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Abstract 
Two heuristic principles for test selection are proposed: the reduction 

heuristic and the cycling heuristic. The first assumes that few outgoing 
transitions of a state show essentially different behaviour. The second 
assumes that the probability to detect erroneous behaviour in a loop 
decreases after each correct execution of the loop behaviour. We for­
malize these heuristic principles and we define a coverage function which 
serves as a measure for the error-detecting capability of a test suite. For 
this purpose we introduce the notion of a marked trace and a distance 
function on such marked traces. 
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1. INTRODUCTION 
The selection of an appropriate set of tests from all possible ones 

(usually infinitely many test cases), is not a trivial task. We refer to 
this task as test selection. Traditionally, test selection is based on a 
number of heuristic criteria. Well-known heuristics include equivalence 
partitioning, boundary value analysis, and use of code-coverage criteria 
like statement-, decision- and path-coverage [9]. Although these criteria 
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provide some heuristics for selecting test cases, they are rather informal 
and they do not allow to measure the error-detecting capability of a test 
suite. 

If test cases are derived from a formal specification, in particular if 
it is done algorithmically using tools for automatic test generation, e.g., 
AUTOLINK [10], TGV [8] or ToRX [3], then the test selection problem 
is even more apparent. These test tools can generate a large number 
of test cases, when given a specification in the appropriate formalism, 
without much user intervention. All these generated test cases can detect 
potential errors in implementations, and errors detected with these test 
cases indeed indicate that an implementation is not correct with respect 
to its specification. However, the number of candidate test cases may 
be very large, or even infinite. In order to control and get insight in the 
selection of the tests, and by that get confidence in the correctness of an 
IUT that passes the tests, it is important that the selection process is 
formally described and based on a well-defined strategy. 

This paper approaches the problem of test selection by making as­
sumptions in an automata-based, or labelled transition system-based 
formalism. Two different kinds of assumptions are considered in this 
paper, starting with the ideas of [5]. The first one, called reduction 
heuristic, assumes that few outgoing transitions of a state show essen­
tially different behaviour. The second one, referred to as cycling heuris­
tic, assumes that the probability to detect erroneous behaviour in a loop 
decreases after each correct execution of the loop behaviour. 

Section 2 introduces the labeled transition systems and automata. Af­
ter that we propose a mathematical framework, defining a heuristic as 
a function on the set of behaviours (traces). This is done in Section 3. 
When we want to make the two heuristics more precise, defining them as 
functions according to the definition from Section 3, we observe that an 
appropriate behaviour representation for them is needed. Therefore in 
Section 4 we define the marked trace representation. After these prepa­
rations the definitions of the heuristics as functions on marked traces 
are easy (Section 5). Subsequently, the notion of isolation and closeness 
of errors is formalized in Section 6 by defining a distance function be­
tween behaviours. This idea is taken from [1, 2] and extended to marked 
traces. The trace distance implements the considered heuristics in the 
sense that the traces which are selected by the heuristics are remote 
from each other. Every trace which is excluded by the heuristics is close 
to one of the selected traces. A coverage function which may serve as a 
measure for the error-detecting capability of a test suite is defined based 
on the maximum distance between selected and non-selected behaviours 
and a formula for approximating the coverage is given in Section 7. 
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2. PRELIMINARIES 
The basic formalism for our discussion about test selection is the la­

belled transition system. A labelled transition system provides means to 
specify, model, analyze and reason about (concurrent) system behaviour. 

A labelled transition system is a 4-tuple (Q, L, T, qo}, where Q is a non­
empty set of states, L is a set of labels, T Q x L x Q is the transition 
relation, and qo E Q is the initial state. The labels in L represent 
the actions of a system. An action a E L is executable in state q E Q if 
( q, a, q') E T for some state q' E Q, which is said to be the new state after 
execution of a; we also write q q'. A finite sequence of pairs (state, 
action} ending into a state is called a path. Similarly, a finite sequence 
of actions is called a trace. The set of all traces over L is denoted by L *, 
with E denoting the empty sequence. Abusing notation, we will use p to 
denote both the labelled transition system and the current (or initial) 
state of the system. 

The traces of a labelled transition system p are all sequences of actions 
that p can execute from its initial state qo: traces(p) =def { a E 

L * I qo } . Here we use the following additional definitions: 

3qo, ... , qn : q = qo ql · · · qn = q' 
3q': q q' 

For our presentation and formalization we use minimal, determin­
istic, finite-state transition systems. A finite-state labelled transition 
system has a finite number of states, i.e., Q is finite. A transition sys­
tem is deterministic if for any state q E Q and action a E L there 
is at most one successor state, i.e., T : Q x L ---t Q is a (partial) 
function. A transition system is minimal if there are no equivalent 
states, i.e., no two states with exactly the same traces, which means: 

q' E Q: traces(q) = traces(q'). We (ab)use the word automaton for 
these minimal, deterministic, finite-state transition systems. 

Although it may seem a severe limitation to restrict to automata, an 
important formal test theory, viz. ioco-testing [12), can be expressed in 
terms of so-called suspension automata, which are deterministic. So the 
test selection approach which is presented in this paper can be integrated 
with ioco-testing. 

In testing, the traces of the automata are used. A complete (maxi­
mal) test suite for an automaton specifications is expressed as traces(s). 
However, even if s is finite-state, its set of traces will usually be infinite 
and contain traces of unbounded length. Such a test suite can never 
be executed within any reasonable limits of time and resources. Conse­
quently, the problem of test selection consists of selecting a finite sub-
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set T <:;;; traces( s), such that we end up with a reasonably sized set of 
bounded-length test cases. 

The challenge of test selection now is to choose T such that the re­
sulting test suite still has a large error-detecting capability. Moreover, 
we wish to quantify this capability in order to compare and select test 
suites. The next sections will present and formalize an approach to 
selection and quantification. 

3. THE TRACE DISTANCE AND THE TEST 
HEURISTICS 

In our test selection method we use heuristics which are applied on 
traces and distances between traces. This section describes the formal 
definitions of these notions. 

In a formal way a trace heuristic is a function between two sets of 
traces such that the range is a proper subset of the domain (so the 
heuristic reduces the size of the initial set). 

Definition 1 Let T be a set of traces. 
i} A trace heuristic h is a function h: T T, where Ran(h) CT. 
ii} A function d: R>o is a trace distance iff: 1} d(x, x) = 0; 
2} d(x,y) = d(y,x); 3} d(x,y) d(x,z) +d(z,y) for all x,y,z E T. 

The pair (T, d) is a metric space. It is customary to express coverages 
by numbers in the range [0, 1] and therefore we restrict ourselves, without 
loss of generality, to trace distance functions such that 0 ::; d( x, y) ::; 1 
for all x, y. In order to use a trace distance for test selection the concepts 
of -cover and total boundedness are useful. 

Definition 2 A set T' is an -cover ofT (I'' <:;;; T, c 2: 0} if for every 
t E T there exists t' E T' such that d( t, t') ::; c. A metric space (T, d) is 
totally bounded if for every c > 0 it is possible to find a finite set Te <:;;; T 
such that Te is an -cover ofT with respect to distance d. 

Now a link between a heuristic and a trace distance is established: if 
the subset obtained by the application of that heuristic is an -cover of 
the original set, then the trace distance implements the heuristic. 

Definition 3 Let T be a set of traces and h be a trace heuristic such that 
h: T T. Let d be a trace distance defined on T. Then d implements 
the heuristic h iff: 3.oh 2: 0 : Ran{h) is an ch -cover ofT with respect to 
the distance d. 

The following definition shows how to obtain the coverage. 



Test Selection, Trace Distance and Heuristics 271 

Definition 4 LetT be a set of traces and T' T an £-cover ofT with 
respect to a trace distance d. Let em = inf { e 2:: 0 I T' is an £-cover ofT} 
be the inferior minimum of the e values. Then the coverage ofT' with 
respect toT is cov(T', T) = 1- em· 

4. THE MARKED TRACE REPRESENTATION 
When we want to make the two heuristics more precise, defining them 

as functions according to Definition 1 point i), we observe that an ap­
propriate trace representation is needed. When we apply the Cycling 
heuristic on a trace, we observe that the trace does not have enough 
information regarding how it was generated, what states it has been go­
ing through and how often it went through them. As a result, we will 
represent the trace in such a way that the information regarding its gen­
eration from the automaton will be included. This leads us to a concept 
called marked traces. In the marked trace representation, we associate 
the cycles with how many times a trace is traversing a state. The name 
of the state, which is seen as a mark, will serve as the identifier of the 
cycle. Also we will include the number of cycles through a state. 

Definition 5 Let L be a labelset and Q a set of states. Then a marked 
trace is inductively defined by: 1} a E L, E and [ ]O,q (q E Q) are marked 
traces; 2) if u (u E L or u = [-]-'-) and v are marked traces then uv is a 
marked trace; 3} if u and [a]n,q (n EN, q E Q) are marked traces then 
[a(u)]n+l,q is a marked trace (a is a sequence of type (al) ... (an) where 
O'i are marked traces, i = 1, ... n). 

Example ao[(bd)jl,IIe, ao[(bd)(bd)] 2,IIe with liE Q are marked traces. 
We will denote the set of all the marked traces over a labelset L 

and a set of marks Q as L'Q. The transformation between the marked 
representation of a trace and a normal representation of a trace can 
be made easily by eliminating all the parentheses which occur in the 
marked representation. For example the marked trace ao[(bd)(bd)j2,IIe 
is transformed into the trace aobdbde. 

In the following example, we will illustrate a way in which a trace 
of a particular automaton can be transformed into a marked trace. In 
general, this transformation is not unique. 
Example Consider the specification automaton from Figure 1. The la­
belset is L = { b, c, d, e,!} U { ai I i E N} and the initial state is the state 
I. Via a transition ai from the initial state, one arrives at II. This state 
contains a cycle which goes via III using the transitions b and d; the 
state III contains another cycle, via the transition c. From II one arrives 
at IV using e or f. 
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Figure 1. A minimal automaton of a specification 

Let us consider the trace aobcdbcde. Adding boxes to reflect nesting 

structure, the corresponding path is I ao[ll]b/J IIIJ/c/J IIJi/d[ll]biJ IIIJ/c 

/J IIIJ/d[ll]eiV. The state II (surrounded with a box in the path) is re­
peated three times. Between two occurrences of state II in the path, 
the state III (surrounded with two boxes) appears twice. If we match 
every new occurrence of state II in the path with its first occurrence (we 
will call this way of matching the states first state matching), the path 
will be divided in 4 paths: !.!!:!}!!)(pbmsmdii)(pbmsmdii)]2 J1 If 

1 2 3 4 
we do the same for III in the paths 2) IIbiii ciii dii and 3) Jib III ciii dii 
and eliminate all the states, we obtain the marked trace a 0 [(b[(c)jl,IIId)( 
b[ (c)jl,IIId) ]2,IIe. This marked trace corresponds to the initial trace 
aobcdbcde. However, there are also other ways of transforming it into a 
marked trace. For example, the states of the same trace can be grouped 
in another way as I aoiibj InjcJ IIIjdiibj IIIJcJ IIIjdii eiV and this trace 
has another correspondent marked trace which is a0b[(c)(db)(c)J 3,mde. 

For this example we see that there is not a unique way of transforming 
a trace in a marked trace. \Ve leave it as an option to the implementer 
(the user of our theory) to choose the way by which he transforms a 
trace into a marked trace. We will give a particular way to implement 
the transformation of a trace in a marked trace and a way to obtain the 
set of marked traces. If the implementer chooses another transformation, 
he can still use the theory presented in this paper if the correspondence 
between marked traces and traces is unique, and if its set of marked 
traces respects the property that the widths and the nesting depth are 
uniformly bounded (we will come to this later). 

We obtain a set of marked traces by applying the following function 
(ALG) on each trace (path) of a finite-state minimal deterministic au­
tomaton s. The function builds a marked trace from a trace using a 
first state match technique like the one we used for the trace a0bcdbcde 
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at the beginning of the previous example. In ALG we use the following 
operator, function and procedure: 1) the operator [trace transforms a 
path to a trace by eliminating all the states which appear in the path 
and keeping all the labels; 2) the function NotRepetitivesState(p, Q), p a 
path, Q a set of states, returns true if every state of p which is contained 
in Q occurs only once in p and 3) the procedure Divide(p, Q, q, Pl, ... , 
Pn) finds q E Q and splits pin PI, ... ,pn (n E JN, i = 2, ... , n- 1, Plq, 
qpiq, qpn paths) such that: i) q E Q is the first repetitive state in p, 
ii) p = p1qp2q ... qpn and iii) the set of states of Pj does not contain q 
(j = 1, ... ,n). 
function ALG (p: Path, Q: SetStates) : MarkedTrace; 
var q : State; 

Pl, ... ,pn: (E+Label)(State Labe0*(E+State); 
begin 

if (NotRepetitiveState(p, Q)) then 
(1) return P [trace; 

else 
(2) Divide(p, Q, q, Pl> ... , Pn); 
(3) Q = Q \ { q}; 
(4) return ALG(p1q, Q)[(ALG(qp2q, Q)) ... (ALG(qPn-lq, Q))]n-2,q 

ALG(qpn, Q); 
end 
Example Let us consider the path p = I aollbiii dll eiV of the automa­
ton from Figure 1 and the automaton set of states Q ={I, II, III, IV}. 
The call of ALG(IaoiibiiidiieiV,{I,II,III,IV}) implies 
Apply (2) Divide(! aoiibiiidii eiV, {I, II, III, IV}, II, I ao, bill d, eiV) 

where q = II and Pl = I ao, P2 = bill d, P3 = eiV 
Apply (3) Q ={I, II, III, IV}\ {II}= {I, III, IV} 
Apply (4) ALG(Ia0 II, {I, III, IV} )[(ALG(Ilbiiidii, {I, III, IV} ))] 1,II 

ALG(IIeiV, {I, III ,IV}) Appg (1l laoll [trace [(IIbiiid 
II [trace)F'II II eiV [trace= ao[ (bd)p,II e 

The set of marked traces is tracesm(s) = {ALG(p, Q) [ p E path(s)}. 
In the remainder of this paper we will work with marked traces generated 
with ALG in place of traces. 

As one can see, our way of building the set of marked traces is rather 
complex. One can imagine trivial solutions as for example: every marked 
trace is the trace itself. But the marked traces built with ALG have nice 
properties which are required for the application of our test selection the­
ory. For example the width of such marked traces is uniformly bounded 
(Lemma 7), a property which is used for proving the total bounded­
ness property (a direct consequence of Theorem 13). The marked traces 
generated with the trivial solution do not have this property. 
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In conclusion, once we have the set of marked traces, we want to know 
if it has some specific properties. So for a marked trace of an automaton 
we want to know if the width of it is uniformly bounded (Lemma 7), and 
if the nesting depth of it is also bounded (Lemma 9). Here uniformly 
bounded means that the same upperbound applies at all nesting levels. 

Definition 6 Let s be an automaton. Let L be the labelset and Q the 
set of states of s. Then the function width : tmcesm ( s) _., 1N is : 1) 
if a E L,q E Q then width(a) = 1, width(E) = 0, width([ ]0 ,q) = 1; 2) ifu 
(u E L or u =[-]-,-)and v are marked traces then width(uv) = width(u) 
+ width(v); 3} ifu and [a]n,q (q E Q,n E JN) are marked traces then 
width([a(u)]n+l,q) = 1. 

Lemma 7 The width of a marked trace generated with ALG from an 
automaton and the widths of all its component marked traces are less 
than or equal to 2m - 1, where m is the number of the states of the 
automaton. (Without proof) 

Definition 8 Let s be an automaton. Let L be the labelset and Q the 
set of states of s. Then the function nesting: tracesm(s) _., 1N is: 1} if 
a E L, q E Q then nesting( a)= 0, nesting( E)= 0, nesting([ ]0,q) = 1; 2) 
if u (u E L or u = [-]-'-) and v are marked traces then nesting(uv) = 
max(nesting(u), nesting(v)); 3) ifu and [a]n,q (q E Q, n E JN) are marked 
traces then nesting([a(u)]n+l,q) = 1+ max(nesting(a), nesting(u)). 

Lemma 9 The nesting depth of a marked trace generated with ALG 
from an automaton is less than or equal to the number of the states of 
the automaton. (Without proof) 

5. THE HEURISTICS DEFINED FOR MARKED TRACES 

As we presented in the introduction, the intuition behind the heuris­
tics Reduction and Cycling is that they take into account two aspects: 
the finiteness of 1) the number of outgoing transitions of certain states 
and of 2) the number of times each cycle can be traversed by every single 
trace. 

When Reduction is applied, the labelset L is split in two parts: the 
selected labels which form a finite set L' L and the set of unselected 
labels which is L \ L'. This application can be seen as the application of a 
mapping function trans: L _., L' which maps every unselected label to 
a selected label from L' and every selected label to itself. One practical 
way to make the selection and to obtain L' and trans is by defining a 
distance dL between labels, such that the metric space (L, dL) is totally 
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bounded. Let us fix a positive real number c£ 2:: 0. Now L' will be a 
labelset which is an q-cover of L. The labels which are remote from 
each other (their distance is greater than c£) are selected and the labels 
from L \ L' remain unselected. The function trans: L ----> L' can be 
defined in this case such that trans( a) = b with a E L and b E L' has 
the minimum label distance to a. 

For the Cycling heuristic we relate the cycles of the automaton to 
the marked representation of the trace; limiting the numbers of times of 
traversing the cycles means limiting the powers of the marked symbols 
in the marked traces. Now, let us define these heuristics in a formal way. 

Definition 10 Let s be an automaton. Let L be the labelset and Q 
the set of states of s. Let L' L be a finite subset of L and let 
trans: L ----> L' be the mapping function. Let lc be the cycle limit. Then 
i) The heuristic Reduction: tracesm ( s) ----> tracesm ( s) is: 1) if a E L, q E 
Q then Reduction(a) = trans(a), Reduction( ) = E, Reduction([ ]0•q) = 
[ ]0•q; 2} if u (u E L or u = [-]-·-) and v are marked traces then 
Reduction(uv) = Reduction(u) Reduction(v); 3} if u and [a]n,q (q E 
Q, n EN) are marked traces then Reduction([a(u)]n+l,q) = [Reduction( a 
), Reduction(u)]n+l,q. 
ii) The heuristic Cycling: tracesm(s) ----> tracesm(s) is: 1) if a E L, q E 
Q then Cycling(a) = a, Cycling( ) = E, Cycling([ ]0•q) = [ ]0•q; 2} if 
u (u E L or u = [-]-·-) and v are marked traces then Cycling(uv) = 
Cycling( u) Cycling( v); 3) if u and [a ]n,q (q E Q, n E N) are marked 
traces then: a) Cycling([a(u)]n+l,q) = [Cycling(a) Cycling(u)]n+l,q, for 
lc > n; b) Cycling([a(u)]n+l,q) = [Cycling(a')jlc,q, for lc :::; n, where 
a = (al) ... (an) and a' = (a1) ... (a1J is obtained by cutting a after lc 
symbols. 

Example Let us consider the automaton from Figure 1. For this au­
tomaton the set of labels is L = { c, b, d, e, f} U { ai I i = 0, 1, ... }. Let 
L' = { ao, c, b, d, e, f} be a finite subset of L, lc = 2 and trans: L ----> L' 

{ ao x =a· i EN 
trans(x) = th . Then x o erw1se 

i) Reduction(age) = Reduction(ag)Reduction(e) =trans(a3 )trans(e) = 
aoe. 

ii) Cycling( ao[ (bd) (bd) (bd) ]3•IIe) = Cycling( ao) Cycling([ (bd) (bd) (bd) 
]3•II) Cycling(e) = ao[(bd)(bd)]2•IIe. 

6. THE TRACE DISTANCE FOR MARKED TRACES 

In this section we make the trace distance more precise, defining it as 
a distance function according to Definition 1 point ii). As explained in 
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the introduction, this gives us an alternative formalization of the ideas 
behind the heuristics (they will be compared in Section 7). We will 
combine these ideas with another well-known idea, viz. the edit distance. 
Section 6.1 introduces the edit distance. After this preparation, the 
definition of the trace distance function can be given (Section 6.2). 

6.1 The. edit distance between strings 
Because in our trace distance we use the concept of edit distance 

we shall present this first. Informally the edit distance is defined as 
the minimum number of insertions, deletions and substitutions required 
to transform one string into another. Wagner and Fisher ((11]) adopted 
different costs for the various atomic edit actions. According to Wagner­
Fisher transforming a into a b costs w(a, b). Extending this notation, 
w(a, e) is the cost of deleting a and w(e, b) is the cost of inserting b. 
The cost of editing is the sum of the costs of the atomic edit actions, 
and d(x, y) is the minimum cost over all possible edit sequences that 
transform x into y. 

Definition 11 Let w( a, b) be the weighting for the cost of transforming 
symbol a in symbol b, w(a, e) be the cost of deleting a and w(e, b) be 
the cost of inserting b. Of course w(a, a) = 0. Then the edit distance 
between the strings x andy is denoted as ED(x, y) and it is computed 
as: 1} ED( au, bv) = min(w(a, b)+ED(u, v), w(a, e)+ED(u, bv), w(e, b)+ 
ED( au, v)); 2} ED( au, e)= w(a, e) + ED(u, e); 3} ED(e, bv) = w(e, b)+ 
ED(e, v); 4) ED(e, e)= 0 (where a, b are symbols and u, v are strings). 

6.2 Defining the trace distance 
Our test selection technique uses two heuristics. For expressing these 

heuristics in the trace distance, it is important to remember that in 
the formalization of the Reduction heuristic a label distance was used. 
The incorporation of this heuristic in the trace distance is achieved in 
a simple way by using the label distance in the formula of the trace 
distance. Now a solution should be found for the Cycling heuristic. 

For the Cycling heuristic we simply weight every level k of a cycling 
symbol (a marked trace of type [_]n,q, n E JN, q E Q) with a weight from 
a series of positive numbers Pk· This series should have the property 
that L:k:1 Pk = 1. The logic behind this weighting is that summing the 
weights after a given limit (which is the cycle limit) will contribute with 
a small number reflecting our assumption that the first cycles are more 
important than the later cycles. 
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We will define the trace distance for all the possible combinations of 
the points (1), (2), (3) of Definition 5 (which are generating marked 
traces). We summarize these combinations below. 

Between the marked traces generated with point (1) (such as [ ]0·q, q E 
Q and a E L) we will define a distance function called AtD (atomic 
distance) because these are the atomic elements which form the marked 
trace; of course the AtD between two labels will be given by dL, the 
distance between these labels; between a label and a marked trace such 
as [ ]O,q it will be maximum (one) and between two marked traces such 
as [ ]O,q ,[ ]O,q' (q, q1 E Q, q =/= q1) it will also be one. 

Between the marked traces generated with point (2) (such as af or 
ae) we will use a distance function called EdD (edit distance); we took 
this option because these traces are generated in a similar style as the 
strings are formed and it is quite natural to use it because it compares 
in a good way the terms which form the marked traces (for example in 
the traces aoe and ao[(bd)] 1•IIe the edit distance will recognize that the 
labels ao and e from the first trace are present in the second trace). 

Between the marked traces generated with point (3) (such as building 
[(bd)] 1•II once we know that [ ]0•II is a marked trace) we employ the 
principle that cycles of different marks are very remote and hence have 
the maximum distance, i.e, 1; when dealing with cycles of the same mark 
we employ weighting factors Pk with the effect that the later iterations 
are considered less important than e.g. the first iteration; this can be 
done by using a function EdDW which is an edit distance for which the 
formula of Definition 11 is modified in such a way to take into account 
the weights. 

The rest of the possible combinations such as (1) with (2), (2) with 
(3) etc. are defined in a similar style by using one of the techniques 
mentioned above (EdD or AtD). 

We observe also that this trace distance is to be used in the computa­
tion of coverage which should be in the range [0, 1]. For simplifying the 
computation of coverage, we want the trace distance values to be in the 
range [0, 1]. This can be done by dividing all the above mentioned values 
(generated with an EdD or AtD) by the maximum width of the marked 
traces from tracesm(s) (the maximum width is finite, see Section 4). For 
completing the picture it is necessary to add that the trace distance 
between a null trace (E) and any other marked trace is maximum (1). 

Now we have all the ingredients to define a trace distance on marked 
traces. We will call it d. In the definition, the distances already men­
tioned (EdD and AtD) will be used; also it is implicitly assumed that 
the definition is symmetric in the sense that d(x, y) = d(y, x), x andy 
being marked traces and that d(x, x) = 0. 
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As explained above, the function AtD deals with the cases E, a E L 
and [ ]0•-. We generalize it to marked traces of the form [-]-·- as well. 

Definition 12 Let s be an automaton. Let L be the labelset of s, dL 
the label distance defined on it and Q the set of states of s. The metric 
space (L, dL) is totally bounded and dL has all its values in the range 
(0, 1]. Let lm be the maximum of the width of the marked traces from 
tracesm(s). Let Pk (k = 1, 2, .. .) be a series of positive numbers such that 

Pk = 1. Then 

1 d( b) _ AtD(a,b) . 
. a, - l ' 

d(a,t) = d(t, [ J(f,'q) = 1; 
d(a, ( JO,q) = ]0 •q); 

AD 0 0 I d([ JO,q, [ JO,q1 ) = t ([ )1:,[] ,q) 

with a,b E L,q,q' E Q; 
3. d(a, [u(v)]n+l.q) = '"•q); 

d( , [u(v)Jn+l,q) = 1; 
d([ JO,q' [u(v)t+l,q) = AtD([ )o,qi;:(v)jn+l,•/) 

with v and [u]n,q' marked traces {n EN, 
q' E Q) and a E L,q' E Q; 
5. d(uv, [r(t)t+l,q) = EdD(uvl[:(t))n ,q) 

with u {u E L or u = [-]-•-) ,v, t, [rt•q 
marked traces {n EN, q E Q); 

where 

x,y E L 

2 d( ) _ EdD(a,uv) . . a,uv - l , 

d(c,uv) = 1; m 

d([ ]o,q,uv) = 
with u {u E Lor u = [-]-·-), 
v marked traces and a E L,q E Q; 
4 d( t) _ EdD(uv,rt) . uv,r - 1 

with u (u E L or u [-]-·- ), 

v, r (1· E L orr=[-]-·-), 
t marked traces; 

6. d([u(v)Jn+l,q, [r(tJr'+l,q') 
_ AtD([u(v)jn+l,q ,[r(t)]"'1 +l,q') 
- lrn, I I 

with v, t, [ur·q' [rr ,q marked 
traces {n, n' EN, q, q' E Q). 

{ d*,y) 
AtD(x, y) = ;dDW(x, y) x = r-r·q,y = r-t'·q,q E Q 

n,n' E N,n =I O,n' =I 0 
otherwise 

EdD(uv, rt) = min(AtD(u, r) + EdD(v, t), AtD(1t, c)+ EdD(v, rt), 
AtD( £, r) + EdD(uv, t)); 

EdD(uv, E) = AtD(1t, c)+EdD(v, c); EdD(£, rt) = AtD(E, r )+EdD ( E, t); 
EdD(E, ) = 0 
with u (u E L or u = [-]-·-), v, r (r E L orr=[-]-·-), t marked traces; 
EdDW([ (ul) ... (un/t'q, [(vl) ... (vp)]P'q) = EDW1([(ul) ... (un)r·IJ, [ (vl) ... (vp))P'q) 
EDWk([(·u)o-]h,q, [(v)o-']9•1J) = min(pk x d(u, v) + EDWk+l([o-]h-l,q, [o-'Jg-l,q), 

Pk x d( u, E)+ EDWk+1 ([o-Jh-l,q, [(v)o-']g,q), 
Pk x d( E, v) + EDWk+l([(u)o-]h,q, [a']g-l,q)); 

EDWk([(u)o-]h,q, [ ]0•q) = Pk x d(u, E)+ EDwk+1 ([o-]h-l,q, [ ]0•IJ); 
EDWk([ ]0'q, [(v)o-']g,q) = Pk x d( E, v) + EDWk+ 1 ([ ] 0•q, [o-'J 9- 1·1J); 
EDWk([ ]o,q, [ ]o,q) = 0 
with u; and Vj marked traces, k, h, g E lN, q E Q and 
u, v, [o-Jh-l,q, [o-')9-1•q marked traces. 
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We add some explanation. It is easy to check that the definition of 
EdD and EdDW are copied from Definition 11 except for the fact that 
suitable weighting factors Pk have been incorporated. The parameter k 
in EDWk indicates the position at which the next edit action takes place. 
Please note that the recursive definition of EDWk is well defined because 
at least one of the right-hand sides of the equation is one symbol shorter 
than the corresponding left-hand side (therefore, the fact that k is in­
creasing causes no problem). The base case is EDWk([ ]0•q, [ ]0•q) = 0. 
Example Let us consider the automaton from Figure 1. For this au­
tomaton the maximum width of the marked trace is 3. Let Pk = k = 
1, 2, .... Let dL be the following label distance 

{ 
0 x=y 

dL(x,y) = I I x = ai,Y = aj,i,j EN 
1 otherwise 

1) The edit distance effect: 
Let us consider the traces t1 = aoe and t2 = ao[ (bd)jl•IIe. 
d(t1, t2) =}X EdD(aoe,ao[(bd)] 1•IIe) =}X AtD(E, [(bd)]1•II) = }. 
The trace distance takes into account that the symbols ao and e from 
the first trace are present in the second trace. 

2) The cycling effect: 
Let us take the traces t1 = ao[(bd)j1•11e, t2 = ao[(bd)(bd)]2•IIe and t3 = 
ao[ (bd) (bd) (bd) p.ne. 
d(t1, t2) =} x EdD(ao[(bd)jl•IIe, a0 [(bd)(bd)]2•Ile) =} x EdDW([(bd)jl•II 
, [(bd)(bd)j2•II) = = 
d(t1, t3) =}X EdD(ao[(bd)(bd)j2•11e, a0[(bd)(bd)(bd)]3•11e) =} x EdDW( 
[(bd)(bd)j2•II, [(bd)(bd)(bd)j3•II) =' = 
When two marked traces are cycling more times through the same cycle, 
the values of the trace distance start to decrease. 

3) The reduction effect: 
Let us take the traces t1 = aoe, t2 = a1e and t3 = a2e. 
d(tl t2)- 1 X EdD(aoe a2e)- dL(ao,a2) - 0.23. ' -3 ' - 3 - 3' 
d(t2,t3) =}X EdD(a1e,a2e) = dL(a;,a2) = 
When the label distance between the labels (which compose the marked 
traces) is decreasing, the trace distance is also decreasing. 

7. TRANSFORMING THE HEURISTICS 
INTO A COVERAGE 

The trace distance formula depends on the label distance dL which 
implements the Reduction heuristic and the weights Pk which implement 
the Cycling heuristic. On the other hand, by choosing for each automa­
ton s a finite set L which is an q-cover of L with respect to dL 
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and a cycling limit lc, a finite set of marked traces T tracesm(s) can 
be obtained. This is done by the application of the Cycling and the 
Reduction heuristics on tracesm(s) by taking T =Ran(Cycling o Reduc­
tion). Now for this T and using d we want to approximate its £-cover 
of tracesm(s) so that we can compute the coverage cov(T, tracesm(s)) -
see Definition 4. Intuitively & should depend on&£ and lc. Its formula 
is given by Theorem 13. 

Theorem 13 Let s be an automaton. Let L be the labelset of s and 
dL the label distance defined on it. The metric space (L, dL) is totally 
bounded and dL has all its values in the range [0, 1]. Let lc be the cy­
cle limit. Let Pk (k = 1, 2, .. .) be a series of positive numbers such that 
I:k:,1 Pk = 1. Let lm be the maximum of the width and z the maxi­
mum of the nesting depth of the marked traces from tracesm(s). Let 
L<: L be an &£-cover of L. Then the finite set T =Ran(Reduction 
o Cycling) of traces obtained by the application of the two heuristics 
on tracesm(s) is an £-cover of tracesm(s) with & = &z and &0 = &£i 

. l . 00 . 

fori= 1, ... ,z: = I:k=lPk X (maxj=O, ... ,i-1(&3 )) + I:k=lc+1Pki &t = 
{W:'th t f) maXcycles=O, ... ,lrn lrn . Z OU proo 

Using the results of Theorem 13 it is easy to prove that the metric 
space ( tracesm ( s), d) is a totally bounded metric space and that the trace 
distance d implements the Cycling and the Reduction heuristics, in the 
sense of Definition 3. 

For the computation of the coverage we approximate the minimum 
&m from Definition 4 with the &z computed in Theorem 13. We will 
illustrate the computation of the coverage in the following example. 
Example Consider the automaton from Figure 1. Let us fix the final 
state to be IV. Let us consider the reduced set Lc = { ao, b, c, d, e, !} 
which is an &£-COver of the labelset L with &£ = 0.25 (&£ is computed 
with respect to the dL defined in the example from Section 6.2). For 
this automaton the maximum width is lm = 3 and the maximum nesting 
depth is z = 2. Let us fix the series Pk = ( k E N) and in the beginning 
lc = 1. Then the set of traces T which is obtained by the application of 
the heuristics Reduction and Cycling is an &-cover of tracesm(s), with & 
computed with the formula from Theorem 13 as: 

1) lc = 1, Lc = {ao,b,c,d,e,f} 
&0 = &£ = 0.25; 

1 - "'1 0 + "'00 - 0.25 + "'00 1 - 0 63· &c - L...k=1 Pk X £ L...k=lc+1 Pk - L...k=lc+1 27' - · ' 
,.1 _ (cyclesxc2+(lrn-cycles)X.c£) _ 0 63· _ 2 _ 0 81· 
c. - maXcycles=0, ... ,3 lrn - · , £ - £ - · , 

The coverage is computed via Definition 4 and it is cov(T, tracesm(s)) = 
1-£ = 0.19; 
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2) lc = 2, Lc = {ao,b,c,d,e,f} 
When we enlarge the set T toT' for lc = 2 we find that cov(T', tracesm(s 
)) = 0.51; 

3) lc = 1, Lc' = { ao, a1, b, c, d, e, f} 
When we enlarge the set T to T" for Lg" = { ao, a1, b, c, d, e, f} we find 
that e'£ = 0.06 and that cov(T", tracesm(s)) = 0.29. 

In this case, one can see that the coverage increases more by adopting 
a higher value for the cycling limit than by using a larger label subset. 
But this is not always true, e.g. increasing lc from 101 to 102 might 
give lesser increase than taking a larger labelset. Moreover we defined 
specific values for Pk and d£. 

It can be seen that in this example the monotonicity property required 
in [4] viz. T T' =? cov(T) :::; cov(T') is respected. From an intuitive 
point of view this property is reasonable: if one wants a better coverage, 
one needs to generate more tests. This property can also be proven to 
hold in general. 

8. CONCLUSIONS 
A heuristic is a general guideline for reducing test suites, which must 

be made more precise to be practically applicable. In this paper we 
have studied two heuristics for reducing the number of traces in a test 
suite. Especially for the cycling heuristic we had to introduce additional 
notation. The reason is that the cycling structure of a trace through a 
finite-state automaton must be made explicit. We introduced marked 
traces for this purpose, which enabled us to extend the work on cycle 
reduction by Vuong [1, 2]. 

In order to introduce a notion of coverage for the test suites reduced 
by means of the above mentioned heuristics, we defined a trace distance 
on marked traces. The results of our studies can be used to effectively 
calculate the coverage of a test suite reduced with our techniques. 

The proposed test selection technique can be compared to the existing 
theories in this area. In particular, these are the hypothesis theory 
developed by [6] and the trace distance theory of [1, 2]. The hypothesis 
theory embodies the trace distance theory (see [6]), but the nice thing 
about trace distance theory is that it gives a measure for the degree to 
which a reduced set of traces approximates the original one. So we chose 
an approach which combines these two theories. In our view, first the 
heuristics (test hypotheses in the theory of [6]) are to be defined. After 
that, based on these heuristics a trace distance is built. This gives the 
possibility to make a test selection with a given e approximation. The 
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change of the heuristics leads to the change of the trace distance used 
in test selection. 

We have started work on implementing our techniques in the TorX 
tool environment ([3]). An assumption for implementing our work is 
that a label distance exists. Because the TorX tools support the input 
of finite automata defined in LOTOS [7], we could use a label distance 
on LOTOS labels. This is not trivial because LOTOS labels may be 
parameterized by arbitrary data types. 
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