
DEFINITION AND UTILISATION OF
OMG IDL TO TTCN-3 MAPPINGS

Michael Ebner
Institute for Telematics, University of liibeck
Ratzeburger Allee 160, D-23538liibeck, Germany
Phone: +49 451 500-3721 Fax: +49 451 500-3722
ebner@itm.mu-luebeck.de

Aihong Yin
Fraunhofer 1nstitutefor Open Communication Systems (FOKUS)
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany
Phone: +49 30 3463-7000 Fax: +49 30 3463-8000
yin@fokus.gmd.de

MangLi
Department of Computer Science, Ludwig-Maximilians- University Munich
Oettingenstr. 67, D-80538 Munchen, Germany
Phone: +49 89 2178-2164 Fax: +49 89 2178-2262
mang.li@informatik.uni-muenchen.de

Abstract An established middleware technology for Internet-based distributed systems is
CORBA, where interfaces are described with IDL. TTCN is a standardised test
description language widely used in the telecommunications area. The current
version of TTCN, version 3 (TTCN-3), is among others designed to test CORBA­
based systems.

This paper presents a definition of the OMG IDL to TTCN-3 mappings, which
facilitate the testing of CORBA-based systems. The application of the mappings
is shown by an example test for the CORBA Portable Object Adaptor (POA).

Keywords: TTCN-3, CORBA, IDL

1. INTRODUCTION
Nowadays, conformance and functional testing is widely used in the area of

telecommunications. Due to the increasing amount of services provided via the

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
I. Schieferdecker et al. (eds.), Testing of Communicating Systems XIV

10.1007/978-0-387-35497-2_31

http://dx.doi.org/10.1007/978-0-387-35497-2_31

444 ITCN-3

Internet, testing of distributed systems based on the Internet technologies gets
more and more important.

The Common Object Request Broker Architecture(CORBA) is an established
open distributed object-computing infrastructure, standardised by theObject
Management Group (OMG) (OMG, 2001). The OMG Interface Definition Lan­
guage (IDL) is used to describe object interfaces forCORBA-based systems.

The Tree and Tabular Combined Notation (TTCN1), a standardised test de­
scription language, has been applied to the functional testing of communication
protocols for years (ETSI, 2001). The latest widely used version ofTTCN is
version 2 (TTCN-2). It has been proven that TTCN-2 is generally applicable to
the testing of CORBA-based systems (Schieferdecker et al., 1998; Li et al.,
1999; Mednonogov, 2000; Mednonogov et al., 2000). InTTCN-2 and its prede­
cessor, the asynchronous communication mechanism on the message-passing
basis is the only supported mechanism. Operation invocations, which are pri­
marily used by CORBA applications, are mapped to inter-related messages.

To provide more adequate support for such synchronous communication,
new concepts have been developed for version 3 of TTCN (TTCN-3) (Leach,
2000). Among them new constructs for the description of procedure calls and
semantics of procedure-based communication ports were added. Following the
approach of specification-based testing, as applied in the studies on TTCN-2,
some parts of the IDL to TTCN-2 mappings can be reused, others must be changed
to reflect the new concepts. This paper presents the recent work of the authors
on this aspect (Ebner, 2001a; Ebner, 2001b; Yin, 2001; Yin et al., 2001).

The remainder of this paper is structured as follows. Firstly, the basic concepts
of CORBA, IDL and TTCN-3 are introduced. Secondly, the IDLto TTCN-3 mappings
are summarized, with the focus on the new rules. Thirdly, the application of
the mappings is illustrated by an example test for theCORBA Portable Object
Adaptor (POA). Finally, some concluding remarks are given.

2. CORBA, IDL AND TTCN-3
This section gives a short introduction on CORBA, IDL and TTCN to motivate

the rest of the paper.

2.1 Common Object Request Broker Architecture
The Common Object Request Broker Architecture (CORBA) is a standard

architecture for distributed object systems. The heart of CORBA is the Object
Request Broker (ORB) which is the communication infrastructure for the dis­
tributed environment. The ORB provides a mechanism for transparently commu­
nicating client requests to target object implementations. It simplifies distributed

1 TTCN (in the context of TICN·3) is now defined to mean Testing and Test Control Notation

Definition and Utilisation of OMG IDL to ITCN-3 Mappings 445

programming by decoupling the client from the details of the method invoca­
tions, and hence, makes client requests appear to be local procedure calls. The
ORB consists of the ORB core and some interfaces on top of it. The ORB core
provides the basic representation of objects and means for the communication
of requests. The technology used in the ORB core is hidden by the public inter­
faces layered on top of it. They are the IDL Stub and Skeletons which present the
language mapping and support the static invocation of requests to objects, the
Dynamic Invocation Interface (DII) and the Dynamic Skeleton Interface (DSI)
which allow dynamic creation and invocation of requests to objects at run­
time, and the Interface Repository (IR) that provides storage of object interface
definitions which are accessible by applications at run-time (Figure 1).

The Portable Object Adapter (POA) is an important component of theCORBA
Application Program Interface (API) recently specified by the OMG. The POA
provides the facility for flexible management of server objects, e.g. creation of
object references, activation of objects and dispatching of requests made on the
objects, etc. Each POA is associated with a set of policies. The POA policies
describe characteristics of the POA and the server objects in the POA. The POA
components are described below.

• Object Id is a value used by a POA or a user-supplied implementation to
identify an object.

• Servant is a programming language object or entity that implements
requests on one or more objects.

• Adapter Object Mapping (AOM) is logically a key-value pair, with the
key set to Object Id and the value set to the address of the servant. It
depends on the RETAIN policy.

• POA Manager is an object that encapsulates the processing state of one
or more POAs.

• Servant Manager is an object that supplies a POA with the ability to
activate objects on demand when the POA receives a request directed at
an inactive object.

2.2 Interface Definition Language
The Interface Definition Language (IDL) is a language to describe interfaces

in an implementation language independent manner and can also be used by
other systems than CORBA. It does not support the description of implementation
characteristics like behaviour, instances or relationships.

Data Types. IDL supports the most basic data types from C++, but there are no
references in IDL. Instead, the types string, boolean and any are available. Some

446 ITCN-3

data types have a different specification like char which is a type of its own in
CORBA. The constructed types enum, struct, array and union are similar to the
ones in C++. The template type sequence is a variable length array of elements
of one, but any, IDL type. The type string is like sequence but it only supports
ASCIIISO-Latin characters. Type any is like type Object in Java a placeholder for
any possible IDL type.

Modules and Interfaces. The main concept behind IDL consists of interfaces.
Each interface may contain constants, types, attributes, exceptions and opera­
tions for one object. A module is a method to separate name spaces and may
contain any IDL construct. Each IDL construct is automatically public according
to the object orientated concept. (Multiple-) Inheritance is only permitted for
interfaces, not for modules. The inheritance structure may contain loops.

Attributes and Operations. Each client knows the IDL interface specifica­
tion of each object containing all information about the object. Attributes are
like variable definitions but they behave like operations inCORBA. Each read­
write attribute gets a set- and a get-function and each read-only attribute gets
a get-function. The main part of an interface is based on operations. An oper­
ation declaration consists of an operation attribute that specifies the invocation
semantics, the type of the operation result, the operation name, a parameter list,
optional exceptions and optional context expressions.

Exceptions are especially used to handle errors caused by the network en­
vironment like connection failures. The context expression allows the client to
transfer context specific information, like security context information for the
security service.

2.3 Tree and Tabular Combined Notation
The Tree and Tabular Combined Notation (TTCN) is the third part of the

Conformance Testing Methodology and Framework (CTMF) standard for the
specification of test suites for conformance testing. In May 2001, the new ver­
sion of TTCN, called TTCN-3, was finally standardised (ETSI, 2001).

TTCN is designed for functional, black-box testing and to describeAbstract
Test Suites (ATS) which are independent of a concrete test platform. Therefore,
special interfaces defined by TTCN between a System Under Test (SUT) and
the ATS are required to make a test suite executable. First, there has to be an
Abstract Test System Inteiface (ATSI) which defines the sight of the ATS upon
the SUT. The access points between ATS and SUT are called Point of Control
and Observation (PCO). Secondly, there is aReal Test System Inteifacerequired
which maps the ATSI to the SUT (Figure 1).

Test configuration in TTCN is done by the Main Test Component(MTC) which
controls all other test components calledParallel Test Components(PTCs). PTCs

Definition and Utilisation of OMG IDL to ITCN-3 Mappings 447

9 IDL Dependent

IDL Interface Dependent

- IDL OperaHon/Attribute Dependent

ORB

Figure 1. An architecture to use TTCN-3 for testing CORBA-based systems. The upper left
comer describes the TTCN-3 part, the upper right comer the interface specifications byiDL, the
middle part shows the gateway between TTCN-3 and CORBA and the Implementation Under
Test (IUT). The bottom part represents the underlyingCORBA system. All parts which depend
on the IDL specification are marked (see legend).

can be dynamically created whereas the MTC is created automatically at each
test case execution. Test components in TICN-3 communicate with each other
via ports (in TICN-2 via Communication Points (CP)), which are modelled
as infinite FIFO queues to store incoming calls. Communication between test
components and the test system is also done via ports (inTICN-2 via PCOs).

TICN-3 improves concepts of TTCN-2 and introduces new concepts to be a
test description language for reactive system tests over a variety of commu­
nication platforms such as CORBA -based platforms. An important feature of
TICN-3 is the enhanced communication concept which now supports procedure­
based communication to provide synchronous communication, as well as the
message-based communication which is asynchronous. In addition, a test ex­
ecution control part, a module and grouping concept and new data types, are
introduced to provide a better control and grouping mechanism.

If TTCN-3 is used for testing systems with interfaces specified by IDL this
interface definition can be used as ATSI. Therefore, the mapping suggestion in
the next section can be used to generate thestatic ATS parts automatically. This

448 ITCN-3

would effect definitions like data types and signatures for procedures. Hence,
interface modifications could be seamlessly introduced into thestatic part of
TTCN-3 test suites which would improve consistence and allow simplified testing
of CORBA-based systems.

3. MAPPING OF OMG IDL TO TTCN-3
The definition of the IDL to TTCN-3 mapping rules is to allow direct use of

IDL types and values of the CORBA-based systems in the specification of their
tests. The major aspects presented in this section are based on some recent work
done by the authors (Ebner, 2001a; Ebner, 2001b; Yin, 2001; Yin et al., 2001).

3.1 Approach
Two different approaches can be followed: either using the implicit or the

explicit mapping. The implicit mapping makes use of the import mechanism
of TTCN-3, denoted by the keywords language and import. It facilitates the
immediate use of data specified in other languages. Therefore, the definition
of a specific data interface for each of these languages is required. Currently,
ASN.1 data can be used besides the native TTCN-3 types. The data interface for
IDL types and values is a topic of on-going research.

The work presented in this paper follows the approach of explicit mapping,
i.e. IDL data are translated into appropriate TTCN-3 data. And only those TTCN-3
data are further used in the test specification.

3.2 Data Types
Mapping IDL basic data types to TTCN-3 data types is straightforward, because

IDL data types are similar to ASN.1 data types which are also used in TTCN-2
(Open Group, 2000; ITU-T, 1997). For example, theboolean and enumeration
types are identical in IDL and TTCN-3. However, TTCN-3 provides more prede­
fined types than TTCN-2, for which a better mapping can be constructed (Table
1). Nevertheless, the fixed type and the constructed types union and any require
special treatment to get mapped properly. The IDL type native is not taken into
consideration because of its local semantics.

For the specification of object interfacesiDL type Dbj ect is used. The interface
types for application objects inherit from Object. Interface definitions contain
structural information which has to be considered in theTTCN-3 configuration
architecture and by the TTCN-3/CORBA gateway. Furthermore, object references
associated with instances of interface implementations can be passed over oper­
ation invocations. Therefore, Dbj ect is generally mapped to address in TTCN-3.
In contrary to type interface, the IDL type value has local operations that are
not used outside the object, and are therefore not relevant from the functional
testing point of view. However, since the public attributes of value instances

Definition and Utilisation of OMG IDL to ITCN-3 Mappings 449

Table 1. Mapping list for some data types

OMGIDL TTCN-2/ASN.t TTCN-3

float, double, long double float

char GraphicString, char
IA5String(SIZE(1))

wchar GraphicString, universal char
BMPString(SIZE(1))

string GraphicString, IA5String charstring

wstring GraphicString, BMPString universal charstring

struct SEQUENCE record

sequence (bound)2 SEQUENCE SIZE(n) OF record of (with length
restriction)

sequence(unbound) SEQUENCE OF record of

Object IASString, Objectlnstance address

exception SEQUENCE record

are used to communicate object states, we suggest to map theiDL value types to
record types in TTCN-3. Please refer to the remainder of this section for further
details.

Type Extension. To enhance readability and to provide a clear distinction,
mapped IDL data types under TTCN-3 get the prefix CORBL Additionally, to get
the same semantic meaning under TTCN-3 as given by IDL, the types get an
extension attribute containing the source IDL type name. Therefore, a compiler
or interpreter can detect the IDL dependency and can react accordingly like
executing semantic checks. This includes encoding, too. This feature provides
a flexible way of extending the TTCN-3 type system. For instance, the IDL float
types float and double have a range limitation whereas the TTCN-3 float type
has no such restriction. Thus, a correct mapping would be difficult but the type
system extension solves this problem. The same can be done for the integer
types. Although TTCN supports range limitation for integers, we suggest to use
the extension attribute only as the example below illustrates.

type integer CORBA_Short with { extension "CORBA v2.4, IDL type: short" };
type float CORBA_Double with { extension "CORBA v2.4, IDL type: double" };

2Bound sequences could be matched with arrays inTTCN-3, however, the use of type record of with length
restriction is preferred to handle bound and unbound sequences equally.

450 TTCN-3

Any Type. In IDL it is possible to express each possible IDL type with the any
type. There is no corresponding type currently in TTCN-3 available. Therefore,
another construct is required. One possible way could be to use a union type
to store all possible data types. The union type comprises all required types,
whereas these types have to be known in advance. In order to avoid this re­
striction a union type for all possible types in TTCN-3 used by the IDL mapping
rules could be defined. However, it is only possible to use basic data types
and well defined constructed types wherefore no generic constructed types for
set, record, union, etc. are supported. For instance, it is not possible to provide
entries for all possible kinds of type set by using a generic set type. Hence,
the user could define his own restricted any type in TTCN-3 by using a union
type containing only all possible types of the concrete application and not all
thinkable types. This new any type has to be mapped to a full any type by the test
system. However, this requires a careful handling of any types because some
type definitions could be missing.

The mapping for TTCN-2 is bound to ASN.1 and therefore, it encounters
problems in distinguishing types which are mapped onto the sameASN.1 type
(Mednonogov et al., 2000). There is no support of the any type given but the
use of the design pattern decorator is suggested if any type is used. Another
mapping provides only basic types for the any type and leaves structured types
open for further study (Li et al., 1999). The use of type extension as described
before is not appropriate to solve the any type problem, neither. This is because
of the TTCN-3 type handling which makes it impossible to handle types which
are not known beforehand.

Since data types used by the test system are usually already known at compile
time, as it is now the case in TTCN-3, we suggest to use a union type for data
that are communicated to/overCORBA by the IDL any type. The union type must
cover all data types, either basic or derived, that are translated from theiDL
specification used by the test system.

Union Type. In IDL, unions are discriminated to determine the actual type.
Therefore, a record type is used, which contains two members. The first one
stores the discriminator information using an enumeration type. And the sec­
ond member is of the TTCN-3 union type, according to the specified IDL union
members.

Fixed Type. The fixed type represents a fixed-point decimal number. There
is no corresponding type for fixed type in TTCN-3 available. Therefore, a new
type has to be created or an existing type has to be used. If we use afloat with
an extension attribute containing the digit and scale the user cannot use this
information in his program. Because of the similarities between TTCN-3 and
C the solution of the C language mapping of IDL (OMG, 1999, section 1.14)

Definition and Utilisation of OMG IDL to ITCN-3 Mappings 451

is used. It maps the type fixed to a type struct which stores the number in a
char array and the digit and scale number in extra variables. In TICN-3 it can
be realised by a record containing a charstring to store the number, and two
integers for the digit and scale. Hence, the user can access scale and digit, too.

3.3 Modules and Interfaces
IDL uses modules as main grouping and scoping units. For this, themodule

concept of TTCN-3 is used.
Inteifaces describe objects with all their access methods by usingoperations

or attributes. Additionally, interfaces can contain local type definitions like
exceptions and constants which can be used by its operations and attributes.
Because of lacking an object model in TTCN-3, the group construct is used to
retain the scoping information.

Furthermore, for each interface, a procedure-based port type is defined for
the test specification. It is associated with signatures translated from attributes
and operations of the interface (see also section 3.4). Since an interface can be
used in operation parameters to pass object references, an address type is also
declared in the data part.

3.4 Operations, Attributes and Exceptions
Operations, attributes and exceptions can be mapped well to TTCN-3 because

synchronous communication was introduced especially for this purpose.

Exception Declaration. In IDL, exceptions are used in conjunction with
operations to handle exceptional conditions during an operation call. Thus, a
special struct-like exception type is provided which has to be associated with
each operation that can trigger this exception. TICN-3 also supports the use of
exceptions with procedure calls by binding it tosignature definitions. However,
it provides no special exception type. Hence, exceptions are defined as struct
by using record. TICN-2 has no support of exceptions. Thus, it is realised by
using PCOs with asynchronous communication to get exception information
from the test system.

Attribute. An attribute is like a set- and get-operation pair to access a value.
If an attribute is marked asreadonly, the get-operation is used only. Therefore,
attribute mapping can be done by the operation mapping.

Operation. Apart from attributes, operations are the main part of interface
definitions in IDL and are used, for instance, in theCORBA scheme as procedures
which can be called by clients. Procedure calls in general are supported by

452

Table 2. Mapping rules for interface elements

OMG/DL TTCN-2/ASN. 1

operation ASP

attribute ASP pair

readonly ASP

raise expression CHOICE

context expression

interface name space

parameter IA5String

communication PCO

TTCN-3

TTCN-3

signature

signature pair

signature

signature exception
option

additional signature
parameter

group

address

port

TTCN-3 by means of synchronous communication operations which are used in
combination with ports.

IDL supports an optional oneway attribute for operations which implies best­
effort invocation semantics without a guarantee of delivery but with a most­
once invocation semantics. Message or procedure-based ports could be used
for oneway procedures because both would be a valid mapping fromiDL per­
spective. However, the use of procedure-based ports for oneway procedures is
recommended because the IDL specification does not guarantee that oneway calls
are non-blocking or asynchronous. Furthermore, CORBA implements oneway
procedures by synchronous communication, too.

The parameter attributes in, inout and out describe the transmission direction
of parameters and can be mapped directly to the communication parameter
attributes in TTCN-3 because they have exactly the same semantics.

A raise expression specifies all exceptions which can be thrown by an op­
eration. It can be mapped directly to TTCN-3 because it can be indicated by the
procedure signature definition by specifying an exception. Nevertheless, each
operation can trigger a standard exception.

A context expression provides access to local properties of the called op­
eration. These properties consist of a name and a string value. The context
expression can be matched by redefining the operation with thecontext param­
eters included in the operation parameters (OMG, 2001, sec. 4.6). This is done
in a TTCN-2 mapping introducing an additional array parameter (Mednonogov
et al., 2000; Mednonogov, 2000). The additional parameter should be of type
sequence containing a type struct for each context parameter. The struct itself
contains two variables of type string for the context name and value.

Definition and Utilisation of OMG IDL to ITCN-3 Mappings 453

4. EXAMPLE
An example for TTCN-3 synchronous communication is explained in this

section. It is intended to present the TTCN-3 based ATS for CORBA applications
by applying the introduced mapping rules.

4.1 Scenario
In this Section, we consider the functionality ofthePOA (Section 2.1). Con­

trolling the association between objects and servants for request processing is a
key aspect of server application scalability. Depending on the number of objects
an application contains, it might want to use a separate servant for each one, use
a single servant for all of them, dynamically supply a servant to associate the
Object Id, or use a combination of these techniques to best manage its resource.

POA policies are objects used to define the characteristics of aPOA in server
applications. The selected aspects of POA policies are discussed below, which
are often used for the design of request processing. A POA with RETAIN and
USEJ3ERVANT..MANAGER policies (abbr. POAJ3vt_Act) is created as a child POA of the
root POA to present the behaviour of POA policies. The POA POAJ3vt-Act has an
Adapter Object Mapping (AOM) and a servant activator which is a type of the
servant manager. The POA configuration is illustrated in Figure 2.

- - - - - - Object Reference ---+ Servant Pointer

Figure 2. POA Architecture for POA..Svt_Act

The servant activator ServantActivator is responsible for locating or cre­
ating an appropriate servant that corresponds to the Object Id. It is used only
when an object must be activated during request processing. Therefore, thePOA
POAJ3vLAct has the ability to activate objects on demand.

The behaviour of the POA POA_Svt-Act is described in Figure 3, which ad­
dresses the case that an object is not active before the request processing. In case
the POA POAJ3vt-Act does not find a servant in the AOM for a given Object Id,

the servant activator registered with the POA POAJ3vt-Act is available to deter­
mine the servant. It returns the servant that will be used to process the incoming
request. The POA POA_Svt_Act enters the address of the servant into theAOM so
that subsequent requests with the same Object Id will be delivered directly to

454 TTCN-3

that servant without invoking the servant activator. Finally, thePOA performs
the request.

MSC actNe obl&ct on demand

R-
.... -.

.... w ...

... _.-....
I o••m I

"'""'-
1 ... ·-I

Figure 3. Behaviour of POA_Svt..Act

4.2 IDL Specification
The IDL specification below is used to test the selected aspects of the POA

POA_3vt-Act, which are based on the test sequence diagram (Figure 3). The mod­
ule PolicyTest contains the interfaces RequestPolicyTest and ServantProvider.
The interface RequestPolicyTest defines the operations, which can be accessed
directly by clients. The interface ServantProvider can only be accessed by
clients using the object reference. For instance, this object reference is re­
turned by operations that are defined in the interfaceRequestPolicyTest (e.g.
create_objectRef).

module PolicyTest {
exception WrongPolicy {};

};

enum objectState { active, deactive, non_aom };

interface ServantProvider {long increment(in long m); };

interface RequestPolicyTest {
objectState check_objectState(in Object obj);
Object create_objectRef() raises (WrongPolicy);

};

Definition and Utilisation of OMG IDL to ITCN-3 Mappings 455

4.3 TTCN -3 ATS Specification
The specification of the ATS in TTCN-3 can be divided into astatic part which

includes the type definitions and adynamic part which defines the test behaviour.

4.3.1 Static Part. In this part, the IDL data types, operations and inter-
faces are mapped to TTCN-3 types based on the defined mapping rules.

The Module PolicyTest imports definitions from the module CorbaModule,
which includes the mapping of IDL basic types to TTCN-3 as introduced in Sec­
tion 3.2. In addition, it contains the derived data type from theiDL specification
above.

module PolicyTest {

}

import all from CorbaModule;

type record WrongPolicy {} { extension "CORBA v2.4, IDL:exception" };
type enumerated objectState {active, deactive, non_aom}

with {extension "CORBA v2.4, IDL::enumerated" };

II Mapping of IDL interface to TTCN-3 group, port and address
group CORBA_INTF_RequestPolicyTest {

}

II signatures for operations in the IDL interface RequestPolicyTest
signature check_objectState (in CORBA_Object svtProvider) return objectState;

signature create_objectRef() return CORBA_Object
exception(WrongPolicy);

type port CORBA_RequestPolicyTest procedure {
out check_objectState, create_objectRef

};
type address CORBA_OBJ_RequestPolicyTest;

II components for MTC and test system interface
type component MTCType { port CORBA_RequestPolicyTest MTCpco; };
type component TSIType { port CORBA_RequestPolicyTest SYSpco; };

II invocation the operation increment
external function invoke_increment(in CORBA_Object svtProvider,

in CORBA_Long m) return CORBA_Boolean;

The IDL module PolicyTest is translated into the TTCN-3 module PolicyTest
based on the mapping rules. For example, the IDL interface RequestPolicyTest
is mapped to TTCN-3 port type CORBA.RequastPolicyTest. It contains the signa­
tures corresponding operations (e.g. craate.objectRef) defined in the interface
RequestPolicyTast. The direction out indicates that the operation is called by
the test system. ·

Since the operation increment of the interface SarvantProvidar cannot be
accessed by the client directly, the external functioninvoke.increment was gen­
erated in TTCN-3.

456 TTCN-3

4.3.2 Dynamic Part. The dynamic part consists of test cases and a con-
trol part. It is generated manually.

Test Cases. The development of test cases can be done by using test sequence
diagrams as shown in Figure 3. They are derived from the textual behavioural
description in the IDL specification. The test casecreateDbjectRef is used to test
whether an object reference can be created with the selectedPOA.

testcase createDbjectRef(inout CDRBA_Object svtProvider) {
map(mtc:MTCpco, system:SYSpco);
MTCpco.call(activate_object)
{

MTCpco.getreply (create_objectRef) -> value svtProvider
{

MTCpco.call(check_objectState:{ svtProvider })
{

[] MTCpco.getreply (check_objectState value active) {
verdict.set(fail); stop;

}
[] MTCpco.getreply (check_objectState value inactive) {

verdict.set(pass); stop;
}

First of all, in this test case, the test system performs the call of the re­
mote operation create_obj ectRef defined in the interface RequestPolicyTest
at the port MTCpco in order to create an object reference. Then, the operation
check_objectState in the interface RequestPolicyTest is called by the test sys­
tem in order to check the state of the created object.

Control Part. In this part, the execution order of test cases is described. The
test case createDbjectRef is used to find out whether an object reference can
be created and the state of the object is inactive. If the test cases result ispass,
the test client makes a request to the created object. This object contains the
object reference for the interface ServantProvider and operation increment. If
the request is being fulfilled, the test case check_createdDbj_state is executed
to test whether the created object becomes active.
control {

}

var boolean is_true;
var verdicttype theVerdict;
var CDRBA_Object svtProvider := null;

theVerdict :=execute(createDbjectRef(svtProvider), SOE-3);
if (theVerdict == pass) {

is_true := invoke_increment(svtProvider, 1);

if (is_true == true) {

}
}

execute(check_createdDbj_state(svtProvider));

Definition and Utilisation of OMG IDL to TTCN-3 Mappings 457

5. CONCLUSIONS
Our work presented in this paper is primarily focused on the definition of a

set of OMG IDL to TTCN-3 mapping rules, in order to support adequate testing
of CORBA-based systems based on their specifications. The first example tests
show that the new concepts ofTTCN-3, in particular the support of synchronous
communication, apply well to these systems.

The defined mapping rules focus on the translation of type and structural
information contained in IDL specifications. They can be integrated into the
TTCN-3 data concept, e.g. using a specific data interface for IDL. Until this is
approved by the TTCN-3 standardisation, the presented mapping rules can be
implemented by translators to achieve semi -automated development of test data
specifications. To support automated generation of the dynamic part in anATS,
additional formalised behavioural descriptions, e.g. test sequence diagrams, can
be considered.

The limitation of the mapping for the IDL any type is intensively discussed
in the paper. The proposed solution is already applicable for manual or semi­
automated translations of IDL data types. It provides input to the consideration
of a native TTCN-3 any type or the definition of the IDL data interface.

Future work will also address the realisation of the TTCN-3/CORBA gateway.
Because of the integrated support of synchronous communication in TTCN-3,
its implementation will be simpler than the one for theTTCN-2/CORBAgateway.

References
Ebner, M. (200la). A Mapping of OMG IDL to TTCN-3. SliM Technical Report SIIM-TR-A-

01-11, Institute for Telematics, Medical University of Iii beck, Germany. Schriftenreihe der
Institute fiir Informatik!Mathematik.

Ebner, M. (2001b). Mapping CORBA IDL to TTCN-3 based on IDL to TTCN-2 mappings.
In Proceedings of the 11th GUJTG Technical Meeting on Formal Description Techniques
for Distributed Systems, Bruchsal, Germany, 21.-22. June 2001 International University in
Germany.http://www.i-u.de/fbt2001/.

ETSI (2001). Methods for Testing and Specification (MTS)- The Tree and Tabular Combined
Notation version 3 -Part 1: TTCN-3 Core Language. European Standard ETSI ES 201
873-1, European Telecommunications Standards Institute, Sophia-Antipolis, France.

ITU-T (1997). Recommendation: Abstract Syntax Notation One (ASN.l): Specification of Basic
Notation. International Standard X.680, ITU-T.

Leach, E. (2000). Enhanced Techniques forCORBA Validation CORVAL2- Validating Multi­
Vendor CORBA Conformance and Interoperability in Heterogeneous Environments. D29-
white paper, The Open Group. European Commission Project Number IST-1999-11131.

Li, M., Schieferdecker, I., and Rennoch, A. (1999). Testing the TINA Retailer Reference Points.
In 4th Int. Symposium on Autonomous Decentralized Systems (ISADS'99), Tokyo, Japan,
Mar. 1999.

Mednonogov, A. (2000). Calypso Gateway specification, version 0.07. Technical report, Telecom­
munications Software and Multimedia Laboratory, Helsinki University of Technology, Fin­
land.

458 TTCN-3

Mednonogov, A., Karl, H., Martikainen, 0., and Malinen, J. (2000). Conformance Testing of
COREA Services using Tree and Tabular Combined Notation. In Ural, H., Probert, R., and
Bocbmann, G., editors, Proceedings of the IFIP TC6/WG6.1l3th International Conference
on Testing of Communicating Systems (TestCom 2000), August 29- September 1, 2000,
Ottawa, Canada, pages 193-208. IFIP- The International Federation for Information Pro­
cessing, Kluwer Academic Publishers.

OMG (1999). C Language Mapping Specification. OMG Formal Document FORMAL/99-07-
35, Object Management Group.

OMG (2001). The Common Object Request Broker- Architecture and Specification. OMG
Formal Document FORMAL/2001-02-01, Object Management Group. Version 2.4.2.

Open Group (2000). Inter-Domain Management: Specification & Interaction Translation. Tech­
nical Standard C802, Open Group.

Schieferdecker, I., Li, M., and Hoffmann, A. (1998). Conformance Testing of TINA Service
Components- The TTCN/CORBA Gateway. In Trigila, S., Mullery, A., Campo largo, M.,
Vanderstraeten, H., and Mampaey, M., editors, Proceedings of the 5th International Con­
ference on Intelligence and Services in Networks, IS&N'98, Antwerp, Belgium, May 25-28,
1998, volume 1430 of Lecture Notes in Computer Science, pages 393--408. Springer.

Yin, A. (2001). Testing Operation-Based Interfaces- Exemplified for CORBA with ADL and
TTCN-3. Diplomarbeit, Telecommunication Network Group, Faculty of Electrical Engineer­
ing and Computer Science, Technical University Berlin, Germany.

Yin, A., Schieferdecker, I., and Li, M. (2001). Mapping of IDL to TTCN-3. Technical report,
Fraunhofer Institute for Open Communication Systems (FOKUS), Germany.

	DEFINITION
 AND UTILISATION OF OMG IDL TO TTCN-3 MAPPINGS
	1. INTRODUCTION
	2. CORBA, IDL AND TTCN-3
	2.1 Common Object Request Broker Architecture
	2.2 Interface Definition Language
	2.3 Tree and Tabular Combined Notation

	3. MAPPING OF OMG IDL TO TTCN-3
	3.1 Approach
	3.2 Data Types
	3.3 Modules and Interfaces
	3.4 Operations, Attributes and Exceptions

	4. EXAMPLE
	4.1 Scenario
	4.2 IDL Specification
	4.3 TTCN -3 ATS Specification
	4.3.1 Static Part.
	4.3.2 Dynamic Part.

	5. CONCLUSIONS
	References

