
TEST SELECTION, TRACE DISTANCE
AND HEURISTICS

L.M.G. Feijs, N. Goga, S. Mauw*
Eindhoven University of Technology, P.O. Box 513, NL-5600 ME Eindhoven
feijs, goga, sjouke@win.tue.ni

J. Tretmans
University of Twente, P.O. Box 211, NL-1500 AE Enschede, The Netherlands
tretmans@cs.utwente.ni

Abstract
Two heuristic principles for test selection are proposed: the reduction

heuristic and the cycling heuristic. The first assumes that few outgoing
transitions of a state show essentially different behaviour. The second
assumes that the probability to detect erroneous behaviour in a loop
decreases after each correct execution of the loop behaviour. We for­
malize these heuristic principles and we define a coverage function which
serves as a measure for the error-detecting capability of a test suite. For
this purpose we introduce the notion of a marked trace and a distance
function on such marked traces.

Keywords: Test selection, test coverage, trace distance, heuristics, edit distance.

1. INTRODUCTION
The selection of an appropriate set of tests from all possible ones

(usually infinitely many test cases), is not a trivial task. We refer to
this task as test selection. Traditionally, test selection is based on a
number of heuristic criteria. Well-known heuristics include equivalence
partitioning, boundary value analysis, and use of code-coverage criteria
like statement-, decision- and path-coverage [9]. Although these criteria

*This research was supported by the Dutch Technology Foundation STW under project
STW TIF.4111: Cote de Resyste - COnformance TEsting of REactive SYSTEms; URL:
http:/ /fmt.cs.utwente.nl/CdR.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
I. Schieferdecker et al. (eds.), Testing of Communicating Systems XIV

10.1007/978-0-387-35497-2_31

http://dx.doi.org/10.1007/978-0-387-35497-2_31

268 TEST GENERATION AND SELECTION

provide some heuristics for selecting test cases, they are rather informal
and they do not allow to measure the error-detecting capability of a test
suite.

If test cases are derived from a formal specification, in particular if
it is done algorithmically using tools for automatic test generation, e.g.,
AUTOLINK [10], TGV [8] or ToRX [3], then the test selection problem
is even more apparent. These test tools can generate a large number
of test cases, when given a specification in the appropriate formalism,
without much user intervention. All these generated test cases can detect
potential errors in implementations, and errors detected with these test
cases indeed indicate that an implementation is not correct with respect
to its specification. However, the number of candidate test cases may
be very large, or even infinite. In order to control and get insight in the
selection of the tests, and by that get confidence in the correctness of an
IUT that passes the tests, it is important that the selection process is
formally described and based on a well-defined strategy.

This paper approaches the problem of test selection by making as­
sumptions in an automata-based, or labelled transition system-based
formalism. Two different kinds of assumptions are considered in this
paper, starting with the ideas of [5]. The first one, called reduction
heuristic, assumes that few outgoing transitions of a state show essen­
tially different behaviour. The second one, referred to as cycling heuris­
tic, assumes that the probability to detect erroneous behaviour in a loop
decreases after each correct execution of the loop behaviour.

Section 2 introduces the labeled transition systems and automata. Af­
ter that we propose a mathematical framework, defining a heuristic as
a function on the set of behaviours (traces). This is done in Section 3.
When we want to make the two heuristics more precise, defining them as
functions according to the definition from Section 3, we observe that an
appropriate behaviour representation for them is needed. Therefore in
Section 4 we define the marked trace representation. After these prepa­
rations the definitions of the heuristics as functions on marked traces
are easy (Section 5). Subsequently, the notion of isolation and closeness
of errors is formalized in Section 6 by defining a distance function be­
tween behaviours. This idea is taken from [1, 2] and extended to marked
traces. The trace distance implements the considered heuristics in the
sense that the traces which are selected by the heuristics are remote
from each other. Every trace which is excluded by the heuristics is close
to one of the selected traces. A coverage function which may serve as a
measure for the error-detecting capability of a test suite is defined based
on the maximum distance between selected and non-selected behaviours
and a formula for approximating the coverage is given in Section 7.

Test Selection, Trace Distance and Heuristics 269

2. PRELIMINARIES
The basic formalism for our discussion about test selection is the la­

belled transition system. A labelled transition system provides means to
specify, model, analyze and reason about (concurrent) system behaviour.

A labelled transition system is a 4-tuple (Q, L, T, qo}, where Q is a non­
empty set of states, L is a set of labels, T Q x L x Q is the transition
relation, and qo E Q is the initial state. The labels in L represent
the actions of a system. An action a E L is executable in state q E Q if
(q, a, q') E T for some state q' E Q, which is said to be the new state after
execution of a; we also write q q'. A finite sequence of pairs (state,
action} ending into a state is called a path. Similarly, a finite sequence
of actions is called a trace. The set of all traces over L is denoted by L *,
with E denoting the empty sequence. Abusing notation, we will use p to
denote both the labelled transition system and the current (or initial)
state of the system.

The traces of a labelled transition system p are all sequences of actions
that p can execute from its initial state qo: traces(p) =def { a E

L * I qo } . Here we use the following additional definitions:

3qo, ... , qn : q = qo ql · · · qn = q'
3q': q q'

For our presentation and formalization we use minimal, determin­
istic, finite-state transition systems. A finite-state labelled transition
system has a finite number of states, i.e., Q is finite. A transition sys­
tem is deterministic if for any state q E Q and action a E L there
is at most one successor state, i.e., T : Q x L ---t Q is a (partial)
function. A transition system is minimal if there are no equivalent
states, i.e., no two states with exactly the same traces, which means:

q' E Q: traces(q) = traces(q'). We (ab)use the word automaton for
these minimal, deterministic, finite-state transition systems.

Although it may seem a severe limitation to restrict to automata, an
important formal test theory, viz. ioco-testing [12), can be expressed in
terms of so-called suspension automata, which are deterministic. So the
test selection approach which is presented in this paper can be integrated
with ioco-testing.

In testing, the traces of the automata are used. A complete (maxi­
mal) test suite for an automaton specifications is expressed as traces(s).
However, even if s is finite-state, its set of traces will usually be infinite
and contain traces of unbounded length. Such a test suite can never
be executed within any reasonable limits of time and resources. Conse­
quently, the problem of test selection consists of selecting a finite sub-

270 TEST GENERATION AND SELECTION

set T <:;;; traces(s), such that we end up with a reasonably sized set of
bounded-length test cases.

The challenge of test selection now is to choose T such that the re­
sulting test suite still has a large error-detecting capability. Moreover,
we wish to quantify this capability in order to compare and select test
suites. The next sections will present and formalize an approach to
selection and quantification.

3. THE TRACE DISTANCE AND THE TEST
HEURISTICS

In our test selection method we use heuristics which are applied on
traces and distances between traces. This section describes the formal
definitions of these notions.

In a formal way a trace heuristic is a function between two sets of
traces such that the range is a proper subset of the domain (so the
heuristic reduces the size of the initial set).

Definition 1 Let T be a set of traces.
i} A trace heuristic h is a function h: T T, where Ran(h) CT.
ii} A function d: R>o is a trace distance iff: 1} d(x, x) = 0;
2} d(x,y) = d(y,x); 3} d(x,y) d(x,z) +d(z,y) for all x,y,z E T.

The pair (T, d) is a metric space. It is customary to express coverages
by numbers in the range [0, 1] and therefore we restrict ourselves, without
loss of generality, to trace distance functions such that 0 ::; d(x, y) ::; 1
for all x, y. In order to use a trace distance for test selection the concepts
of -cover and total boundedness are useful.

Definition 2 A set T' is an -cover ofT (I'' <:;;; T, c 2: 0} if for every
t E T there exists t' E T' such that d(t, t') ::; c. A metric space (T, d) is
totally bounded if for every c > 0 it is possible to find a finite set Te <:;;; T
such that Te is an -cover ofT with respect to distance d.

Now a link between a heuristic and a trace distance is established: if
the subset obtained by the application of that heuristic is an -cover of
the original set, then the trace distance implements the heuristic.

Definition 3 Let T be a set of traces and h be a trace heuristic such that
h: T T. Let d be a trace distance defined on T. Then d implements
the heuristic h iff: 3.oh 2: 0 : Ran{h) is an ch -cover ofT with respect to
the distance d.

The following definition shows how to obtain the coverage.

Test Selection, Trace Distance and Heuristics 271

Definition 4 LetT be a set of traces and T' T an £-cover ofT with
respect to a trace distance d. Let em = inf { e 2:: 0 I T' is an £-cover ofT}
be the inferior minimum of the e values. Then the coverage ofT' with
respect toT is cov(T', T) = 1- em·

4. THE MARKED TRACE REPRESENTATION
When we want to make the two heuristics more precise, defining them

as functions according to Definition 1 point i), we observe that an ap­
propriate trace representation is needed. When we apply the Cycling
heuristic on a trace, we observe that the trace does not have enough
information regarding how it was generated, what states it has been go­
ing through and how often it went through them. As a result, we will
represent the trace in such a way that the information regarding its gen­
eration from the automaton will be included. This leads us to a concept
called marked traces. In the marked trace representation, we associate
the cycles with how many times a trace is traversing a state. The name
of the state, which is seen as a mark, will serve as the identifier of the
cycle. Also we will include the number of cycles through a state.

Definition 5 Let L be a labelset and Q a set of states. Then a marked
trace is inductively defined by: 1} a E L, E and []O,q (q E Q) are marked
traces; 2) if u (u E L or u = [-]-'-) and v are marked traces then uv is a
marked trace; 3} if u and [a]n,q (n EN, q E Q) are marked traces then
[a(u)]n+l,q is a marked trace (a is a sequence of type (al) ... (an) where
O'i are marked traces, i = 1, ... n).

Example ao[(bd)jl,IIe, ao[(bd)(bd)] 2,IIe with liE Q are marked traces.
We will denote the set of all the marked traces over a labelset L

and a set of marks Q as L'Q. The transformation between the marked
representation of a trace and a normal representation of a trace can
be made easily by eliminating all the parentheses which occur in the
marked representation. For example the marked trace ao[(bd)(bd)j2,IIe
is transformed into the trace aobdbde.

In the following example, we will illustrate a way in which a trace
of a particular automaton can be transformed into a marked trace. In
general, this transformation is not unique.
Example Consider the specification automaton from Figure 1. The la­
belset is L = { b, c, d, e,!} U { ai I i E N} and the initial state is the state
I. Via a transition ai from the initial state, one arrives at II. This state
contains a cycle which goes via III using the transitions b and d; the
state III contains another cycle, via the transition c. From II one arrives
at IV using e or f.

272 TEST GENERATION AND SELECTION

Figure 1. A minimal automaton of a specification

Let us consider the trace aobcdbcde. Adding boxes to reflect nesting

structure, the corresponding path is I ao[ll]b/J IIIJ/c/J IIJi/d[ll]biJ IIIJ/c

/J IIIJ/d[ll]eiV. The state II (surrounded with a box in the path) is re­
peated three times. Between two occurrences of state II in the path,
the state III (surrounded with two boxes) appears twice. If we match
every new occurrence of state II in the path with its first occurrence (we
will call this way of matching the states first state matching), the path
will be divided in 4 paths: !.!!:!}!!)(pbmsmdii)(pbmsmdii)]2 J1 If

1 2 3 4
we do the same for III in the paths 2) IIbiii ciii dii and 3) Jib III ciii dii
and eliminate all the states, we obtain the marked trace a 0 [(b[(c)jl,IIId)(
b[(c)jl,IIId)]2,IIe. This marked trace corresponds to the initial trace
aobcdbcde. However, there are also other ways of transforming it into a
marked trace. For example, the states of the same trace can be grouped
in another way as I aoiibj InjcJ IIIjdiibj IIIJcJ IIIjdii eiV and this trace
has another correspondent marked trace which is a0b[(c)(db)(c)J 3,mde.

For this example we see that there is not a unique way of transforming
a trace in a marked trace. \Ve leave it as an option to the implementer
(the user of our theory) to choose the way by which he transforms a
trace into a marked trace. We will give a particular way to implement
the transformation of a trace in a marked trace and a way to obtain the
set of marked traces. If the implementer chooses another transformation,
he can still use the theory presented in this paper if the correspondence
between marked traces and traces is unique, and if its set of marked
traces respects the property that the widths and the nesting depth are
uniformly bounded (we will come to this later).

We obtain a set of marked traces by applying the following function
(ALG) on each trace (path) of a finite-state minimal deterministic au­
tomaton s. The function builds a marked trace from a trace using a
first state match technique like the one we used for the trace a0bcdbcde

Test Selection, Trace Distance and Heuristics 273

at the beginning of the previous example. In ALG we use the following
operator, function and procedure: 1) the operator [trace transforms a
path to a trace by eliminating all the states which appear in the path
and keeping all the labels; 2) the function NotRepetitivesState(p, Q), p a
path, Q a set of states, returns true if every state of p which is contained
in Q occurs only once in p and 3) the procedure Divide(p, Q, q, Pl, ... ,
Pn) finds q E Q and splits pin PI, ... ,pn (n E JN, i = 2, ... , n- 1, Plq,
qpiq, qpn paths) such that: i) q E Q is the first repetitive state in p,
ii) p = p1qp2q ... qpn and iii) the set of states of Pj does not contain q
(j = 1, ... ,n).
function ALG (p: Path, Q: SetStates) : MarkedTrace;
var q : State;

Pl, ... ,pn: (E+Label)(State Labe0*(E+State);
begin

if (NotRepetitiveState(p, Q)) then
(1) return P [trace;

else
(2) Divide(p, Q, q, Pl> ... , Pn);
(3) Q = Q \ { q};
(4) return ALG(p1q, Q)[(ALG(qp2q, Q)) ... (ALG(qPn-lq, Q))]n-2,q

ALG(qpn, Q);
end
Example Let us consider the path p = I aollbiii dll eiV of the automa­
ton from Figure 1 and the automaton set of states Q ={I, II, III, IV}.
The call of ALG(IaoiibiiidiieiV,{I,II,III,IV}) implies
Apply (2) Divide(! aoiibiiidii eiV, {I, II, III, IV}, II, I ao, bill d, eiV)

where q = II and Pl = I ao, P2 = bill d, P3 = eiV
Apply (3) Q ={I, II, III, IV}\ {II}= {I, III, IV}
Apply (4) ALG(Ia0 II, {I, III, IV})[(ALG(Ilbiiidii, {I, III, IV}))] 1,II

ALG(IIeiV, {I, III ,IV}) Appg (1l laoll [trace [(IIbiiid
II [trace)F'II II eiV [trace= ao[(bd)p,II e

The set of marked traces is tracesm(s) = {ALG(p, Q) [p E path(s)}.
In the remainder of this paper we will work with marked traces generated
with ALG in place of traces.

As one can see, our way of building the set of marked traces is rather
complex. One can imagine trivial solutions as for example: every marked
trace is the trace itself. But the marked traces built with ALG have nice
properties which are required for the application of our test selection the­
ory. For example the width of such marked traces is uniformly bounded
(Lemma 7), a property which is used for proving the total bounded­
ness property (a direct consequence of Theorem 13). The marked traces
generated with the trivial solution do not have this property.

274 TEST GENERATION AND SELECTION

In conclusion, once we have the set of marked traces, we want to know
if it has some specific properties. So for a marked trace of an automaton
we want to know if the width of it is uniformly bounded (Lemma 7), and
if the nesting depth of it is also bounded (Lemma 9). Here uniformly
bounded means that the same upperbound applies at all nesting levels.

Definition 6 Let s be an automaton. Let L be the labelset and Q the
set of states of s. Then the function width : tmcesm (s) _., 1N is : 1)
if a E L,q E Q then width(a) = 1, width(E) = 0, width([]0 ,q) = 1; 2) ifu
(u E L or u =[-]-,-)and v are marked traces then width(uv) = width(u)
+ width(v); 3} ifu and [a]n,q (q E Q,n E JN) are marked traces then
width([a(u)]n+l,q) = 1.

Lemma 7 The width of a marked trace generated with ALG from an
automaton and the widths of all its component marked traces are less
than or equal to 2m - 1, where m is the number of the states of the
automaton. (Without proof)

Definition 8 Let s be an automaton. Let L be the labelset and Q the
set of states of s. Then the function nesting: tracesm(s) _., 1N is: 1} if
a E L, q E Q then nesting(a)= 0, nesting(E)= 0, nesting([]0,q) = 1; 2)
if u (u E L or u = [-]-'-) and v are marked traces then nesting(uv) =
max(nesting(u), nesting(v)); 3) ifu and [a]n,q (q E Q, n E JN) are marked
traces then nesting([a(u)]n+l,q) = 1+ max(nesting(a), nesting(u)).

Lemma 9 The nesting depth of a marked trace generated with ALG
from an automaton is less than or equal to the number of the states of
the automaton. (Without proof)

5. THE HEURISTICS DEFINED FOR MARKED TRACES

As we presented in the introduction, the intuition behind the heuris­
tics Reduction and Cycling is that they take into account two aspects:
the finiteness of 1) the number of outgoing transitions of certain states
and of 2) the number of times each cycle can be traversed by every single
trace.

When Reduction is applied, the labelset L is split in two parts: the
selected labels which form a finite set L' L and the set of unselected
labels which is L \ L'. This application can be seen as the application of a
mapping function trans: L _., L' which maps every unselected label to
a selected label from L' and every selected label to itself. One practical
way to make the selection and to obtain L' and trans is by defining a
distance dL between labels, such that the metric space (L, dL) is totally

Test Selection, Trace Distance and Heuristics 275

bounded. Let us fix a positive real number c£ 2:: 0. Now L' will be a
labelset which is an q-cover of L. The labels which are remote from
each other (their distance is greater than c£) are selected and the labels
from L \ L' remain unselected. The function trans: L ----> L' can be
defined in this case such that trans(a) = b with a E L and b E L' has
the minimum label distance to a.

For the Cycling heuristic we relate the cycles of the automaton to
the marked representation of the trace; limiting the numbers of times of
traversing the cycles means limiting the powers of the marked symbols
in the marked traces. Now, let us define these heuristics in a formal way.

Definition 10 Let s be an automaton. Let L be the labelset and Q
the set of states of s. Let L' L be a finite subset of L and let
trans: L ----> L' be the mapping function. Let lc be the cycle limit. Then
i) The heuristic Reduction: tracesm (s) ----> tracesm (s) is: 1) if a E L, q E
Q then Reduction(a) = trans(a), Reduction() = E, Reduction([]0•q) =
[]0•q; 2} if u (u E L or u = [-]-·-) and v are marked traces then
Reduction(uv) = Reduction(u) Reduction(v); 3} if u and [a]n,q (q E
Q, n EN) are marked traces then Reduction([a(u)]n+l,q) = [Reduction(a
), Reduction(u)]n+l,q.
ii) The heuristic Cycling: tracesm(s) ----> tracesm(s) is: 1) if a E L, q E
Q then Cycling(a) = a, Cycling() = E, Cycling([]0•q) = []0•q; 2} if
u (u E L or u = [-]-·-) and v are marked traces then Cycling(uv) =
Cycling(u) Cycling(v); 3) if u and [a]n,q (q E Q, n E N) are marked
traces then: a) Cycling([a(u)]n+l,q) = [Cycling(a) Cycling(u)]n+l,q, for
lc > n; b) Cycling([a(u)]n+l,q) = [Cycling(a')jlc,q, for lc :::; n, where
a = (al) ... (an) and a' = (a1) ... (a1J is obtained by cutting a after lc
symbols.

Example Let us consider the automaton from Figure 1. For this au­
tomaton the set of labels is L = { c, b, d, e, f} U { ai I i = 0, 1, ... }. Let
L' = { ao, c, b, d, e, f} be a finite subset of L, lc = 2 and trans: L ----> L'

{ ao x =a· i EN
trans(x) = th . Then x o erw1se

i) Reduction(age) = Reduction(ag)Reduction(e) =trans(a3)trans(e) =
aoe.

ii) Cycling(ao[(bd) (bd) (bd)]3•IIe) = Cycling(ao) Cycling([(bd) (bd) (bd)
]3•II) Cycling(e) = ao[(bd)(bd)]2•IIe.

6. THE TRACE DISTANCE FOR MARKED TRACES

In this section we make the trace distance more precise, defining it as
a distance function according to Definition 1 point ii). As explained in

276 TEST GENERATION AND SELECTION

the introduction, this gives us an alternative formalization of the ideas
behind the heuristics (they will be compared in Section 7). We will
combine these ideas with another well-known idea, viz. the edit distance.
Section 6.1 introduces the edit distance. After this preparation, the
definition of the trace distance function can be given (Section 6.2).

6.1 The. edit distance between strings
Because in our trace distance we use the concept of edit distance

we shall present this first. Informally the edit distance is defined as
the minimum number of insertions, deletions and substitutions required
to transform one string into another. Wagner and Fisher ((11]) adopted
different costs for the various atomic edit actions. According to Wagner­
Fisher transforming a into a b costs w(a, b). Extending this notation,
w(a, e) is the cost of deleting a and w(e, b) is the cost of inserting b.
The cost of editing is the sum of the costs of the atomic edit actions,
and d(x, y) is the minimum cost over all possible edit sequences that
transform x into y.

Definition 11 Let w(a, b) be the weighting for the cost of transforming
symbol a in symbol b, w(a, e) be the cost of deleting a and w(e, b) be
the cost of inserting b. Of course w(a, a) = 0. Then the edit distance
between the strings x andy is denoted as ED(x, y) and it is computed
as: 1} ED(au, bv) = min(w(a, b)+ED(u, v), w(a, e)+ED(u, bv), w(e, b)+
ED(au, v)); 2} ED(au, e)= w(a, e) + ED(u, e); 3} ED(e, bv) = w(e, b)+
ED(e, v); 4) ED(e, e)= 0 (where a, b are symbols and u, v are strings).

6.2 Defining the trace distance
Our test selection technique uses two heuristics. For expressing these

heuristics in the trace distance, it is important to remember that in
the formalization of the Reduction heuristic a label distance was used.
The incorporation of this heuristic in the trace distance is achieved in
a simple way by using the label distance in the formula of the trace
distance. Now a solution should be found for the Cycling heuristic.

For the Cycling heuristic we simply weight every level k of a cycling
symbol (a marked trace of type [_]n,q, n E JN, q E Q) with a weight from
a series of positive numbers Pk· This series should have the property
that L:k:1 Pk = 1. The logic behind this weighting is that summing the
weights after a given limit (which is the cycle limit) will contribute with
a small number reflecting our assumption that the first cycles are more
important than the later cycles.

Test Selection, Trace Distance and Heuristics 277

We will define the trace distance for all the possible combinations of
the points (1), (2), (3) of Definition 5 (which are generating marked
traces). We summarize these combinations below.

Between the marked traces generated with point (1) (such as []0·q, q E
Q and a E L) we will define a distance function called AtD (atomic
distance) because these are the atomic elements which form the marked
trace; of course the AtD between two labels will be given by dL, the
distance between these labels; between a label and a marked trace such
as []O,q it will be maximum (one) and between two marked traces such
as []O,q ,[]O,q' (q, q1 E Q, q =/= q1) it will also be one.

Between the marked traces generated with point (2) (such as af or
ae) we will use a distance function called EdD (edit distance); we took
this option because these traces are generated in a similar style as the
strings are formed and it is quite natural to use it because it compares
in a good way the terms which form the marked traces (for example in
the traces aoe and ao[(bd)] 1•IIe the edit distance will recognize that the
labels ao and e from the first trace are present in the second trace).

Between the marked traces generated with point (3) (such as building
[(bd)] 1•II once we know that []0•II is a marked trace) we employ the
principle that cycles of different marks are very remote and hence have
the maximum distance, i.e, 1; when dealing with cycles of the same mark
we employ weighting factors Pk with the effect that the later iterations
are considered less important than e.g. the first iteration; this can be
done by using a function EdDW which is an edit distance for which the
formula of Definition 11 is modified in such a way to take into account
the weights.

The rest of the possible combinations such as (1) with (2), (2) with
(3) etc. are defined in a similar style by using one of the techniques
mentioned above (EdD or AtD).

We observe also that this trace distance is to be used in the computa­
tion of coverage which should be in the range [0, 1]. For simplifying the
computation of coverage, we want the trace distance values to be in the
range [0, 1]. This can be done by dividing all the above mentioned values
(generated with an EdD or AtD) by the maximum width of the marked
traces from tracesm(s) (the maximum width is finite, see Section 4). For
completing the picture it is necessary to add that the trace distance
between a null trace (E) and any other marked trace is maximum (1).

Now we have all the ingredients to define a trace distance on marked
traces. We will call it d. In the definition, the distances already men­
tioned (EdD and AtD) will be used; also it is implicitly assumed that
the definition is symmetric in the sense that d(x, y) = d(y, x), x andy
being marked traces and that d(x, x) = 0.

278 TEST GENERATION AND SELECTION

As explained above, the function AtD deals with the cases E, a E L
and []0•-. We generalize it to marked traces of the form [-]-·- as well.

Definition 12 Let s be an automaton. Let L be the labelset of s, dL
the label distance defined on it and Q the set of states of s. The metric
space (L, dL) is totally bounded and dL has all its values in the range
(0, 1]. Let lm be the maximum of the width of the marked traces from
tracesm(s). Let Pk (k = 1, 2, .. .) be a series of positive numbers such that

Pk = 1. Then

1 d(b) _ AtD(a,b) .
. a, - l '

d(a,t) = d(t, [J(f,'q) = 1;
d(a, (JO,q) =]0 •q);

AD 0 0 I d([JO,q, [JO,q1) = t ([)1:,[] ,q)

with a,b E L,q,q' E Q;
3. d(a, [u(v)]n+l.q) = '"•q);

d(, [u(v)Jn+l,q) = 1;
d([JO,q' [u(v)t+l,q) = AtD([)o,qi;:(v)jn+l,•/)

with v and [u]n,q' marked traces {n EN,
q' E Q) and a E L,q' E Q;
5. d(uv, [r(t)t+l,q) = EdD(uvl[:(t))n ,q)

with u {u E L or u = [-]-•-) ,v, t, [rt•q
marked traces {n EN, q E Q);

where

x,y E L

2 d() _ EdD(a,uv) . . a,uv - l ,

d(c,uv) = 1; m

d([]o,q,uv) =
with u {u E Lor u = [-]-·-),
v marked traces and a E L,q E Q;
4 d(t) _ EdD(uv,rt) . uv,r - 1

with u (u E L or u [-]-·-),

v, r (1· E L orr=[-]-·-),
t marked traces;

6. d([u(v)Jn+l,q, [r(tJr'+l,q')
_ AtD([u(v)jn+l,q ,[r(t)]"'1 +l,q')
- lrn, I I

with v, t, [ur·q' [rr ,q marked
traces {n, n' EN, q, q' E Q).

{ d*,y)
AtD(x, y) = ;dDW(x, y) x = r-r·q,y = r-t'·q,q E Q

n,n' E N,n =I O,n' =I 0
otherwise

EdD(uv, rt) = min(AtD(u, r) + EdD(v, t), AtD(1t, c)+ EdD(v, rt),
AtD(£, r) + EdD(uv, t));

EdD(uv, E) = AtD(1t, c)+EdD(v, c); EdD(£, rt) = AtD(E, r)+EdD (E, t);
EdD(E,) = 0
with u (u E L or u = [-]-·-), v, r (r E L orr=[-]-·-), t marked traces;
EdDW([(ul) ... (un/t'q, [(vl) ... (vp)]P'q) = EDW1([(ul) ... (un)r·IJ, [(vl) ... (vp))P'q)
EDWk([(·u)o-]h,q, [(v)o-']9•1J) = min(pk x d(u, v) + EDWk+l([o-]h-l,q, [o-'Jg-l,q),

Pk x d(u, E)+ EDWk+1 ([o-Jh-l,q, [(v)o-']g,q),
Pk x d(E, v) + EDWk+l([(u)o-]h,q, [a']g-l,q));

EDWk([(u)o-]h,q, []0•q) = Pk x d(u, E)+ EDwk+1 ([o-]h-l,q, []0•IJ);
EDWk([]0'q, [(v)o-']g,q) = Pk x d(E, v) + EDWk+ 1 ([] 0•q, [o-'J 9- 1·1J);
EDWk([]o,q, []o,q) = 0
with u; and Vj marked traces, k, h, g E lN, q E Q and
u, v, [o-Jh-l,q, [o-')9-1•q marked traces.

Test Selection, Trace Distance and Heuristics 279

We add some explanation. It is easy to check that the definition of
EdD and EdDW are copied from Definition 11 except for the fact that
suitable weighting factors Pk have been incorporated. The parameter k
in EDWk indicates the position at which the next edit action takes place.
Please note that the recursive definition of EDWk is well defined because
at least one of the right-hand sides of the equation is one symbol shorter
than the corresponding left-hand side (therefore, the fact that k is in­
creasing causes no problem). The base case is EDWk([]0•q, []0•q) = 0.
Example Let us consider the automaton from Figure 1. For this au­
tomaton the maximum width of the marked trace is 3. Let Pk = k =
1, 2, Let dL be the following label distance

{
0 x=y

dL(x,y) = I I x = ai,Y = aj,i,j EN
1 otherwise

1) The edit distance effect:
Let us consider the traces t1 = aoe and t2 = ao[(bd)jl•IIe.
d(t1, t2) =}X EdD(aoe,ao[(bd)] 1•IIe) =}X AtD(E, [(bd)]1•II) = }.
The trace distance takes into account that the symbols ao and e from
the first trace are present in the second trace.

2) The cycling effect:
Let us take the traces t1 = ao[(bd)j1•11e, t2 = ao[(bd)(bd)]2•IIe and t3 =
ao[(bd) (bd) (bd) p.ne.
d(t1, t2) =} x EdD(ao[(bd)jl•IIe, a0 [(bd)(bd)]2•Ile) =} x EdDW([(bd)jl•II
, [(bd)(bd)j2•II) = =
d(t1, t3) =}X EdD(ao[(bd)(bd)j2•11e, a0[(bd)(bd)(bd)]3•11e) =} x EdDW(
[(bd)(bd)j2•II, [(bd)(bd)(bd)j3•II) =' =
When two marked traces are cycling more times through the same cycle,
the values of the trace distance start to decrease.

3) The reduction effect:
Let us take the traces t1 = aoe, t2 = a1e and t3 = a2e.
d(tl t2)- 1 X EdD(aoe a2e)- dL(ao,a2) - 0.23. ' -3 ' - 3 - 3'
d(t2,t3) =}X EdD(a1e,a2e) = dL(a;,a2) =
When the label distance between the labels (which compose the marked
traces) is decreasing, the trace distance is also decreasing.

7. TRANSFORMING THE HEURISTICS
INTO A COVERAGE

The trace distance formula depends on the label distance dL which
implements the Reduction heuristic and the weights Pk which implement
the Cycling heuristic. On the other hand, by choosing for each automa­
ton s a finite set L which is an q-cover of L with respect to dL

280 TEST GENERATION AND SELECTION

and a cycling limit lc, a finite set of marked traces T tracesm(s) can
be obtained. This is done by the application of the Cycling and the
Reduction heuristics on tracesm(s) by taking T =Ran(Cycling o Reduc­
tion). Now for this T and using d we want to approximate its £-cover
of tracesm(s) so that we can compute the coverage cov(T, tracesm(s)) -
see Definition 4. Intuitively & should depend on&£ and lc. Its formula
is given by Theorem 13.

Theorem 13 Let s be an automaton. Let L be the labelset of s and
dL the label distance defined on it. The metric space (L, dL) is totally
bounded and dL has all its values in the range [0, 1]. Let lc be the cy­
cle limit. Let Pk (k = 1, 2, .. .) be a series of positive numbers such that
I:k:,1 Pk = 1. Let lm be the maximum of the width and z the maxi­
mum of the nesting depth of the marked traces from tracesm(s). Let
L<: L be an &£-cover of L. Then the finite set T =Ran(Reduction
o Cycling) of traces obtained by the application of the two heuristics
on tracesm(s) is an £-cover of tracesm(s) with & = &z and &0 = &£i

. l . 00 .

fori= 1, ... ,z: = I:k=lPk X (maxj=O, ... ,i-1(&3)) + I:k=lc+1Pki &t =
{W:'th t f) maXcycles=O, ... ,lrn lrn . Z OU proo

Using the results of Theorem 13 it is easy to prove that the metric
space (tracesm (s), d) is a totally bounded metric space and that the trace
distance d implements the Cycling and the Reduction heuristics, in the
sense of Definition 3.

For the computation of the coverage we approximate the minimum
&m from Definition 4 with the &z computed in Theorem 13. We will
illustrate the computation of the coverage in the following example.
Example Consider the automaton from Figure 1. Let us fix the final
state to be IV. Let us consider the reduced set Lc = { ao, b, c, d, e, !}
which is an &£-COver of the labelset L with &£ = 0.25 (&£ is computed
with respect to the dL defined in the example from Section 6.2). For
this automaton the maximum width is lm = 3 and the maximum nesting
depth is z = 2. Let us fix the series Pk = (k E N) and in the beginning
lc = 1. Then the set of traces T which is obtained by the application of
the heuristics Reduction and Cycling is an &-cover of tracesm(s), with &
computed with the formula from Theorem 13 as:

1) lc = 1, Lc = {ao,b,c,d,e,f}
&0 = &£ = 0.25;

1 - "'1 0 + "'00 - 0.25 + "'00 1 - 0 63· &c - L...k=1 Pk X £ L...k=lc+1 Pk - L...k=lc+1 27' - · '
,.1 _ (cyclesxc2+(lrn-cycles)X.c£) _ 0 63· _ 2 _ 0 81·
c. - maXcycles=0, ... ,3 lrn - · , £ - £ - · ,

The coverage is computed via Definition 4 and it is cov(T, tracesm(s)) =
1-£ = 0.19;

Test Selection, Trace Distance and Heuristics 281

2) lc = 2, Lc = {ao,b,c,d,e,f}
When we enlarge the set T toT' for lc = 2 we find that cov(T', tracesm(s
)) = 0.51;

3) lc = 1, Lc' = { ao, a1, b, c, d, e, f}
When we enlarge the set T to T" for Lg" = { ao, a1, b, c, d, e, f} we find
that e'£ = 0.06 and that cov(T", tracesm(s)) = 0.29.

In this case, one can see that the coverage increases more by adopting
a higher value for the cycling limit than by using a larger label subset.
But this is not always true, e.g. increasing lc from 101 to 102 might
give lesser increase than taking a larger labelset. Moreover we defined
specific values for Pk and d£.

It can be seen that in this example the monotonicity property required
in [4] viz. T T' =? cov(T) :::; cov(T') is respected. From an intuitive
point of view this property is reasonable: if one wants a better coverage,
one needs to generate more tests. This property can also be proven to
hold in general.

8. CONCLUSIONS
A heuristic is a general guideline for reducing test suites, which must

be made more precise to be practically applicable. In this paper we
have studied two heuristics for reducing the number of traces in a test
suite. Especially for the cycling heuristic we had to introduce additional
notation. The reason is that the cycling structure of a trace through a
finite-state automaton must be made explicit. We introduced marked
traces for this purpose, which enabled us to extend the work on cycle
reduction by Vuong [1, 2].

In order to introduce a notion of coverage for the test suites reduced
by means of the above mentioned heuristics, we defined a trace distance
on marked traces. The results of our studies can be used to effectively
calculate the coverage of a test suite reduced with our techniques.

The proposed test selection technique can be compared to the existing
theories in this area. In particular, these are the hypothesis theory
developed by [6] and the trace distance theory of [1, 2]. The hypothesis
theory embodies the trace distance theory (see [6]), but the nice thing
about trace distance theory is that it gives a measure for the degree to
which a reduced set of traces approximates the original one. So we chose
an approach which combines these two theories. In our view, first the
heuristics (test hypotheses in the theory of [6]) are to be defined. After
that, based on these heuristics a trace distance is built. This gives the
possibility to make a test selection with a given e approximation. The

282 TEST GENERATION AND SELECTION

change of the heuristics leads to the change of the trace distance used
in test selection.

We have started work on implementing our techniques in the TorX
tool environment ([3]). An assumption for implementing our work is
that a label distance exists. Because the TorX tools support the input
of finite automata defined in LOTOS [7], we could use a label distance
on LOTOS labels. This is not trivial because LOTOS labels may be
parameterized by arbitrary data types.

References

[1] J. Alilovic-Curgus and S.T. Vuong. A metric based theory of test selection and
coverage. In A. Danthine, G. Leduc, and P. Wolper, editors, Protocol Specifica­
tion, Testing, and Verification, pages 289-304. North-Holland XIII, 1993.

[2] J. Alilovic-Curgus and S. T. Vuong. Sensitivity analysis of the metric based test
selection. In M. Kim, S. Kang, and K. Hong, editors, Int. Workshop on Testing
of Communicating Systems, volume X, pages 200-219. Chapman & Hall, 1997.

[3] A. Belinfante, J. Feenstra, R.G. Vries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
and L. Heerink. Formal test automation: A simple experiment. In G. Csopaki,
S. Dibuz, and K. Tarnay, editors, Intenational Workshop on Testing of Comu­
nication Systems, pages 179-196. Kluwer Academic, 1999.

[4] E. Brinksma, J. Tretmans, and L. Verhaard. A framework for test selection. In
B. Jonsson, J. Parrow, and B. Pehrson, editors, Protocol, Specification, Testing,
and Verification, volume XI, pages 233-248. North-Holland, 1991.

[5] 0. Charles and R. Groz. Formalisation d'hypotheses pour !'evaluation de la cou­
verture de test. In Actes du Colloque Francophone sur l'Ingenierie des Protocoles
(CFIP'96}, Editions Hermes, 1996.

[6] 0. Charles and R. Groz. Basing test coverage on a formalization of test hy­
potheses. In M. Kim, S. Kang, and K. Hong, editors, Int. Workshop on Testing
of Communicating Systems, volume X, pages 109-124. Chapman & Hall, 1997.

[7] ISO. Information Processing Systems, Open Systems Interconnection, LOTOS
-A Formal Description Technique Based on the Temporal Ordering of Obser­
vational Behaviour. International Standard IS-8807, 1989.

[8] T. Jeron and P. Morel. Test generation derived from model-checking. InN. Halb­
wachs and D. Peled, editors, Computer Aided Verification CAV'99, volume 1633
of Lecture Notes in Computer Science, pages 108-121. Springer-Verlag, 1999.

[9] G.J. Myers. The art of software testing. John Wiley & Sons Inc, 1979.

[10] M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. Autolink- a tool for the
automatic and semi-automatic test generation. In A. Wolisz, I. Schieferdecker,
and A. Rennoch, editors, Formale Beschreibungstechniken fur verteilte Systeme,
volume 315. GMD-Studien, St. Augustin, GI/ITG-Fachgesprach, GMD, 1997.

[11] G.A. Stephen. String search. Technical Report TR-92-gas-01, School of Elec­
tronic Engineering Science, University College of North Wales, 1992.

[12] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence.
Software-Concepts and Tools, 17(3):103-120, 1996.

	TEST
 SELECTION, TRACE DISTANCE AND HEURISTICS
	1. INTRODUCTION
	2. PRELIMINARIES
	3. THE TRACE DISTANCE AND THE TESTHEURISTICS
	4. THE MARKED TRACE REPRESENTATION
	5. THE HEURISTICS DEFINED FOR MARKED TRACES
	6. THE TRACE DISTANCE FOR MARKED TRACES
	6.1 The. edit distance between strings
	6.2 Defining the trace distance

	7. TRANSFORMING THE HEURISTICS INTO A COVERAGE
	8. CONCLUSIONS
	References

