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Abstract: The use of hierarchy on writing algorithmic descriptions of digital systems 
allows the implementation of more complex designs since it increases 
designer's productivity by introducing important features such as modularity, 
encapsulation and reusability. We are particularly interested in the problem of 
generating an optimal register transfer logic structure from a hierarchical 
algorithmic description. It is relatively straightforward to use High Level 
Synthesis (HLS) tools for producing an implementation from hierarchical 
algorithmic descriptions; each algorithmic partition is implemented separately 
and then linked in a following step. In general, the results are sub-optimal due 
to the large gap existing between the specification and implementation. In this 
article, we detail a simple architectural model for hierarchical algorithmic 
descriptions and a set of architectural transformations, which are the core of a 
methodology, Recursive High Level Synthesis (RHLS), aimed to optimise 
hierarchical implementations. The transformations are used to reshape the 
architecture of pre-existing hierarchical algorithmic descriptions in order to 
provide better synthesis results from HLS. We have implemented a suitable 
data structure and a set of transformations and tested them over a set of 
hierarchical algorithmic examples. 
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1. INTRODUCTION 

To cope with growing digital system designs complexity, a weIl 
established strategy is to represent them hierarchicaIly. It is weIl known that 
hierarchy allows introducing some very desirable features into the design 
process, such as modularity, encapsulation and reusability, contributing 
towards increased productivity and making large projects less expensive. 
Although designers may have their task of specifying and describing a 
circuit made easier, the results at implementation side may not be as 
positive. For instance, the hierarchy of a design entry, containing a 
partitioning that aims at productivity, may show to be inefficient if direcdy 
reproduced into the implementation, whose partitioning should be driven by 
implementation level metrics (timing, power, cost, etc.). 

In present methodologies based on higher level descriptions, the design 
entry presents a widening gap to the final implementation description what 
increases their aforementioned hierarchical incompatibility. This is very 
much true for algorithmic level design. Figure la shows an example of a 
hierarchical algorithmic description; X is the top level algorithm, Y and Z 
are the lower level algorithms that implement operations opY and opZ, 
respectively, in algorithm X. To produce a structural level implementation, 
we can use High Level Synthesis (HLS) [1] as shown in Figure Ib, where 
the synthesised structures from algorithms Y and Z are represented as blocks 
composed of smaller basic blocks (A, B, C and D). Figure lc shows the 
synthesised structure from algorithm X; it preserves the original algorithmic 
hierarchy but it presents some redundancy; for instance, the basic block C 
appears 3 tim es, on ce at each partition. Depending on the circuit timing 
requirements, there could be some additional block sharing through a 
different partitioning, as seen in figure 2. 

This example shows that, for the sake of implementation quality, the 
hierarchical decomposition at design entry level must be in tune with the 
respective one at implementation level, but, usuaIly, when high-level 
partitioning is carried out, implementation issues are not visible yet. The 
problem here is how to keep the mentioned productivity advantages of 
adopting hierarchical methodologies at design entry level and still deli ver 
efficient implementations. Some attempts have been made to deal with this 
problem but there is no clear solution yet. In [2][3][4], the problem of 
generating hierarchical structures was tackled, but the authors did not focus 
on productivity issues (as possible component reusability) arisen from a 
hierarchical strategy. Even though, their approaches were capable of 
producing hierarchical structures containing some optimisation, via 
restricted rules in partitioning of data-flow [2] or control-flow [3][4] graphs 
derived from plain algorithmic descriptions. In [5], it is shown a structured 
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methodology capable of dealing with hierarchical algorithmie designs using 
a HLS system, but they did not show any automatie means for producing 
optimised implementations. More recently, in [6], the authors presented an 
extended HLS system, which can allocate components covering different 
levels of hierarchy to the algorithmic level descriptions. They have proposed 
an extended model for re-configurable functional units (FUs) which includes 
their behavioural information; at the scheduling phase redundancies are 
detected and optimised hierarchieal structures are produced. The drawback 
of this approach is its complexity - a whole new set of efficient algorithrns 
must be derived, besides the fact that new generated FUs are problem 
dependent what restricts their reuse. 
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Figure J. From a hierarchical algorithmic description to a hierarchical structure using HLS. 
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Figure 2. An alternative partitioning for the hierarchical algorithmic description. 

In this paper, we follow the Recursive High Level Synthesis (RHLS) 
approach, presented elsewhere[7], to solve the problem of generating an 
efficient hierarchical register transfer logic (RTL) structure from a 
hierarchical algorithmic description. It is based on implementation metries 
and transformations over hierarchical algorithmic descriptions very much 
like going from the one in figure 1 to the one in figure 2 - the newly created 
hierarchieal algorithm should then be suitable for generating, via HLS, an 
optimised structure. 

The objective of this article is to present details about the foundations of 
our methodology for RHLS, whieh are: an architectural model for 
hierarchical algorithmic descriptions and a set of Architectural 
Transformations (A Ts). Our architectural model establishes a basic 
framework for designing hierarchieal algorithmic descriptions and also 
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establishes a basic vocabulary upon which the transformations will act on. It 
was designed to be independent of hardware description languages such as 
the VHDL syntax. The architectural transformations provide new modules 
which may fulfil better a design implementation level requirements and, 
since the transformations are defined on modules operation sets, they make a 
strong contribution for FU reuse environments. It should be noted that the 
concept of architectural transformations is not new; in [8], the authors 
presented an implementation based on an architectural model at RTL level. 
We have adopted a higher abstraction level architecture for two reasons: 
higher flexibility and simpler implementation. The set of transformations 
acts on the hierarchical algorithmic descriptions following our model, 
reshaping them for structural level optimisations, particularly by improving 
sharing of structural resources, such as FUs, registers and so on, supported 
by a HLS system, as exemplified previously. 

This article is organised as folIows. Section 2 gives a general explanation 
about our architectural model and the transformations. The sections 3 and 4 
present details, respectively, of a mathematical formalism for our 
architecture model and the algorithms we implemented for the set of 
transformations. In section 5 implementation issues are explained and some 
results are presented. Finally, section 6 concludes this article. 

2. STRATEGY OVERVIEW AND DEFINITIONS 

2.1 Recursive High-Level Synthesis 

The Recursive High Level Synthesis may be defined as the optimisation 
process of a hierarchical RTL structure through the application of a sequence 
of transformations on its functional units (FUs). We say hierarchical RTL 
structure because it contains FUs which are RTL structures themselves. 
Furthermore, these FUs also have behavioural descriptions from which a 
RTL structure may be obtained via HLS. 

Figure 3. Tasks in RHLS 
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Figure 3 illustrates the main tasks in RHLS: Structure analysis - the 
hierarchical RTL structure is examined in regard to redundancies or any 
other inefficiencies through their functional units; Transformations - new 
functional units are created based on existing ones in order to solve problems 
detected by the structure analysis; and Structure re-synthesis - a new 
hierarchical RTL structure is generated using the newly created functional 
units. More details about RHLS can be found in [7]. 

2.2 Architectural Model 

Our architectural model establishes the basic framework for writing 
hierarchical algorithmic descriptions. In other words, it defines the basic 
components and their basic interrelations for building hierarchical 
algorithmic descriptions. Therefore, besides providing guidance for writing 
these descriptions, it states what the transformations can manipulate. 

The basic elements of our architectural model are the behavioural views 
(algorithmic descriptions) of complex functional units. We understand 
functional unit (FU) as a HLS system library component that is capable of 
performing one or more operations. Complex FU is a FU that holds an 
algorithmic description for the operation set it is capable of performing. 
Inside this algorithmic description, there are calls to operations provided by 
either primitive (non-complex) FUs or other complex FUs. This establishes a 
relation of hierarchy among complex FUs and, therefore, a relation of 
hierarchy among algorithmic descriptions. Hence, our architectural model is 
basically a set of intercommunicating (via operation calls) processes 
(algorithmic descriptions) hierarchically organised. 

entity FU_name is 
port (RQ!1 declarations); end FU _name; 

anhitecture behavior ofFU_name is begin process 
variable dec1arations 

begin 
case sei is 

when 1 => (instruction set/or operation 1) 

when n => (instruction set/or operation n) 
end case; 

end process; end behavior; 

Figure 4. BehaviouraI view of a FU represented as a VHDL template. 

The architectural model also comprises the architecture of the behavioural 
views of complex FUs; we have modelIed it as a set of ports, variables, 
instruction sets, internaioperations and a list of FUs (figure 4). The 
instruction sets are the algorithmic descriptions of the operations the FU is 
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capable of performing and there is exactly one instruction set for each 
operation of the FU. The interna I operations are the operations used inside 
the algorithmic description of the FU's behavioural view. The list of FUs 
(not shown in figure 4, but considered part ofthe behavioural view) refers to 
the candidate FUs to execute the internaioperations. 

The processes (Le. the behavioural views of the FUs) are organised in a 
hierarchical fashion, therefore, ·the activation of any sibling process or their 
data exchange must be arbitrated by the parent processes using some kind of 
communication protocol. Our approach to solve this problem is similar to the 
one proposed in [5], where intercommunicating protocol is implemented at 
the parent processes as reproduced in figure 5. The protocol is composed of 
two operations: the first one (opX) starts the operation and sends the related 
parameters to the sibling process and the second one (waitX) runs repeatedly 
until the result is ready to be used. This protocol is particularly useful in 
processes whose processing time is data dependent. 

opX(a,b); 
waitX (c,done); 
while (done 1= '1') loop 

waitX (c,done); 
end loop; 

- starts the operation with parameters a and b 
- reads the fIag (done) (ar operation cornpletion 
- Ioops until operation cornpletes 
- and reads a result (c) 

Figure 5. A interprocess protocol in VHDL 

2.3 Architectural Transformations (ATs) 

We have implemented three ATs, which, essentially, perform 
modifications on the architecture of complex FU behavioural views, in order 
to produce new complex FUs with altered operation sets. More elaborate 
architectural changes can be achieved through combination of these basic 
transformations: The transformations are: 
a) Merge: from two pre-existent FUs, Merge produces the behavioural 

view of a FU capable of performing the same operations of the two 
original FUs. As an optimisation tool, Merge is intended to cluster FUs 
with high probability of resource sharing. 

b) Extract: from one pre-existent FU, Extract produces the behavioural 
view of a FU with one operation removed from the original operation set. 
Extract is intended to reshape existing FUs removing redundancies so 
they can better fulfil new requirements. 

c) Promote: from one pre-existent complex FU (which contains at least one 
more FU), Promote produces the behavioural view of a FU with one 
extra operation in its operation set (the extra operation is borrowed from 
a sibling FU). Promote is intended to add functionality to existing FUs 
so they can better fulfil new requirements. 
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3. MATHEMATICAL MODEL 

The architecture of a FU behavioural view is defined as: 
A = < name, 0, P, V, I, 0', A >, where: 

name is the name ofthe FU. 

479 

o is the set of operations executed by the FU; 0=<0/,02, ... ,ono>, where 0, 

is the ith operation; o,=<name> meaning it has a name. 
P is the set of ports; P= <Po,p/, ... ,PnP>, where p, is the ith port; 
p,=<name,width,type> meaning it has a name, a width (in bits) and a type 
belonging to the set <"controf',"input","output">; po is of type "controf', 
the other ones must be "input" or "output". 
V is the set of variables; V=<V/,V2, ... ,Vnv>, where v, is the ith variable; 
v,=<name,width> meaning it has a name and a width (in bits). 
I is the set of instruction sets; 1= < h h ... , Inl >, where 1.J is the jth 
instruction set; It=<i/,i2, ... ,inIJ>, where ik is the kth instruction; ik=<T,B>, 
where T is the type of instruction, which can be any instruction of the 
adopted hardware design language's (HDL) instruction set, and B is the 
body of the instruction which can be a list of arguments (ports, variables, 
constants) or another instructions. 
0' is the set ofinternal operations; O'={o/,o/ ... ,0nO· '}, where 0,' is the 
ith internaioperation; o,=<name,PA> meaning it has a name and a set of 
parameters P A=<pa/, pa2, ... , panPA> where pa,=<name,type> is the ith 
parameter; each parameter also has a name and a type belonging to the 
set <" input" ," output"> . 

- A is the set of architectures (it is the list of FUs mentioned in section 2.2) 
capable of performing the internaioperations in 0'; A = {A/,A2, ... ,AnA}, 
where A, is the ith architecture. 

Observe that the last element of this mathematical model, A (set of 
architectures), makes the model suitable to represent a hierarchical 
algorithmic description. The mathematical model has the following 
assumptions: 1) FUs are capable of executing one or more operations; 2) all 
ports are bit vectors; 3) all input and output ports can exist in any quantity 
and there are no width restrietions; 4) bi-directional ports are not allowed; 5) 
there is only one control port which is designated to activate the FU and to 
select one desired operation; 6) all variables are bit vectors; 7) variables can 
exist in any quantity and there are no width restrictions; 8) if the FU is 
capable of executing more than one operation, then only one operation can 
be executing at a time; and 9) to each instruction set corresponds one, and 
only one, operation. Some of these assumptions are restrietions imposed to 
simplify the implementation of data structures and, as such, they could be 
relaxed to increase the model's generality. An example of use of the 
mathematical model is given below for a reciprocal division module. 
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Listing 1: A behavioural view in algorithmic VHDL. 
Entity mrep is 

port (input! : in integer; seI: in int2bit; outval: out integer; outdone: out bit); 
end mrep; 
architecture behavior ofmrep is begin process 

variable A, T, X, Q: integer; 
begin 

case seI is 
when I => -- reciprocal operation 

T:=constexp20; X:=O; A:=input!; outdone<='O'; 
while (X/=20) loop Q:=shiftIeft(T); X:=X+I; T:=Q-A; 

if(T>O and A>O) then T:=T+I; end if; T:=qsave(Q,T); 
Q:=selectlsb(T); 

when 2 => -- waiting operation 
outval <= Q; outdone <= 'I '; 

end case; end process; end behavior; 

Listing 2: The corresponding mathematical model for Iisting 1. 
Amrep = < "mrep", Omrep, Pmrep, Vmrep, Imrep, Omrep', Amrep > 

Omrep = < "rep","wrrep" > 
Pmrep = < po, Pl,P2, P3 >, po =<"ser',"contror',2>,pr<"inputl","input",32>, 

P2 =<"outvar',"output",32>, P3=<"outdone","output",I> 
Vmrep = <1Il,1I2,1I3,1Ii>, 1Il=<"A",32>, 11..=<"1",32>, 1Ij=<"X",32>, V4 =< "Q",32> 
Imrep=<11> 

11 = <hhhhlsJ6>, 12 = < h 12 > 
h1l = <ASSIGN,<1I2,<0/ ,null»>, hl2 = <ASSIGN,<1I3,O», 
Id3 = <ASSIGN,<1Il,[Jl», Id4 = <ASSIGN,<P4,O», 
11.15 = <WHlLE,«NE,<1I3,20», <Ol,<1I4,1Iy>, <0/,<113,113,1», <0/,<112,114,111», 

<IF, «AND,«GT,1I2,O>,<GT,1Il,O»>,< 0 1' ,<112,112,1»», <Os' ,<1I2,1I4,1Iy»>, 
11./6 = < O. ,<1I4,1Iy> 
hl/ = <ASSIGN,<P3,1I4», hh = <ASSIGN,<p4,1» 

Omrep' = {O/, 0/, 0/, Ol, 0;, O.} 
0/ = <"+",<pal,pay>, 0/ = <"-",<pal,pay>, 0/ = <"constexp20",null> 
0/ = <"shiftleft",<pal,pay>, Os' = <"qsave",<pal,pa2,pa3», O. = <"selectsb",<pa/,pay>, 

Amrep = { Aalu, Ashift } 

4. ALGORITHMS 

In this section we present the main algorithms we have implemented, all 
based on the mathematical model just introduced. 

The Merge AT receives two architectures as inputs: Al=<namel,Ol,Pl, 
VIJl,01',Al> and A2=<name2,02,P2,V2J2,02',A2>, and generates a third 
one: Am=<namem,Om,Pm,VmJm,Om' ,Am>, using the following algorithm: 
1. namem = a different name from those pre-existent 
2. Om' = 01' U 02' 
3. <OmJm> = Unite«01Jl>,<02J2» 
4. <PmJm> = MergePortSets(P 1 ,P2Jm) 
5. <VmJm> = MergeVariableSets(Vl,V2Jm) 
6. Am=Al UA2 
7. Return Am = <namem,Om,Pm,VmJm,Om' ,Am> 
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First (line 1), a name different from any other is given to the architecture, 
then, the element Om' (line 2), the set of internaioperations, is generated by 
simple union of those in the initial architectures; the same occurs for the 
element Am (line 6), set of architectures. The elements Om, set of 
operations, and Im, set of instruction sets, are produced by the special 
function Unite (line 3) which works similarly to the connective set union; 
regarding Im, there is an one-to-one correspondence between the sets 0 and 
I: Im is generated taking Om as guide, i.e., if the first element of Om is the 
first element of 01, then the first element of Im must be the first element of 
11, and so on. Finally, the elements Pm and Vm are generated by algorithms 
MergePortSets and MergeVariableSets which perforrn four similar tasks. 
MergePortSets concatenates the original port sets, minirnises them, creates 
a new control port with a suitable width and updates the set of instruction 
sets with the new ports. To minimise the port set, an algorithm aimed to 
share ports among instruction sets is used- given a pair of ports, one can 
substitute the other if they are of the same type (input or output), have the 
same width and belong to different instruction sets. 

The Extract AT has the form Extract(A,opname). It receives one 
architecture as input, A = <name,O,P, V J, 0' ,A >, and the name of the 
operation being extracted, opname, and it generates a second architecture: 
Ae=<namee,Oe,Pe,Ve,/e,Oe' ,Ae>. The undesired operation is extracted 
from the original operation set, 0, to produce the new operation set Oe; Ie is 
generated in a similar way. The other elements of the new architecture (Pe, 
Ve, Oe and Ae) are derived from the original one by eliminating all the 
elements that became unused after removing the instruction set 
corresponding to the extracted operation. 

The Promote AT has the form Promote(A,opname). It receives one 
architecture as input, A = <name,O,P, V,/, 0 ' ,A >, and the name of the 
operation being promoted, opname, and it generates a second architecture: 
Ap=<namep,Op,Pp,Vp,/p,Op' ,Ap>. The algorithm generates a new operation 
set, Op, appending the new operation to the pre-existing set of operations. 
The new port set, Pp, is generated by concatenating the existing port set, P, 
to a new one, Pnew, containing the exact number of ports required by the 
promoted operation. After this, a new instruction set is created for the 
promoted operation; it is composed of a simple call to the new operation 
having the new ports, Pnew, as parameters and the created port set, Pp, is 
minimised. A new control port is generated according to the number of 
operations and it is appended to Pp. Finally, the elements Vp, Op' and Ap are 
directly copied from the original architecture. It should be observed that a 
promoted operation requires a costlier access time compared to a identical 
non-promoted operation because promotion implies arbitration through FU's 
top controller (one extra cyde dock in our case). 
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5. RESULTS 

The first set of results (tables 1 and 2) illustrates the AT's modus 
operandi; they were obtained from transformations over three benchmarks 
(gcd, mmul and mrep) and from HLS. Table 1 shows the architectural 
characteristics of the benchmarks and resulting architectures from merging, 
promoting and extracting. The table shows the operations the FUs are 
capable of performing (0), its ports (P), its variables (V) and its architecture 
set (A). 

Table 1. Architectural characteristics for the benchmarks and the ones produced by the ATs 
FU 0 P V A 

mgcd gcd, wgcd 2 i[32], 1 0[32], 1 0[1], sel[2] 2[32] alu 
mmul mul, wmul 2 i[32], 10[32],10[1], sel[2] 5[32] alubase,shift 
mrep rep, wrep 1 i[32], 1 0[32],1 0[1], sel[2] 4[32] alu,shift 

Merge(mrep,mmul) mul, wmul, rep, wrep 2 i[32], 1 0[32],1 0[1], sel[3] 5[32] alu,shift,alubase 
Promote(mgcd,{-}) gcd,wgcd, - 2 i[32], 1 0[32],1 0[1], sel[2] 2[32] alu 
Extract(Promote gcd, wgcd 2 i[32], I 0[32],1 0[1], sel[2] 2[32] alu,alubase 
(mgcd,{-}),{-}) 

Notes: Column P: i designates a input port, 0, an output port and sei, a selection port; the number 
between brackets indicates the port's width in bits. Column V: the number between brackets indicates a 
variable with that many bits. Alu, alubase and shift are primitive FUs. 

Table 2 shows characteristics of RTL structures obtained from the 
architectures in table 1, via a HLS system (we have used AMICAL[9]). 
Regarding Merge, it can be observed a reduction on FU counting: the 
structure for Merge(mrep,mmul) uses 1 alubase and 2 shifts; if mmul and 
mrep were taken separately, the total ofFUs would be 1 alubase, 3 shifts and 
1 alu. The same can be said about the muxes. Regarding number of registers, 
AMICAL allocates one register for each variable and constant, therefore it 
closely follows the variable set. The downside is on the controller - it is 
larger than the sum of the ones in the original FUs, although the number of 
states, transitions and ios (total sum of controller's inputs and outputs) were 
smaller as shown in the column 'controller' in table 2. This happened 
because controller area are non-linearly dependent on the number of states, 
transitions and ios. Adding data-path and controller, the FU produced by 
Merge is sm aller than the sum of the originating ones; the column 'gain' 
shows the difference. Regarding Promote, it forces the creation of paths 
from ports to FUs; this effect can be observed in table 2, which shows an 
increased number of muxes and controller hardware when comparing 
transformed units to the original ones. However, using Promote may still be 
advantageous; for instance, if a data-path contains a mmul and an alu, and 
Promote is applied in mmul generating a new version which is capable of 
performing all the operations of an alu, then the data-path could not need the 
alu anymore. In table 2, the column 'gain' shows the gain in area if the 
aforementioned optimisation were carried out. 
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Table 2. Structural characteristics for the benchmarks and for the ones produced by the ATs. 
structural features area gain 

mgcd 1 FU (alu), 4 Regs, 5 Muxes, (6T,2S,145ios) 4744+604=5348 

mmul 3 FUs (alubase, shift(2», 7 Regs, 8 Muxes, 12008+ 1346=13354 
(12T,6S,160ios) 

mrep 2 FUs (shift, alu), 6 Regs, 6 Muxes, 8680+ 1952= 10632 

(13T,7S,215ios) 
Merge(mrep, 3 FUs (alubase,shift(2», 7 Regs, 10 Muxes, 12712+4927=17639 6347 

mmul) (24T,12S,94ios) 
Promote(mgcd, 1 FU (alu), 4 Regs, 6 Muxes, (7T,2S,148ios) 5093+719=5815 597 

{-}) (467) 

Extract(Promote 1 FU (alu), 4 Regs, 5 Muxes, (6T,2S,145ios) 4744+604=5348 
(mgcd,{-}),{-}) 

Notes: Column structural features: Iists the main contents of the structure: number and names of FUs 
(between parenthesis), number ofregisters, number ofmultiplexers and features ofthe controller (number 
os transitions(T), number os states(S) and the sum of input and output ports (ios) of the controller). 
Column area: estimations of area in NTBR's - number oftransistors - for the data-path, the controller and 
the total. Column gain(loss): shows potential gains or losses in using the transformed FUs, in NTBRs. 

Additional experiments were carried out to observe the changes on 
hierarchical descriptions when transformations are applied on them. In table 
3, the comparison between two hierarchical benchmarks, pd and pid, and 
their transformed versions is shown; only the synthesised structural data are 
presented. Both transformed versions were obtained from the original ones 
by adding one extra transformed FU (mmulmrep+ -=Promote(Merge(mmul, 
mrep), {+-}) into theirs set of architectures. Results in table 3 show that, in 
all cases, area reductions were obtained; the total area of FUs were always 
smaller. However, the controller size increased due to the increased 
complexity in accessing promoted operations, which uses more cycles as 
commented in section 4; AMICAL created controllers with more transitions 
due to this fact, it also implies that the new architectures are slower. 

Table 3. Structural characteristics for the hierarchical benchmarks 

structural features area reduction 

pel 26Regs, 8FUs {ram,bset,mmul, mrep,alu, 52242+15254= 

bmask(2),shift}, 16Muxes, (I IOT,48S,1 96ios) 67496 

pcl* 26Regs,6FUs tram, bset, mmulmrep+-, 44925+16309= 9,3% 

bmask(2), shiftr}, 15Muxes, (120T,48S,192ios) 61234 

pid 14Regs,4FUs {rom, mrep, mmul, a1u}, 8Muxes, 40378+1758= 

(52T,22S,45ios) 42136 

pid* 14Regs,3FUs {rom, a1u, mmulmrep+-}, 34125+1778= 14,8% 

7Muxes, (56T,22S,42ios) 35903 

Note: The benchmarks marked with a star are the transformed ones. See also notes in table 2. 
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6. CONCLUSION 

We have presented a set of Architectural Transformations and a suitable 
modelling for hierarchical algorithmic descriptions. The main application for 
our ATs is for obtaining optimised hierarchical RTL structures from 
hierarchical algorithmic descriptions, via HLS. By using such optimising 
tools, designers are freed to write hierarchical algorithmic descriptions 
without worrying over some implementation issues like consequences of 
writing style on structural level quality. We have also presented some 
experimental results which confirm such a claim. 
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