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Functional delay fault testing is concerned with propagating a transition from a primary input 
to a primary output of a combinational circuit. Since it does not consider individual paths in 
the circuit, it can overcome the biggest limitation of path delay fault testing: the explosion in 
the size of fault Iists. Functional delay fault testing can also be used to derive test sets for IP 
(lntellectual Property) circuits whose implementation details are not provided. Boolean 
Satisfiability (SA T) and BDDs have been widely used for a variety of EDA (Electronic 
Design Automation) applications. Even though there have been few experimental studies to 
concIude the superiority of one to the other, they have been compared for a number of specific 
tasks in the EDA field. In this paper we show that SAT-based functional delay fault testing 
can yield very competitive results with careful construction ofthe CNF formulas for the target 
faults. In particular, using simple structural analysis of the circuit formulas of minimum size 
can be easily generated. CNF formula construction based on the circuit consistency function 
is presented and experimental results for ISCAS 85 and 89 circuits are reported. 

1. INTRODUCTION 

Delay fault testing, which addresses manufacturing defects that affect 
temporal behavior, is usually performed after a fabricated circuit has been 
tested for stuck-at faults. There are two fault models that have been widely 
used in delay fault testing: the gate delay fault model [3] which ascribes 
faulty behavior to individual gates having excessive delay, and the path 
delay fault model [16] which attempts to capture the distributed effects of 
defects over entire circuit paths leading to excessive path delays. In either 
case, the existence of a delay fault causes the circuit to fail to operate at the 
expected clock frequency. 
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There have been numerous research efforts on delay fault testing based 
on the path delay fault model [5, 10]. The major drawback of this model is 
that the size of the fault list (number of paths) for circuits with a large 
amount of reconvergence can become exponentially large. Attempts to 
overcome this limitation included the use of incremental path sensitization 
[6, 8] and targeting a group of paths using the primitive path delay fault 
model [7]. Such attempts, however, still fail to handle circuits with billions 
ofpaths (e.g., C6288 ofthe ISCAS 85 benchmark suites [2]). 

An alternative to these two fault models, called the functional delay fault 
model, was first proposed in [12] and also investigated in [17]. In [13] two 
approach es for functional delay fault test generation, one based on a Binary 
Decision Diagram (BDDs) formulation and the other on a Boolean 
Satisfiability (SA T) formulation, were described and compared.1 The 
experimental results indicated that several hours of run time for the ISCAS 
85 benchmarks circuits were required in both approaches, with the BDD 
method resulting in a slightly better perfonnance. 

The Boolean satisfiability problem (SA T) has received a lot of attention 
recently, resulting in a number of robust and efficient heuristics and 
implementations [1, 14, 18]. It has also been used in many CAD applications 
such as test pattern generation for both stuck-at and delay fault models, logic 
verification and timing analysis [4, 8, 9, 11, 15]. In this paper, we present a 
SA T -based test pattern generation method for the functional delay fault 
model. We show that with careful construction of the target CNF fonnulas, 
this method can yield very competitive results. Promising results for both 
ISCAS 85 and 89 circuits are presented. 

The remainder of the paper is organized as follows. In the next section, 
definitions that are used throughout the paper are presented. In Section 3, a 
method to generate the target CNF fonnula for functional delay fault testing 
based on the circuit consistency functions is presented with an example. In 
Section 4, experimental results for ISCAS 85 and 89 circuits are presented 
and Section 5 concludes the paper. 

2. DEFINITIONS 

Most of the definitions in Section 2.1 and Section 2.2 are taken directly 
from [15]. They are repeated here for completeness. 

I The details of CNF fonnula generation for the SAT approach were not described. 
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2.1 Combinational Circuits 

A combinational circuit C is represented as a directed acyclic graph 
C = (V, E) where V denotes the circuit nodes and E I V f-V denotes the 
connections between nodes. The following definitions also apply: 

O(x) denotes the fanout nodes of node x, i.e., {yL V I (x, y)L E}. 

0* (x) denotes the transitive fanout nodes of nodex , i.e., the set of all 
nodes y such that there is a path frornx to y . 

• lex) denotes the fanin nodes of node x, i.e., {yL V I (y, x)L E} . 

• I * (x) denotes the transitive fanin nodes of node x ,i.e., the set of all 
nodes y such that there is a path frorn y tox . 

S/(\f) denotes the side inputs of a set of nodes \f I V and is defined 
as follows: 

S/(\f) = {x I xL lew) I wL \f I x r \f} 
The set of primary input nodes are referred to as PI, and the set of 

primary output nodes as PO. Figure 1 illustrates the definitions given in this 
section for a small benchmark circuit from [2]. 

O(XI/) X/6, X/9 

0* (XI/) X/6, X/9, 

/(x/rJ X2, XI/ 

/*(x/rJ X2, X3, X6, 

S/(X3. X 1/. X /6. X2. X6. X/O 

Figure 1. Example ISCAS 85 circuit C 17 

2.2 Boolean Satisfiability 

We consider Boolean functions represented in Conjunctive Normal Form 
(CNF). A literal is an occurrence of a variable x or its complement x'. A 
clause is the disjunction (OR) of literals. A CNF formula qJ on n binary 
variables X\'X2 '''''Xn is the conjunction (AND) of m clauses w\, w2 , ... , wm • 

A CNF formula is said to be satisfiable when there is at least one truth 
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assignment to its variables that makes all clauses equal to 1. A CNF formula 
is said to be unsatisfiable when no such assignment exists. 

For each gate g in a circuit, the gate eonsisteney Junetion ({Jg is a Boolean 
function that denotes the valid input-output assignments admissible by the 
gate's logic function. A detailed description of the gate consistency function 
and its CNF representation for primitive gates is given in [15]. The cireuit 
eonsistency Junetion of is defined as the conjunction of the gate consistency 
functions for each node in the circuit. If we view a CNF formula as a set of 
clauses, the circuit consistency function can be defined using a set union 
operator as follows: 

2.3 Functional Delay Fault Testing 

The objective of functional delay testing is to propagate a transition 
tIl {rising,jalling} from a primary input node to a primary output node as 
a transition tOl {rising, Jalling} . By analogy to the path delay fault model, 
robust propagation for functional delay fault testing can be defined as 
follows: 

DeJinition 1: For a given Jault (I,O,tI,tO) , a two-pattern input 
eombination (VI' v2 ) is said to Junetion-robustly propagate a transition tI 
from input I to a transition tO on output 0 if the value on 0 ehanges if and 
only if the value on I ehanges. 

In generating a test vector pair, two modes can be considered. In the 
single-input-transition mode, only one primary input is allowed to change, 
all other inputs being set to fixed values. In the multi-input- transition mode, 
any number of primary inputs are allowed to change In this paper, we 
consider only the single-input-transition mode; it must be noted, though, that 
the proposed test pattern generation procedure can be readily extended to the 
multi-input-transition mode. 

Definition 2: A two-pattern input eombination (VI' v2 ) is a Junetion 
robust test Jor a given Jault (I,O,tI,tO) under the single-input-transition 
mode if and only if I is the only input that ehanges its values between VI and 
v2 as a transition tI and the transition tO is observed at the output 0. 

Consider a primary output 0 of a circuit that implements the function J 
and a primary input I of the circuit. The detection of the faults 
(I,O,rising,rising) and (I,O,Jalling,Jalling) can be accomplished by 
checking the function J1 ?(/1')' for satisfiability. To detect the fauits 
(I,O,rising,jaliing) and (I,O,Jalling,rising) the satisfiability of the 
function J1' ?(J1)' must be checked. Note that these two formulas represent 
the two terms of dJ / dI ,the Boolean derivative ofJwith respect to I. 
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3. FUNCTIONAL DELAYFAULT GENERATION 

3.1 Fault List Construction 

Before the test pattern generation procedure can begin, a fault list needs 
to be created. The method used in [12] is used in constructing fault lists. The 
upper bound on the size of the fault list for a circuit with 1 PI 1 inputs and 
1 PO 1 outputs is 41 PI 11 PO 1 since for each input/output pair, there are four 
(l,O,tl,tO) tupIes. 

There are two techniques to reduce the size of the fault list. First, for a 
given output, the fan-in cone for the output node can be identified and only 
the primary input nodes that appear in the fan-in cone are considered when 
creating the fault list. Second, acheck can be performed for each 
input/output pair to determine whether there is at least one path between 
them with an even or an odd number of inversions. If there are no paths with 
an even number of inversions (l,O,tl,tO) tuples with identical (tl,tO) 
values can be dropped from the fault list. Similarly,(I,O,tl,tO)tuples with 
opposite (t1,tO) values can be dropped ifthere are no path between I and 
o with an odd number of inversions. 

Figure 2 shows the fault list created for the C 17 circuit. E denotes that 
there is at least one path between the given primary input and primary output 
nodes with an even number of inversions and 0 denotes that there is at least 
one path with an odd number of inversion. "-" denotes that there are no paths 
between the two given nodes. 

PI PO Parity 

Xl X22 E 
X2 X22 E 
X3 X22 E,O 
X6 X22 0 
X7 X22 

Xl X23 

X2 X23 E 
X3 X23 0 

Figure 2. Fault list for Cl7 X6 X23 0 
X7 X23 E 
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3.2 CNF Formula Construction 

Once a fault list is set up, test generation is performed for each fault in 
the fault list. The overall flow of test pattern generation for delay fault 
testing is shown in Figure 3. 

Since the formulas that must be checked involve both the positive and 
negative cofactors of each output with respect to each input in its transitive 
fan-in, the circuit is duplicated and consistency CNF formulas for both "co­
factor" circuits are generated. A set of clauses from the CNF formulas thus 
created are then selectively chosen to create a target SAT instance for a 
specific functional delay fault. The clauses from the duplicate circuit are 
added to the target formula only when necessary. After generating the circuit 
consistency function, outputs are chosen one at a time. For each PO, the 
fan-in cone is identified. Then for each PI which has at least one path to the 
chosen output node, the fanout cone of the node is identified. For each 
(PI, PO) pair (i,o), the set of nodes that can potentially propagate a 
transition can be identified by (1*(0)1 0) (O*(i)1 i). The function 
duplicate_nodesO will extract the gate consistency functions from the 
duplicated circuit for those nodes. 

Figure 4 presents an example of the test pattern generation procedure 
with a target fault (x 6 , X 22 ' nsmg, nsmg). The fan-in cone for the target 
output node X 22 is shown in the upper half. Since 
(1 "'(x22 )1 x 22 ) (U"'(x6 )1 X6)={X6,XII,XI6,X22}, the duplicated nodes 
for these four nodes are identified and their gate consistency functions are 
selected by the function duplicate_nodesO. The function 
connect_side_inputsO identifies the side inputs of the given nodes in the 
duplicated circuit and connects them to the corresponding nodes in the 
original circuit. In this example, SI(X6,XIl,X16,X22) = {X2 ,X3 ,XIO }, and the 
clauses that enforce the condition that each node in this set has the same 
value as its duplicate equivalent are added, which has the same effect as 
connecting anode in the original circuit to its duplicate node. Finally, for 
each fault between the target primary input and output pair, constraints are 
added based on the direction of the input and output transitions. For the 
example in Figure 4, the fault (x p X 22 ' nsmg, nsmg) is detected if the 
function 

is satisfiable, where f is the logic function at output node x . This is 
22 

accomplished by setting x 6 and x 22 to logic 1 and and X;2 to logic value 
o. 
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begin functional delay fault generation 
foreach 0 of PO 

·qJm = Identify 1 * (0); 
foreach iofPII/consideronly iL 1*(0) 

Identify 0 * (i) ; 
qJdup = duplicate_nodes( (I * (0) 1 0) (0 * (i) 1 i)); 
qJconn = connect_side_inputs(S1((I * (0)1 0) (0* Ci) 1 i))); 
foreach (tI,tO)L {(r,r),(r,j)} 

end 

cP cons = generate _ constraints( (tI, tO) ); 
cP = CPm I cP dup I cP conn I cP cons ; 

solve( cP ); 

I 
( 

\ 
\ 

Figure 3. Overall flow of functional delay fault test generation 

./ 

/ 

--------

Figure 4. Target circuit for a fault (x6 ,xn , rising,rising) 

I 
/ 
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4. EXPERIMENTAL RESULTS 

The functional delay fault test pattern generator described in this paper 
was implemented in C++ and integrated with the GRASP SAT solver [14]. 
The experiment was run on a PC running Linux with a Pentium 11 300 MHz 
CPU and 256 Mbyte of memory. The results for ISCAS 85 circuits are 
presented in Table 1. 

The first two columns list the name and number of faults of each circuit. 
From column 3 to column 5, D denotes detectable faults, R redundant faults 
and A aborted faults. %D in column 6 denotes the percentage of detectable 
faults with respect to the total number of faults. Columns 7 and 8 give the 
average size of the generated CNF formulas for each circuit. Although the 
complexity of SA T problems is not necessarily proportional to the size of the 
target SA T formula, it is observed that large CNF formulas usuaBy take 
longer to solve. Column 7 gives average number of variables and column 8 
gives the average number of clauses in each formula. Finally column 9 
shows the run time in seconds. The GRASP SA T sol ver is called with the 
"+dDLCS" switch, one of the decision making heuristics that turned out to 
be most effective for this application. The time limit for each fault was set to 
100 seconds. 

Functional delay test pattern can be generated for aB the circuits in 
Table 1 with no aborted faults except for C6288. For this circuit, we applied 
an approximate method introduced in [13] (see Table 2). With this 
approximation method, a certain percentage of primary inputs are assigned 
random fixed values (0 or 1) before the target SAT instance is solved. The 
first column in Table 2 denotes the percentage of primary inputs that are 
assigned fixed values. This method can cause a detectable fault to be 
declared as redundant, but will not make a redundant fault detectable; it 
provides a lower bound on the number of detectable faults. 

The same experiment was performed with the combinational portions of 
the ISCAS 89 benchmark circuits. The results are reported in Table 3. None 
of the faults were aborted in this case, with very reasonable run tim es. 

Table 1. Results for ISCAS 85 circuits 
Circuit # faults #D #R #A %D vars # cls Time{s} 
C432 794 538 256 0 67.8 249.0 667.6 84.1 
C499 5248 5184 64 0 98.8 190.5 518.7 525.8 
C880 1004 1004 0 0 100.0 162.2 385.4 79.8 
C1355 5248 5184 64 0 98.8 442.6 1210.3 2628.4 
Cl908 1870 1758 112 0 94.0 619.4 1522.4 322.7 
C2670 2440 2160 280 0 88.5 456.2 1125.5 487.8 
C3540 2284 2242 42 0 98.2 1033.4 2817.4 5308.2 
C5315 7440 7328 112 0 98.5 368.5 906.3 901.3 
C6288 3036 2862 44 130 94.3 2299.3 6826.7 30490.0 
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Circuit # faults #D #R #A %D Avg # vars Avg#cls Time{sl 
C7552 7144 6228 916 0 87.2 581.0 1374.5 1215.3 

Table 2. Results for C6288 using aEEroximation 
Approximation #D #R #A %D time (s) 
factor 

10% 2950 46 40 97.2 35950.9 
25% 2972 54 10 97.9 32456.7 
50% 2972 62 2 97.9 31162.7 
75% 2964 72 0 97.6 30876.7 

Table 3. Results for ISCAS 89 circuits 
Circuit # faults #D #R #A %D Avg# Avg# Time(s) 

vars cls 
s208.1 152 152 0 0 100.0 48.8 108.2 6.8 
s298 230 218 12 0 94.8 39.3 96.7 9.9 
s344 282 278 4 0 98.6 47.4 108.2 12.8 
s349 284 280 4 0 98.6 47.6 108.8 12.3 
s382 408 400 8 0 98.0 41.0 91.4 17.5 
s386 308 308 0 0 100.0 49.7 111.7 13.5 
s400 388 380 8 0 97.9 41.3 93.1 16.8 
s420 390 390 0 0 100.0 72.5 157.0 19.0 
s420.1 424 424 0 0 100.0 72.3 156.8 20.9 
s444 544 528 16 0 97.1 46.5 105.9 24.0 
s510 310 310 0 0 100.0 77.1 189.8 16.0 
s526 492 480 12 0 97.6 47.4 113.6 21.8 
s526n 492 480 12 0 97.6 47.4 113.6 22.0 
s641 1064 1010 54 0 94.9 160.1 349.6 71.4 
s713 1148 994 154 0 86.6 165.3 370.4 78.5 
s820 514 514 0 0 100.0 64.3 165.3 25.8 
s832 514 514 0 0 100.0 64.4 167.8 25.7 
s838 790 790 0 0 100.0 112.4 242.7 45.3 
s838.1 1352 1352 0 0 100.0 107.2 222.8 75.0 
s953 934 934 0 0 100.0 99.1 232.7 52.3 
s1196 1208 1158 50 0 95.9 183.3 469.8 94.5 
s1238 1224 1160 64 0 94.8 188.2 497.8 98.4 
s1423 5836 5458 378 0 93.5 209.7 477.0 469.4 
s1488 794 792 2 0 99.7 95.9 240.5 44.6 
s1494 794 792 2 0 99.7 95.7 241.3 45.1 
s5378 5760 5404 356 0 93.8 197.1 436.4 442.6 
s9234.1 9474 8070 1404 0 85.2 327.0 738.7 999.9 
s13207. 11448 10286 1162 0 89.8 445.8 1135.4 1676.9 
1 
s15850. 57160 44326 12834 0 77.5 973.6 2369.7 15440.1 
1 
s38417 87394 83236 4158 0 95.2 403.4 922.6 11117.4 
s38584. 47272 41420 5852 0 87.6 194.1 449.5 3697.8 
1 
s35932 22274 20674 1600 0 92.8 92.5 223.6 1228.4 
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5. CONCLUSIONS 

In this paper, a satisfiability-based functional delay fault test generation 
method which uses the circuit consistency function in generating the target 
CNF formula was presented. Promising results for ISCAS benchmark 
circuits are reported. 

[12] suggests generating more than one test per each fault in the fault list 
in order to achieve high path delay fault coverage. Incremental Satisfiability 
(ISA T) has been proven successful in solving multiple instances of closely 
related SAT problems [8]. We are currently looking at using ISAT to 
generate multiple tests per each functional delay fault. 
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