path contains a mmul and an alu, and
Promote is applied in mmul generating a new version which is capable of
performing all the operations of an alu, then the data-path could not need the
alu anymore. In table 2, the column 'gain' shows the gain in area if the
aforementioned optimisation were carried out.

Architectural Transformations for Hierarchial Algorithmic 483

Table 2. Structural characteristics for the benchmarks and for the ones produced by the ATs.
structural features area gain

mgcd 1 FU (alu), 4 Regs, 5 Muxes, (6T,2S,145ios) 4744+604=5348

mmul 3 FUs (alubase, shift(2», 7 Regs, 8 Muxes, 12008+ 1346=13354
(12T,6S,160ios)

mrep 2 FUs (shift, alu), 6 Regs, 6 Muxes, 8680+ 1952= 10632

(13T,7S,215ios)
Merge(mrep, 3 FUs (alubase,shift(2», 7 Regs, 10 Muxes, 12712+4927=17639 6347

mmul) (24T,12S,94ios)
Promote(mgcd, 1 FU (alu), 4 Regs, 6 Muxes, (7T,2S,148ios) 5093+719=5815 597

{-}) (467)

Extract(Promote 1 FU (alu), 4 Regs, 5 Muxes, (6T,2S,145ios) 4744+604=5348
(mgcd,{-}),{-})

Notes: Column structural features: Iists the main contents of the structure: number and names of FUs
(between parenthesis), number ofregisters, number ofmultiplexers and features ofthe controller (number
os transitions(T), number os states(S) and the sum of input and output ports (ios) of the controller).
Column area: estimations of area in NTBR's - number oftransistors - for the data-path, the controller and
the total. Column gain(loss): shows potential gains or losses in using the transformed FUs, in NTBRs.

Additional experiments were carried out to observe the changes on
hierarchical descriptions when transformations are applied on them. In table
3, the comparison between two hierarchical benchmarks, pd and pid, and
their transformed versions is shown; only the synthesised structural data are
presented. Both transformed versions were obtained from the original ones
by adding one extra transformed FU (mmulmrep+ -=Promote(Merge(mmul,
mrep), {+-}) into theirs set of architectures. Results in table 3 show that, in
all cases, area reductions were obtained; the total area of FUs were always
smaller. However, the controller size increased due to the increased
complexity in accessing promoted operations, which uses more cycles as
commented in section 4; AMICAL created controllers with more transitions
due to this fact, it also implies that the new architectures are slower.

Table 3. Structural characteristics for the hierarchical benchmarks

structural features area reduction

pel 26Regs, 8FUs {ram,bset,mmul, mrep,alu, 52242+15254=

bmask(2),shift}, 16Muxes, (I IOT,48S,1 96ios) 67496

pcl* 26Regs,6FUs tram, bset, mmulmrep+-, 44925+16309= 9,3%

bmask(2), shiftr}, 15Muxes, (120T,48S,192ios) 61234

pid 14Regs,4FUs {rom, mrep, mmul, a1u}, 8Muxes, 40378+1758=

(52T,22S,45ios) 42136

pid* 14Regs,3FUs {rom, a1u, mmulmrep+-}, 34125+1778= 14,8%

7Muxes, (56T,22S,42ios) 35903

Note: The benchmarks marked with a star are the transformed ones. See also notes in table 2.

484 Marcio Yukio Teruya, Marius Strum and Wang Jiang Chau

6. CONCLUSION

We have presented a set of Architectural Transformations and a suitable
modelling for hierarchical algorithmic descriptions. The main application for
our ATs is for obtaining optimised hierarchical RTL structures from
hierarchical algorithmic descriptions, via HLS. By using such optimising
tools, designers are freed to write hierarchical algorithmic descriptions
without worrying over some implementation issues like consequences of
writing style on structural level quality. We have also presented some
experimental results which confirm such a claim.

REFERENCES

[1] D.D.Gajski, N.D.Dutt, A.C.H.Wu e S.Y.L.Lin, "High-Level
Synthesis - Introduction to Chip and System Design", Kluwer Academic
Publishers, 1992.

[2] W. Geurts, F. Catthoor, H. De Man: Time Constrained Allocation and
Assignment Techniques for High Throughput Signal Processing.
Proceedings of the 29th Design Automation Conference, pp.124-127, 1992.

[3] D. Sreenivasa Rao, F. J. Kurdahi: Controller and Datapath Trade-offs
in Hierarchical RT -Level Synthesis. Proceedings of the 7th International
Symposium on High-Level Synthesis, 1994.

[4] R. Genevriere, R. Camposano: Partitioning and Restructuring Designs
on the Behavioral Level. Technical Report SFB358-B2-11194, University of
Paderborn, Technical University ofDresden, 1994.

[5] P. Kission, H. Ding, A.A.Jerraya: Structured Design Methodology for
High-Level Design. Proceedings ofthe 31th Design Automation Conference,
pp.466-4 71, 1994.

[6] O. Bringmann, W. Rosenstiel: Cross-Level Hierarchical High-Level
Synthesis. Proceedings of the 1998 Design Automation and Test in Europe.

[7] J.C.Wang, M.Y.Teruya, J.V.Vale Neto, M. Strum, A.A.Jerraya: A
Recursive High Level System. Proceedings of the 5th International
Conference on VLSI and CAD - Seoul, South Korea, pp. 412-414, 1997.

[8] B.G.Hald, J.Madsen, A.AJerraya: A New Approach to Optimization
and Reuse of Hierarchical Architectures. Accepted for publication by IEEE
Transactions on VLSI.

[9] A.AJerraya, I. Park, K.O'Brien, "AMICAL: An Interactive High­
Level Synthesis Environment", Proceedings of European Design
Automation Conference, Paris, France, 1993.

	Architectural Transformations for Hierarchical Algorithmic Descriptions
	1. INTRODUCTION
	2. STRATEGY OVERVIEW AND DEFINITIONS
	2.1 Recursive High-Level Synthesis
	2.2 Architectural Model
	2.3 Architectural Transformations (ATs)
	3. MATHEMATICAL MODEL
	4. ALGORITHMS
	5. RESULTS
	6. CONCLUSION
	REFERENCES

