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Abstract This paper presents a review of existing defect level models and introduces a new 
defect level model that accounts for the fault clustering effecL The model uses 
generalized negative binomial statistics to model the probability distribution of 
the number of faults in a chip. This analysis shows that clustering, in addition to 
naturally increasing the yield, also raises the detection probability and therefore 
lowers the defect level. By accounting for clustering, the new model predicts a 
less stringent fault coverage requirement than other models. 
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Nomenclature 

a: fault clustering parameter. 

ad: defect clustering parameter. 

A: average number of faults per chip. 

Ad: average number of defects per chip. 

0: fault coverage. 

Omax: maximum attainable fault coverage. 

D: fault average area density. 
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DL: defect level. 

R: realistic to stuck-at fault detectability ratio. 

T: stuck-at fault coverage. 

Y: true yield. 

Y m: measured yield. 

no: average number of faults in a faulty circuit. 

r: number of faults in a circuit. 

1. INTRODUCTION 

Jose T. de So usa 

Defect level (DL) is the fraction of faulty chips among the chips that passed 
production test. These chips are taken as good devices and shipped as so. 
Later they are likely to faH in the field, causing the manufacturer to incur in 
significant expenses. There are also important invisible costs such as customer 
satisfaction, company prestige, etc. The economical importance of defect level 
hardly needs to be highlighted. The problem is how to predict and control its 
value. 

The cause of field rejects are faults caused by manufacturing defects; the 
same defects that are responsible for yield loss. To cope with the complexities 
of physical defect phenomena, sophisticated yield models have been devel­
oped. These models take into account the non-equiprobability of physical 
defects, by considering a weighted variety of possible causes for yield loss. 
They also account for the defect c1ustering phenomenon, which produces sig­
nificantly more accurate yield estimates than theories that assume defects that 
are probabilistically independent. 

Despite the relevance of the c1ustering effect, many defect level models do 
not account for it [Williams and Brown, 1981, Agrawal et al., 1982, Sousa et al., 
1996], but there are a few models that do [Seth and Agrawal, 1984, Singh and 
Krishna, 1996]. In [Seth and Agrawal, 1984] the c1ustering effect is implicitly 
taken into account by using the negative binomial distribution for the number 
of defects in a chip. In [Singh and Krishna, 1996] defect c1ustering is exploited 
to identify dice with different DL values in the same wafer. These dice are then 
placed in different bins, according to their quality level (the inverse of defect 
level). However, in none of these theories the overall effect of c1ustering on 
defect level has been investigated. Since it is well known how defect c1ustering 
affects the yield of integrated circuits, we now ask the question of how it affects 
DL. This is the problem addressed in this paper. 

The assumptions of this work are the same as in current yield theories -
defects of random size and location, governed by specific probability distribu­
tions. However, we directly model the probability that a chip will contain r 
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faults, rather than the probability that it will contain r defects. We observed that 
if one defect can produce multiple faults, this simply corresponds to a higher 
degree of fault clustering. In this way, there is no need to introduce a relation­
ship between faults and defects as in [Seth and Agrawal, 1984]. Consequently, 
the new DL model is simpler, using one parameter less than the models in [Seth 
and Agrawal, 1984]. 

This paper is organized as folIows. In Section 2. we discuss existing DL 
models, and provide the motivation for the new model. In Section 3. the new 
model is introduced and analyzed. Section 4. concludes the paper and gives 
directions for future developments. 

2. BACKGROUND 
Assuming that faults in a circuit are probabilistically independent and have 

the same occurrence probability, Williams and Brown [Williams and Brown, 
1981], in their seminal work, derived the following DL model: 

DL = 1 - y(1-rl). (1.1) 

This model constituted the first attempt to show how DL depends on the 
yield Y and the fault coverage n. Equating n to the stuck-at fault coverage T, 
causes the Williams-Brown model to spread generalized panic: unless 100% or 
very high fault coverage is obtained, the defect level will be unacceptable. For 
example, suppose Y = 80% and we want DL = 100 parts per million (p.p.m.). 
According to the Williams-Brown formula the fault coverage requirement is 
n = 99.55%. The belief that the stuck-at fault coverage T actually represents 
the real fault coverage n led test engineers to demand 100% stuck-at fault 
coverage no matter the cost. Paradoxically, the very same engineers would rest 
completely assured if 100% stuck-at fault coverage had in fact been achieved. 
In fact, reality is somewhat different: 100% stuck-at fault coverage may not be 
needed in practice; on the other hand, 100% stuck-at fault coverage does not 
prevent some other faults from escaping the test. 

Despite its illustrative power, the Williams-Brown model has very low accu­
racy when used with the stuck-at fault coverage T. Some studies of defect level 
data from real manufacturing processes have demonstrated this fact [Maxwell 
and Aitken, 1991]. The most striking difference between the DL(T) curves ob­
tained with real data and the DL(T) curves obtained with the Williams-Brown 
model is the type of curvature exhibited. Real DL(T) plots show concave cur­
vature (positive second derivative), whereas the Williams-Brown model shows 
convex curvature (negative second derivative). 

It is also striking that Y, the yield parameter that appears in Equation (1.1) 
is usually computed under completely different assumptions. Y is obtained 
assuming that the number of faults in a chip has a generalized negative binomial 
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distribution [Stapper et al., 1983]. This distribution is given by the following 
equation: 

Pr _ r(a+r) 
( ) - rl f(a) (1 + (1.2) 

where A is the average number of faults per chip, and a is the fault clustering 
parameter. The parameter A is given by 

A = AD, (1.3) 

where A is the chip area and D the average fault density. The clustering effect 
varies inversely with a: a close to zero indicates strong clustering, whereas a 
large indicates weak clustering. Equation (1.2) is defined for any positive real 
values of a and A and any integer r = 0, 1, 2, ... , 00. In reality, the number of 
faults in a chip is large but finite. Nevertheless, P(r) being defined in the range 
r = 0, 1, 2, ... , 00 is accurate, since P(r) decreases fast with r. The yield 
y is obviously given by Y = P(O), which produces the weIl known negative 
binomial yield formula: 

( A)-n 
Y= (1.4) 

The formula above accounts for fault interdependence due to clustering. In 
contrast, the Williams-Brown DL model assumes fault independence. 

The assumptions of the Williams-Brown model imply that the number of 
faults r in a chip follows a Poisson distribution rather than a negative binomial 
distribution: AT 

P(r) = ,e->'. 
r. 

For this distribution the yield Y = P(O) is given by 

Y = e->'. 

(1.5) 

(1.6) 

The result above can also be obtained using Equation (1.4) and suppos­
ing weak clustering (large a). In fact, using Stirling's formula, the limit of 
Equation (1.4) when a -+ 00 results in Equation (1.6): 

(1.7) 

Substituting Equation (1.6) in Equation (1.1), we obtain an expression for 
the Williams-Brown model wh ich is preferred in this work: 

DL = 1 - e->'(1-rl) (1.8) 
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In [Sousa et al. , 1996] it is suggested that the reason why the Williams-Brown 
formula combined with the stuck-at fault coverage T cannot track experimental 
fallout data is the fact that, unlike T, in the real fault coverage 0 each fault 
should be weighted with its probability of occurrence. In [Sousa et al., 1994] 
it is shown by extensive simulation of more accurate fault models that different 
weighting of the faults produce different non-linear relationships between 0 
and T, which would explain the real shape of DL(T) curves. The c1ustering 
effect is briefty mentioned in [Sousa et al. , 1996] but its fundamental importance 
is not realized. 

Agrawal et al. [Agrawal et al., 1982] supposed that the number of faults in 
a faulty circuit is Poisson distributed, with average no 1. This assumption 
produced the following model: 

(1 - 0)(1 - Y)e-(no-l)!1 
D L = -----'-----'-------;----:-:-:::-

Y + (1 - 0)(1 - Y)e-(no-l)!1· 
(1.9) 

This model provided a good fit to experimental DL data [Maxwell and 
Aitken, 1991] using the stuck-at fault coverage T as the fault coverage O. The 
value of no can be determined using, for example, a least squares fitting method. 
The model realistically reproduces the concave curvature ofthe DL(T) curve. 

We regard the assumption that faults in a faulty circuit are Poisson distributed 
as a first attempt to incorporate the c1ustering effect on DL models. In fact, 
a higher value for no merely indicates a higher propensity for multiple faults, 
which is basically what c1ustering iso As discussed for the Williams-Brown 
model, the assumptions underlying the Agrawal et al. model are not consistent 
with the assumptions for deriving Y, a parameter used in the model. 

Seth and Agrawal proposed a defect level model based on negative binomial 
statistics [Seth and Agrawal, 1984]. This model is derived from a formulation 
that also enables characterizing the yield equation using wafer test data. The 
resulting model is the following: 

(1.10) 

where Ad and ad are the defect density and defect c1ustering parameter, respec­
tively, and c is the average number of faults per defect, assumed to be Poisson 
distributed. 

This model also reproduces the concave curvature of the D L (T) curve in a 
realistic manner. Defect c1ustering is incorporated in the Seth-Agrawal model 
by means of the parameter ad. However, the need to model the occurrence 
of defects and, separately, the relation between logical faults and defects is 
questionable. Note that the existence of more parameters than needed in a 
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model leads to lack of decisiveness. That is, a good fit occurs for a family of 
values of the parameters, instead of for just one combination of values. This 
means that the parameters are related in a particular way; any combination of 
values that respects this relation will do. Also, albeit the clustering effect is 
accounted for, the effect of varying its intensity has not been studied. 

The three models discussed are compared in Figure 1, which shows IL as 
a function of the fault coverage n, for a hypothetical circuit for which Y = 0.5 
(note that Y = 1 - D L at n = 0). Since this paper presents a theoretical study, 
we have no need to relate n to a practical measure of fault coverage, such as 
the stuck-at fault coverage. All models are analyzed assuming the availability 
of a realistic fault coverage figure n. 

For the Agrawal et al. model we used no = 5. For the Agrawal-Seth model 
we chose the parameters 0: = 1, A = 1.0187 and c = 4. The values of the 
parameters were exaggerated to clarify the points made before, and illustrate 
what the models are capable of. The parameters are not chosen to track any 
particular data set. 

While the other two models have second derivatives which can be tuned by 
their parameters, the Williams-Brown model exhibits negative second deriva-
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tive for aIl values of n: 

d2 DL __ \ 2 -.\(1-0) dn2 - /\ e . (1.11) 

Another interesting study is that of the first derivative at n = 1. The 
foIlowing three equations give the first derivative at n = 1 for the three models, 
in the same order they were presented: 

dDLI 
dn 0=1 

-,\ (1.12) 

dDLI 1 - Y -(no-I) (1.13) 
dn 0=1 

---e 
Y 

dDLI a'\ce-c 
(1.14) = dn 0=1 a + '\(1 - e-c ) 

The WiIliams-Brown model has only one parameter (,\) to match the slope at 
n = I, as weIl as the wh oIe data set. The slope at n = 1 is very important for 
computing D L at high fault coverage using a linear approximation. The other 
two models have more flexibility, since they have two and three parameters, 
respectively. 

3. THE NEW DEFECT LEVEL MODEL 
This section introduces the new DL model. The question of whether the 

c1ustering effect significantly affects DL is examined thoroughly. We start by 
deriving the model from adefinition of DL, and then we present an analysis of 
the new model. 

DL is the probability that a chip is faulty given it passed the test. This can 
be written 

DL = P(chip faulty I chip passed the test), 

which is equivalent to 

DL = 1 - P(chip good I chip passed the test). 

Applying Bayes' formula we can write 

DL = 1 _ P(chip good AND chip passed the test). 
P(chip passed the test) 

Since aIl good chips pass the test 

DL = 1 _ P(chip good) 
P(chip passed the test) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 
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The probability that a chip is good is the yield Y. The probability that a 
chip passes the test can be measured by counting such chips and dividing that 
number by the total number of chips. This quantity is obviously equivalent to 
the measured yield. Moreover, if the chips are counted after the application of 
each test vector, and if the fault coverage after application of each test vector is 
known, we can estimate the measured yield as a function of the fault coverage 
and denote this quantity Ym(O). Therefore, the definition of DL as a function 
of the fault coverage 0 is 

(1.19) 

At this point we need to assurne a distribution for the number of faults in 
a chip. In [Seth and Agrawal, 1984], a distribution for the number of defects 
(not faults) is considered first, and then another distribution for the number of 
faults per defect is postulated. In our method we directly consider faults, and 
assurne that the number offaults has a distribution P(r). Thus, we can obtain 
Y and Ym(O) respectively by 

Y P(O), 
00 

L(1- oy P(r). 
r=O 

(1.20) 

(1.21) 

Note that the (1 - o)r is the probability that none of the r faults is detected. 
Like in [Seth and Agrawal, 1984], we make use ofthe probability generating 

function (p.g.f.) method. Thep.g.f. G(s) ofaprobability distribution P(r) is 
defined as 

00 

G(s) = L sr P(r). (1.22) 
r=O 

Since our objective is to study the effect of fault clustering, we will assume that 
P(r) is a negative binomial distribution with parameters ,\ and a. The p.g.f. 
of the negative binomial distribution is known to be 

[
,\ ] -0< 

G(s) = 1 + ;(1- s) (1.23) 

Thus, Equation 0.21) can be rewritten 

(1.24) 

Comparing the equation above with the yield expression given by Equa­
tion 0.4), and bearing in mind the relationship between ,\ and the chip area A 
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as given by Equation (1.3), we conclude that Equation (1.24) gives the yield 
ym(n) of a chip whose area is An. This physical meaning agrees with that of 
expected measured yield as given before: a chip passes the test if it does not 
contain any faults in its tested area. 

Replacing Equations (1.4) and (1.24) in Equation (1.19) results in the new 
defect level model, which can be written as 

DL = 1- ( a + >. )-0 
a+ >.n 

(1.25) 

As a DL model, the new model gives DL = 1- Y at n = 0 and DL = 0 
at n = 1. Moreover, it is interesting to note that 

1· 1 (Cl +). ) -0 _ 1 --X(l-!l) 1m - - -e . 
0-+00 a + >.n 

(1.26) 

That is, as clustering weakens, the new DL model given by Equation (1.25) 
becomes equivalent to Williams-Brown model as given by Equation (1.8). 

The new model resembles the Seth-Agrawal model. However, by directly 
considering faults, it does not need to model the number of logical faults caused 
by each defect. It is assumed that the fact that some defects may cause multiple 
faults is another form of fault clustering, which is subsumed by the clustering 
parameter a. In fact, it is possible to show that increasing parameter c (average 
number of faults per defect) in the Seth-Agrawal model has a similar effect on 
the DL curve as that of increasing the defect clustering parameter ad. In our 
model, to study the effect of clustering we just need to vary the parameter a. 
That is done is Figure 2 for three values of a. It can be seen that as clustering 
increases (a decreases) the yield Y = 1 - D L (0) increases and D L decreases 
for any fault coverage. It can also be seen that a low enough a can realistically 
reproduce the concave curvature of the DL curve. The curve for a = 0.1 has 
positive second derivative. 

The most important benefit of modeling clustering is the fact that we obtain 
a much more accurate fault coverage requirement, which is much easier to 
meet compared to the fault coverage required by the Williams-Brown model. 
To study the effect of clustering on fault coverage requirement we will use test 
transparency [McCluskey and Buelow, 1988] instead of fault coverage. The 
test transparency TT is defined by 

TT= I-n. (1.27) 

The maximum allowable test transparency TT max is a better measure for the 
test effort because it teIls us what is the fraction of the chip that we may afford 
to leave untested. Using a linear approximation in the neighborhood of n = 1, 
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Figure 2 DL as a function of n with the new model for three va lues of Q. 
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for a required DLmax, we need a TTmax given by 

DLmax 
TTmax = I I (1.28) 

dDL 
dn n=l 

The first derivative at n = 1 for the new DL is given by 

= - a:\' (1.29) 

The first derivative at n = 1 for the Williams-Brown model is given by Equa­
tion (1.13). Then, comparing TTmax for the new model and TTmax for the 
Williams-Brown model, we obtain 

TT max (new model) A 
=-::---:-----'----'-:- = 1 + - (1.30) 
TTmax{Williams-Brown) a 

Typical values of a can be easily 10 times smaller than typical values of A. 
Thence, the expression above can be further simplified to 

TTmax{new model) A 
--..,...-'-'----'-:- - (1.31) 
TTmax{Williams-Brown) a 
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The equation above shows that the maximum allowable test transparency is 
inversely proportional to the c1ustering parameter a. This explains why the 
fault coverage requirement as predicted by the new model can be radically lower 
than that predicted by the Williams-Brown formula. For the example given 
before, if DL = 100 p.p.m. is required and Y = 80%, the Williams-Brown 
model requires n = 99.55%, i.e., a maximum allowable test transparency 
TTmax = .45%. If ais 10 times smaller than A, TTmax = 4.5% for the new 
DL model. That is, instead of 99.55% fault coverage the new model requires 
only 95.5%. 

4. CONCLUSION 
In this paper a critical review of existing defect level theories has been 

presented, and a model that accounts for the c1ustering effect has been proposed. 
The original feature of the new model is that it assumes that the distribution 
of the number faults per chip is given by the generalized negative binomial 
distribution. 

Other models in the literature either do not account for c1ustering or assume 
one distribution for the number of defects, and another distribution for the num­
ber of faults per defect. Our method of directly considering faults, eliminates 
possible overlapping between the roles of the parameters in the methods that 
consider two distributions. In this way, we were able to study the effect of 
c1ustering by varying a single c1ustering parameter. 

Analysis of the new method revealed that the c1ustering effect is a very 
significant one, which cannot be ignored. Models such as the Williams-Brown 
model, that do not account for c1ustering, can easily underestimate the maxi­
mum allowable test transparency in one order of magnitude. In the case study 
presented in this paper, the Williams-Brown model required 99.5% fault cov­
erage, while the new model required about 95.55%. This is much c10ser to 
what test engineers usually observe, and raises the optimism and confidence of 
manufacturers. 

Directions for continuing this work are various. The newly derived model 
needs to be validated with actual DL data. The question of which fault models 
to use in order to represent the real faults remains open. Another question 
is whether the experimental DL curves contain or not any information about 
unmodeled faults. Should the jumps that appear on the measured yield versus 
fault coverage curve be modeled? In [Das et al., 1993], these jumps are not 
ignored and are treated as an integral part of the Ym(T) curve, but it is not 
known whether this is important. 
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