
GENERATE CERTIFIED TEST CASES BY
COMBINING THEOREM PROVING AND
REACHABILITY ANALYSIS*

Richard Castanet
Davy Rouillard
LaBRI, Bordeaux I University, 33405 TALENCE Cedex, FRANCE
{castanet,rouillar }@labri.u-bordeaux.fr

Abstract We present a test case generation method which conciliates theorem
proving and model checking. Test purposes are expressed by timed
regular expressions and then translated into a corresponding automaton
using a certified function. This automaton is composed with the system
specification and an execution is computed from this sub-specification
by an automatic tool. The result is finally re-injected into the theorem
prover to be checked.

Keywords: conformance testing, certified test purposes, timed automata, safe com­
putations

1. INTRODUCTION
The life cycle of protocol engineering contains several steps: require­

ments definition, formal specification, simulation or verification, imple­
mentation and finally testing (conformance, interoperability, robustness
and performance tests). It is widely recognized that the use of formal
model is essential to allow automatic verification as well as automatic
test generation. Proof techniques can also be used to validate the critical
parts of a system but they are employed still rather rarely in the domain
of protocols [14].

The aims of this paper are to show how the test cases generation can
be compatible with the proof activity and to exhibit the benefits one
may gain in developing a test environment based on a proof assistant.
To achieve these goals, we propose to use the general framework CClair

*Research partially supported by the French government for the RNRT project Calife.

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2002
I. Schieferdecker et al. (eds.), Testing of Communicating Systems XIV

10.1007/978-0-387-35497-2_31

http://dx.doi.org/10.1007/978-0-387-35497-2_31

250 TEST GENERATION AND SELECTION

[8] which supports both verification and testing activities on various kind
of automata. For a description of the verification techniques supported
by CClair, we refer the reader to [7].

The heart of CClair is the proof assistant Isabelle [17] and its im­
plementation of the Higher Order Logic. This logic offers a very rich
language in which it is possible to describe complex systems and proper­
ties. Thus, it becomes possible to work on systems for which automatic
tools fail because of a classical state-explosion problem.

This high expressiveness is also a strong argument for the joint use of
proof assistants and automatic procedures because tools such as Isabelle
[17], Coq[16] or PVS[20] may work with a great variety of mathematic
objects and they have therefore no problems to understand and manip­
ulate the results computed by automatic tools.

Another advantage is that proof assistants deal with theorems i.e. cer­
tified objects. This means that all results computed by external proce­
dures have to be checked before been integrated. Furthermore, complex
pieces of reasoning may be formalized in order to combine these results.
It results in an increased confidence in the validation/testing process
since the unavoidable errors due to the merge of several formalisms are
immediately detected.

This paper highlights all these concepts by proposing a new approach
to generate certified test cases for real-time systems. We are only inter­
ested by deriving generic test case without considering a test method.
This last aspect will be take account in a next stage of the testing pro­
cess, following the methodology of the standard IS09646[13]. To model
the specification systems, we use Parameterized automata (p-automata)
that can be seen as extensions of timed automata or timed I/0 au­
tomata. The latter have been used in recent works for test generation
[12, 4]. The p-automata model has the advantage to allow the use of
variables of any type and recent experiments [6] tend to prove it is a
convenient formalism to model communication protocols.

The rest of the paper is organized as follows: In section 2, we present
the main features of Isabelle and CClair. In section 3, we describe how
CClair may be used to formalize the test generation starting from both
a specification of a timed system under test and a test purpose that
describes a set of behaviors to be tested. In section 4, we introduce a
general method to generate test cases by translating test purpose into a
p-automaton. This automaton is used as synchronous observer to guide
the construction of an execution that satisfies the test purpose. This
execution is computed by Hytech and then validated in CClair. This
method is employed in section 5 to generate test cases for the ABR

Generate Certified Test Cases 251

algorithm used in ATM networks. Finally, the section 6 summarizes the
results presented in the paper and outlines future works.

2. A GENERAL FRAMEWORK FOR
STUDYING AUTOMATA

2.1 Isabelle

CClair is developed on top of Isabelle, which is a generic proof assis­
tant in the sense that it supports reasoning in various logics : First Order
Logic, Zermelo-fraenkel set theory, High Order Logic (HOL in short). In
this paper, we are however only concerned by the latter instance of Is­
abelle.

HOL offers a great expressiveness that allows to formalize mathemat­
ical principles such as recursion and [co]induction.

Proofs, in Isabelle, may be built in a backward-chaining mode : a
conjecture is stated and the goal is successively reduced to zero or more
new subgoals by applying tactics. When no subgoals remain, the proof
is complete and the resulted theorem may be used in further proof. The
main tactic is resolution, which mimics the natural deduction: it unifies
the conclusion of a proof rule with a selected subgoal and then replaces
it by the instantiated premise of the rule. An other important feature
is offered by rewriting tactics, which simplify a selected subgoal using
possibly conditional directed equalities. Theorems used during rewriting
are stored in simplification sets that can be extended by any necessary
theorems.

Goals may contain logical variables, denoted with a question mark x 7 .

Logical variables represent unknown values that can be instantiated by
resolution during proofs. Rewriting tactics and logical variables may be
combined to perform some computations. For instance,

filter (.\x. x =a) [a, b, b, c, a] = x 7

will instantiate x 7 with the list [a, a] using a rewriting tactic.

2.2 CClair

The CClair project [7] aims to provide the user with an environment
for working with transition systems of various kinds. Its kernel is a
main theory of plain labeled transition systems, which allows to name
states, action labels, transitions, traces and executions, and contains
some tools for computing and reasoning. It intends to be generic in
the same meaning as Isabelle: a general framework contains a theory of
plain transition systems; various interesting kinds of transition systems,
like Biichi, constrained or timed automata are defined in sub-theories.

252 TEST GENERATION AND SELECTION

Executions and traces of a system are formalized using the theory of
lazy list developed by Paulson[18]. This theory allows us to represent
finite as well infinite behaviors in a single representation and provides
various usual functions on list such as concatenation and filtering. Exe­
cutions are therefore naturally declared as lists of transitions.

Properties of executions and/ or traces may be expressed via a set
of temporal operators (Q, 0, 0 ...) (see [9] for example) that define lan­
guages of potentially infinite words. Usual operations on languages are
also provided, among them Concat L1 L2 denotes the concatenation of
L1 and L2 , Star L is the Kleene-star operation and Omega L represents
the set of words obtained by infinite concatenations of words in L.

3. TEST GENERATION METHODOLOGY
One of the goal of the CClair project is to put in the same frame­

work, verification and testing activities. This section shows that test
cases generation may be viewed as a verification task: proving that an
unknown execution satisfies a given property. We begin by a description
of the p-automata model and its implementation into CClair.

3.1 The p-automata model
To model real time systems, we use Parameterised timed automata

[5]. This model was designed for the formalization and proof of al­
gorithms used in telecommunications and constitutes the heart of the
French RNRT scientific project Calife.

A p-automaton is a graph associated with a set of variables and a
single non resettable clock. Each edge of the graph can be guarded by
a condition on the variables (including the clock) and a relation which
describes how the values of variables can be modified.

More precisely, a p-automata P = (S, A, £, W, V, M, I) consists of
the following components: S is the universal clock that memorizes the
elapse of time. A is a set of actions. .C is a set of locations that are
the vertices of the control graph. W is a set of parameters i.e. variables
with values fixed by initial constraints. V is a set of variables. As
usual, we use primed variables to denote the values after a modification
and the set of primed of variables is denoted V'. M is a set of moves.
Each move m = (l, a,(), l') is composed of a source location l E £, a
target location l' E .C and an action a E A. The update relation ()
(V x { S}) x V' describes the guard condition and modifies the value of
variables. Finally, the function I assigns to each location a constraint
on variables called invariant.

Generate Certified Test Cases 253

During an execution, the state of Pis given by the triple (s, v, l) that
is composed of the value of the clock, a location l E C and a vector v =
(vi, ... , vn) that represents a value ai for each variable Xi E V. States
must be admissible i.e. values of variables must satisfy the invariant
associated with the location of the state.

P can change its state in two ways: a discrete transition associated
to a move (l, a, e, l') E M causes P to change the location from l to l'
and the values of variables are updated according the update relation
e. Otherwise, a delay transition modifies only the value of the universal
clock.

The way in which a p-automaton operates is described by an execu­
tion, i.e. a sequence of consecutive discrete and delay transitions. How­
ever, for reasoning about real-time systems, we are interesting in study­
ing not only the actions that are performed when the system runs, but
also the instant at which each action is executed. Therefore, an adequate
way to describe the behavior of a p-automaton is given by the notion of
timed trace. A timed trace is a sequence of pairs [(a1, t1), ... , (an, tn)]
where ai denotes an action and tithe instant of execution of ai. A couple
(ai, ti) is called a dated action.

Behind this general model, a subclass of p-automata called restricted
p-automata has been identified in [5], where C, A, M are finite sets,
V is a set of real-valued variables, and update relations and invariants
are linear expressions. These constraints allow to translate restricted p­
automata into linear hybrid automata [1, 3] on which tools for automatic
analysis[ll] can be applied.

Example: figure 1 depicts a restricted p-automaton which models a
digicode with three keys A, B and C. The correct sequence of keys, i.e. the
one which causes the door to open, is A, B, A. Since only three errors are
tolerated, the variable cpt memorizes the number of errors. Moreover,
some delays control the input: B must be entered at most 10 seconds
after the key A. The last key A must be entered before 20 seconds. Four
successive errors or a too long time between two keys cause the lock of
the digicode. A correct timed trace of the digicode is, for instance, the
sequence of dated actions [(A, 3.2), (B, 5.4), (A, 6.1)] .

3.2 P-automata in CClair

The formalization of the model of p-automata in our framework takes
the form of an extension of the CClair theories on transition systems. It
contains the definition of the polymorphic type (a, l, v) pa which repre­
sents p-automata of actions of type a, locations of type l and variables

254 TEST GENERATION AND SELECTION

f Success 1 s<h+20,A,-

l J
-, ! Green, cpt '=0

cpt<3, B ou C, I
cpt<3,
B orC,

T1'
-,A,

L(1 s<h+IO, B,- r }---ql I I q2 q3
J l cpt<3, C, cpt' cpt+l

AorC B

EndWait - -

B or C,- r
cpt=3, B or C, -

Fail I l
[Wait I_ I A,-

) -.!Red.

Figure 1. A example of p-automaton

of type v. Because a, l and v may be instantiated with any type, it is
possible to represent systems with an infinite number of actions or loca­
tions. Moreover, variables can contain lists, sets or more complex data
structures. A translation of p-automata into plain transition systems is
also provided to represent p-automata during execution. Consequently,
discrete transition and time delay need not to be defined: it is enough
to consider transitions of the translation into the parent theory.

In order to make easier the communication between a finite execution
and its associated timed trace, these notions are introduced simultaneous
under the form of a predicat defined inductively: given a p-automaton
P, F_TTracesp contains the objects of the form s E,w s' where is

p
an execution of P from the state s to t together with its corresponding
timed trace w. s s' is called a run of P. A run is built with
the help of three rules, called introduction rules: a run is either empty
or obtained by adding a discrete-transition or a delay-transition on the
head of an already defined run.

A parallel composition operator, compatible with the Hytech composi­
tion[ll], is provided to modelize complex systems from a collection of
automata, each describing a modular component of the system. Consider
two p-automata A and B, locations of the parallel composition AilE are

Generate Certified Test Cases 255

the pairs of location (h, 12) where h is a location of A and 12 is a location
of B. The invariant function of AIIB assigns to (h, 12) the conjunction
of h and 12 's invariants.

A move of A liB is either a move of A orB alone or a combined move if
the action is common to A and B. In the latter case, the update relation
is the conjunction of the update relation of each component.

Numerous results, about runs of p-automata and their composition,
are proven in CC1air. Among them, the following theorem will be used
in section 4.5.

H1: acts_of w AA nAB 1\

H2: (1)
1 7rlx x,w 1 t 2 7r2x x,w 2 t

1rsS A '1rs /\7rsS A '1rs

Given an execution in the composed automaton, this theorem infers
an execution with the same timed trace in A and Busing the projections
7r1 8 , 7r28 , 7r1x and 7r2x . These are used to project states and executions
onto the first and second components. The additional assumption H1
requires that all actions mentioned in the trace (collected by the function
acts_of) are common to A and B.

3.3 A proof approach of the test
Following the definition from standard ISO 9646[13], an implemen­

tation conforms to its specification if it satisfies all the conformance
requirements which are explicitly mentioned in the protocol standard.
Consequently, the process of conformance testing aims at deriving a set
of tests cases which will check whether an implementation satisfies all
these conformance requirements. In this paper, we focus on the first
step of this process which consists in deriving generic test cases from
the specification i.e. test cases which are independent of any implemen­
tation.

Conformance requirements have to be expressed in a formal language
and therefore each requirement may involved one or many so-called test
purposes which are formal descriptions of the constraints to impose on
the behavior of the specification in order to decide whether the particular
conformance requirements is satisfied. Using terms of theorem proving,
we obtain an generic test case if we can prove that it corresponds to
an execution of the specification that satisfies a test purpose. Since our
aim is also to compute such a test case, we start with an incomplete
statement where logical variables replace the desired execution.

256 TEST GENERATION AND SELECTION

Consequently, deriving a test case amounts to solve a statement of
the following form:

e? ? . w· ? ? ? ?
s s'· 1\ Q(s,e·,w·,s'·) (2)

3.4 How to describe Test purposes
Translating conformance requirements into formal language is a non­

obvious task: requirements are provided in natural language which often
contains many ambiguities. If the formal language used for this transla­
tion is too poor, it may lead to errors on the meaning of the requirement.
Since the property Q in the goal 2 is a formula of HOL logic, one dis­
poses of a large expressive language. Moreover, CClair provides many
operators, commonly used in verification and testing activities: LTL
modalities, language constructors and of course automata. If it is not
enough, user may develop his own operators together with a translation
into concepts already defined in order to prove the soundness.

Let us emphasize that we are not limited to express test purpose
about traces. The reason is that Q takes as argument the execution e
and an execution contains all information about the successive states of
the system. We can therefore formalize constraints on particular value
of variables or location. Suppose, for instance, that we seek to obtain a
test case where the counter exceeds the allowed value before the system
reaches the location q3. Using the selectors cpt and loc to extract the
value of the counter and the location from states, the property Q may
be: e F= O((cpt > 3) "OO(loc = q3))

3.5 Deriving test cases
Deriving a test case amounts to providing a constructive proof of 2.

The basic technique to build an execution is to use of simulation tactics
in which introduction rules of the predicat F _TTraces are applied. Once
a part of the execution is instantiated, the second part of the goal may
be simplified through rewriting. If simplifications lead to the formula
"False", this means that an error is detected and another execution is
searched using backtracking facilities.

This higher degree of interactivity is the price to pay to enable one to
work with models known to be undecidable and therefore for which no
automatic procedure exists. In this difficult cases, tactics are available
to make the task easier. For instance, one may extract the control graph
of a p-automaton, by ignoring all but action symbols and locations ;
if this graph is finite, we can apply certified algorithms on graphs to

Generate Certified Test Cases 257

compute candidates for executions, which are confronted to invariants
and update relation of the original automaton.

If automatic procedures may be used, then the generation of certifi­
cated test cases is fully automatic as explained in section 4.

4. DERIVING TEST CASES FROM
CERTIFIED TEST PURPOSE

This section focuses on the production of test cases for the class of
restricted p-automata. Since a restricted p-automaton is a kind of linear
hybrid automaton[2], we can invoke the verification tool Hytech from
CClair in order to automatically compute an execution.

Our overall approach is as follows: a temporal test purpose T is ex­
pressed using a kind of regular expressions. Then, this expression is
translated by means of rewriting rules into a timed-automaton T so
that the traces of T satisfy the test purpose. The latter property is
established by a pre-proven theorem. Next, Tis used as a synchronous
observer to guide the construction of an execution which is computed
by Hytech and finally certified in CClair.

4.1 Final location and accepted language
The p-automata model does not permit to declare a final location.

For the purpose of defining the language accepted by a p-automaton, we
therefore need to extend the model. It is easily done under CClair by
introducing a new type of automata, called paf (p-automata with final
location) that adjoins a final location to each p-automata.

(a,l,v)paf = ((a,l,v)pa x l)

A run is accepted by a given automaton (P, f) if there exists a corre­
sponding run in P whose last location is f.

(s,w) E Accepts(P,f) = 3 e: t A (loc t =f)

4.2 A particular test purpose
Conformance requirements may be formalized by a set of test pur­

poses where each test purpose describes a particular sequence of observ­
able events that the system has to perform in order. As we study timed
systems, it is moreover convenient to precise the instant at which each ac­
tion must be observed. Such test purposes amount to provide a subword
of a timed trace of the specification. CClair provides a dedicate opera­
tor, named Subword to express make this class of test purposes. To be

258 TEST GENERATION AND SELECTION

more precise, given a sequence of dated actions l = [(a1, t1), ... , (an, tn)]
(ai E A, ti E R), Subword(l) specifies the set of timed traces which cor­
respond to the regular expression (Ax R)*.(a1, t1).(A x R)* ... (an, tn)·
(Ax R)* where* denotes the Kleene-star on language and. the concate­
nation. In other words, Subword allows us to select timed trace whose l
is a subword. This means that between two given actions, the system is
allowed to perform many other actions.

Using the digicode of the figure 1 as an illustration, Subword(((A, 3.0),
(B, 6.2), (A, 8.3)]) represents the set of timed traces that contains the two
following timed traces.

[(B, 1.1), (A, 3.0), (A, 4.6), (B, 6.2), (A, 8.3)]

[(A, 3.0), (C, 4.9), (A, 5.3), (A, 5.8), (B, 6.2), (A, 8.3)]

In order to derive test cases, we are therefore interested in solving the
testing statement of the section 3.3 where A is instantiated by Subword:

c? ? .,· w· ? s s'· 1\ w7 E Subword(l) p

4.3 Timed regular expressions

(3)

Our purpose is to translate Subword into an automaton so as to use
Hytech on it. It is a well-known result that regular expressions can be
translated into a labeled transition system which accepts the language
associated to the expression, and vice-versa. Consequently, it is natural
to introduced regular expressions that can be translated into an equiv­
alent automaton and then use these expressions to defined Subword.

A recent paper written by T.Nipkow[15] has explored the ability to
formalize the Kleene's theorem into Isabelle. However this development
cannot directly be reused here for several reasons:

For one, we need expressions that contain time informations and there­
fore we must translate them into p-automata, not into simple transition
systems. For another, Nipkow uses an adhoc representation that differs
from our actual formalization of p-automata. A third reason is that
the construction presented in [15] is realized in two steps: a automaton
with epsilon-transitions is first generated then it is transformed into a
deterministic automaton. However, the latter construction involves a
non-executable operator on set. Fortunately, to define Subword, we only
need a subset of regular expressions, and we can therefore generate, di­
rectly from expression, an automaton without epsilon-transitions.

Generate Certified Test Cases 259

Hence, using the ML syntax, a timed expression on letters of type a
is defined by the type a texp:

datatype a texp = One_letter a x lR

Any_letters

Cone (a texp) (a texp)

Following the definition, an timed expression is constructed by con­
catenation of dated actions. A dated action is either explicitly given
using the constructor One_letter or taken in the set A x lR if the con­
structor Any_letters is used.

Given a regular expression, the primitive recursive function lang com­
putes its corresponding set of dated actions word.

lang (One_letter (a, t)) = {[(a, t)]}

lang (Any_letters) =Star (u u{[(x, t)]})
aEAO::;t

lang (Cone L1 L2) = Concat (lang L1) (lang L2)

Finally, Subword is defined as the language of the timed expressions
built by the recursive function sb_exp.

sb_exp([]) = Any_letters

sb_exp((a, t).l) = Cone Any_letters

(Cone (One_letter (a, t)) (sb_exp(l)))

Subword(l) =lang (sb_exp(l))

4.4 Deriving a certified automata
The translation of each component of a regular expression into a cor­

responding p-automaton is depicted on figure 2. The corresponding au­
tomata are very simple: locations are natural numbers and no variables,
except the universal clock, are required. However, we need a type of
variable to declare these automata in our typed framework. One solu­
tion is to use the special (ML like) type unit which contains the single
value v.

Given an expression E of type texp, the result of the translation is
the paf (T, f) where T is a p-automaton (the timed trace of which are
in the language associated to the expression) and f its final location.
The desired property is stated by the pre-proven theorem: 1

(4)

260 TEST GENERATION AND SELECTION

Expression P-antomata

S = t,a,-

One_letter (a,t) sa
-,A*,-

Any_letters sa
exp1

exp2

Cone exp1 exp2 -c0······G······a
Figure 2. Thanslation of expressions into p-automata

However, we are only interested in the instance of 4 where E is built
using Subword.

Let us emphasize that it is an executable translation: definitions use
mainly primitive recursions so that a automaton is automatically gen­
erated from a regular expression, thanks to the rewriting mechanism of
Isabelle.

4.5 Validation of the observer technique
Now, if we put 5 on the goal 3, we obtain the following new subgoal:

(:? ? ? ?

s "'1 . ,w· s'7 A (t·7 v 0) 6· ,w· (t 7 v f)
p ' T I ' ' (6)

The next step consists to validate the well-known technique of observer
automata: the basic idea is that the automaton T can be used as a syn­
chronous observer i.e. it can be executed in parallel with the specification
automaton in order to find an execution. This step is formalized from

Generate Certified Test Cases 261

to the rule given in 1 proven in section 3.2 and we obtain the following
goal :

? . w· ?
s s' ·

e PIIT e
(7)

Where se (resp. is the composition of the initial state (resp. final)
of the runs in P and T. Be is completely instantiated but we may take
the liberty to let uninstantiated or to precise a part of the state. It
is a means to precisely control the search by constraining the execution
to end with particular values of variables. In this case, we have Be =
(ti, (Vi, v) , (li , 0)) and = (t / , (v f, v) , (l / , f)) .

Notice that Isabelle keeps in memory the instantiation made during
resolution of the goal 2 with 1 i.e. 6 and 6 are connected by the
equations 1r1x = 6 and 1r2x = 6. is fully instantiated, it is
obvious to compute the value of 6 by rewriting.

4.6 An oracle called Hytech

Hytech[ll] is a symbolic model checker for linear hybrid systems which
may automatically generate a diagnostic trace that explains why a prop­
erty is (or is not) satisfied by a system description. Therefore the tool
Hytech can be used to search an execution in the composite specifica­
tion+observer automaton.

To achieve this task, we need to build an input file that includes de­
scriptions of automata and commands to compute an execution. Because
we work with the restricted format of p-automata, the translation into
hybrid automata is nearly obvious: all variables are real and declared as
discrete variables. This ensures that they will not evolve except on ex­
plicit update. The universal clock is declared as a variable of type clock
called now. The only difficulty concerns the translation of constraints
(update relations and invariants) because CClair allows the declaration
of any necessary constant to define it. As a consequence, the first step
of the translation procedure is to compute a "normal form" which is
done through rewriting. The user is responsible for giving all equations
needed to expand constants by their definitions.

Two Hytech commands are needed to compute an execution in our
composed automaton.

reached :=reach forward from init_reg
print trace to final_reg using reached

One must first use forward reachability analysis to compute all states
that are reachable from the initial region ini t_reg which contains the

262 TEST GENERATION AND SELECTION

single state sc. The second command causes Hytech to generate an
execution from ini Lreg to the final region f inaLreg {

4. 7 Validation of the computed execution

Having obtained a desired execution, we then use this result to solve
the goal 7. Two choices are offered to us, depending of the level of
confidence we have about Hytech and our interface with CClair : we
can admit the computation result as an axiom and directly apply it on
7. A safer alternative is to instantiate the variable (with the computed
execution and then validate it. Let us explain briefly how this latter step
can be achieved.

Because all sets involved in the definition of a restricted p-automaton
are finite, rewriting mechanism is powerful enough to decide whether a
given move is in the set of moves. For instance, (q1 , C, cpt = 3, Fail) E

Mdigicode is simplified to True and therefore is accepted as a move of
the digicode.

Concerning the data part of a transition, Isabelle provides a decision
procedure for linear arithmetic. Therefore the value of variables com­
puted by Hytech according to the update relations and invariants are
automatically admitted or rejected. As a result, CClair provides a tac­
tic which automatically checks the validity of the execution computed
by Hytech.

5. A CASE STUDY ABR CONFORMANCE
ALGORITHMS

Available Bit Rate[lO] is a special kind of connection defined in ATM
network architecture : it allows the cell rate to vary during the same
session. Therefore, a real-time reactive algorithm is necessary to control
that data cells sent by user conform to the negotiated traffic parameters.
Two of such algorithms are formalized in [6]. The first one, called I, has
the ideal desired behavior but its implementation is impossible in prac­
tice because of a too large memory cost. The second one, B', is therefore
an approximation for which a proof of correctness with respect to the
ideal algorithm is given. This proof has completely been formalized in
our framework[19], including the description of algorithms in terms of
p-automata, and proving a set of invariance assertions by induction on
execution sequences.

The rate offered to the user depends of the instant at which resource
management (RM) cells are received. The crucial point is therefore to
test if B' computes a rate greater or equal to the rate computed by
I for a given sequence of values carried by RM cells and their arrival

Generate Certified Test Cases 263

time. Thus, each sequence corresponds to a test purpose of the form:
Subword([(RM, t1), ... , (RM, tn), (D, tn+l)]) where the actions RM and D rep­
resent respectively the reception of a RM-cell and an user data cell. This
allows to apply our CClair / Hytech approach for automatically generat­
ing certified test cases.

As an illustration, we present an execution obtained from the small
test purpose Subword([(RM, 3), (D, 30)]).

Actions performed
Value of S 0
Rate computed by I 0
Rate computed by B' 0

6(3)
3
0
0

RM I1 A7 6(10)
3 3 3 13
0 1 1 1
0 0 0 0

A9a 6(17)
13 30
1 1
1 1

D
30
1
1

The first line presents the trace of the execution : 6 denotes time elapse,
I1 is an action of I, A7 and A9a are actions of B'. After each step, the
value of the clock and the rates computed by I and B' are recorded.

We obtain a generic test case by filtering (through rewriting) the
actions of the execution. The adaptation of this result according to
the test architecture and the available PCO will be done in a further
research.

6. CONCLUSION AND FUTURE WORKS
We have presented a general approach for generating generic test

cases in the design of real-time systems using an interactive theorem
prover. The formal framework is based on HOL specifications and ver­
ification environment that includes an expressive specification language
and a powerful reasoning system. Furthermore, the use of the model of
p-automata, which include truly real-valued variables allows a natural
specification of systems.

We have described a technique for automatically deriving certified test
cases from formal descriptions of test purposes expressed as a subset
of regular timed expressions. This method significantly increases the
confidence in the test case generation process since all reasoning steps
and computation are checked by the theorem prover.

In future work, one should enrich the language of expressions to pro­
vide more refined constraints on the time part of dated actions. We also
plan to study a new protocol called PGM2 .

Notes
1. We do not present here the proof of this theorem. All scripts are available online at

http://dept-info.labri.u-bordeaux.fr/Davy rouillar/CClair/.

2. seehttp://www.cisco.com/warp/public/cc/pd/iosw/tech/_fr_xcst_ds.htm

264 TEST GENERATION AND SELECTION

References
[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3-34, 1995.

[2] R. Alur, T. A. Henzinger, and P.-H. Ho. Automatic symbolic verification of
embedded systems. In Proceedings of the 14th Annual Real-time Systems Sym­
posium, pages 2-11. IEEE Computer Society Press, 1993.

[3] Rajeev Alur, Costas Courcoubetis, Thomas A. Henzinger, and Pei-Hsin Ho.
Hybrid automata: An algorithmic approach to the specification and verification
of hybrid systems. Lecture Notes in Computer Science, 736:209-229, 1993.

[4] B. Baumgarten. Timed systems behaviour and conformance testing- a mathe­
matical framework. In Proc. 8th PTS, 1995.

[5] B.Berard, P.Casteran, E.Fleury, JF.Monin L.Fribourg, C.Paulin,
A.Petit, and D.Rouillard. Automates temporises calife, 2000.
http:/ /www.loria.fr/projets/ calife/.

[6] B. Berard, L. Fribourg, F. Klay, and J.-F. Monin. A compared study of two
correctness proofs for the standardized algorithm of ABR conformance. Research
Report LSV-99-7, LSV, ENS de Cachan, Cachan, France, August 1999. 27 pages.

[7] P. Casteran and Davy Rouillard. Reasoning about parametrized automata.
In Proceedings, 3th International Conference on Real-Time System, volume 8,
pages 107-119, 2000.

[8] Pierre Casteran and Davy Rouillard. The eclair project, 1999.
http://dept-info.labri.u-bordeaux.fr/-casteran/CClair/.

[9] E. Allen Emerson. Handbook of Theoretical Computer Science (volume B), chap­
ter Temporal and Modal Logic, pages 995-1072. Elsevier, 1990.

[10] A. Forum. Atm forum traffic management specification version, 1996.

[11] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: A model checker for
hybrid systems. Lecture Notes in Computer Science, 1254:460-463, 1997.

(12] T. Higashino, A. Nakata, K. Taniguchi, and A. Cavalli. Generating test cases
for a timed i/o automaton model. In Proc. IFIP Int'l Work. Test Communicat.
Syst. (IWTCS), pages 197-214. G. Csopaki, S. Dibuz, and K. Tarnay eds, 1999.

[13] ISO. Information technology, open systems interconnection, conformance testing
methodology and framework. International Standard IS-9646, CCITT X.290-
X.294, 1991.

(14] Jean-Frangois Monin and Francis Klay. Correctness proof of the standardized
algorithm for ABR conformance. In FM'99, volume 1708 of Lecture Notes in
Computer Science, pages 662-681. Springer, 1999.

(15] Tobias Nipkow. Verified lexical analysis. In J. Grundy and M. Newey, editors,
Proc. of the 11th International Conference on Theorem Proving in Higher Order
Logics, pages 1-15. Springer-Verlag LNCS 1479, 1998.

(16] Christine Paulin-Mohring. The coq project, 1999. http:/ jcoq.inria.fr.

[17] Lawrence C. Paulson. The Isabelle reference manual. Technical Report 283,
University of Cambridge, Computer Laboratory, 1993.

[18] Lawrence C. Paulson. Mechanizing coinduction and corecursion in higher-order
logic. J. Logic and Computation, 7:175-204, 1997.

Generate Certified Test Cases 265

[19] Davy Rouillard. Le modele des p-automates dans CClair. Technical Report
1242-00, LaBRI, 2000.

[20] N. Shankar, S. Owre, and J. Rushby. The pvs proof checker: A reference manual.
Technical report, CSL, SRI International, Menlo Park CA, 1993.

	GENERAT
E CERTIFIED TEST CASES BY COMBINING THEOREM PROVING AND REACHABILITY ANALYSIS
	1. INTRODUCTION
	2. A GENERAL FRAMEWORK FOR STUDYING AUTOMATA
	2.1 Isabelle
	2.2 CClair

	3. TEST GENERATION METHODOLOGY
	3.1 The p-automata model
	3.2 P-automata in CClair
	3.3 A proof approach of the test
	3.4 How to describe Test purposes
	3.5 Deriving test cases

	4. DERIVING TEST CASES FROM CERTIFIED TEST PURPOSE
	4.1 Final location and accepted language
	4.2 A particular test purpose
	4.3 Timed regular expressions
	4.4 Deriving a certified automata
	4.5 Validation of the observer technique
	4.6 An oracle called Hytech
	4. 7 Validation of the computed execution

	5. A CASE STUDY ABR CONFORMANCEALGORITHMS
	6. CONCLUSION AND FUTURE WORKS
	References

