
GENERATE CERTIFIED TEST CASES BY 
COMBINING THEOREM PROVING AND 
REACHABILITY ANALYSIS* 

Richard Castanet 
Davy Rouillard 
LaBRI, Bordeaux I University, 33405 TALENCE Cedex, FRANCE 
{castanet,rouillar }@labri.u-bordeaux.fr 

Abstract We present a test case generation method which conciliates theorem 
proving and model checking. Test purposes are expressed by timed 
regular expressions and then translated into a corresponding automaton 
using a certified function. This automaton is composed with the system 
specification and an execution is computed from this sub-specification 
by an automatic tool. The result is finally re-injected into the theorem 
prover to be checked. 
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1. INTRODUCTION 
The life cycle of protocol engineering contains several steps: require­

ments definition, formal specification, simulation or verification, imple­
mentation and finally testing (conformance, interoperability, robustness 
and performance tests). It is widely recognized that the use of formal 
model is essential to allow automatic verification as well as automatic 
test generation. Proof techniques can also be used to validate the critical 
parts of a system but they are employed still rather rarely in the domain 
of protocols [14]. 

The aims of this paper are to show how the test cases generation can 
be compatible with the proof activity and to exhibit the benefits one 
may gain in developing a test environment based on a proof assistant. 
To achieve these goals, we propose to use the general framework CClair 
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[8] which supports both verification and testing activities on various kind 
of automata. For a description of the verification techniques supported 
by CClair, we refer the reader to [7]. 

The heart of CClair is the proof assistant Isabelle [17] and its im­
plementation of the Higher Order Logic. This logic offers a very rich 
language in which it is possible to describe complex systems and proper­
ties. Thus, it becomes possible to work on systems for which automatic 
tools fail because of a classical state-explosion problem. 

This high expressiveness is also a strong argument for the joint use of 
proof assistants and automatic procedures because tools such as Isabelle 
[17], Coq[16] or PVS[20] may work with a great variety of mathematic 
objects and they have therefore no problems to understand and manip­
ulate the results computed by automatic tools. 

Another advantage is that proof assistants deal with theorems i.e. cer­
tified objects. This means that all results computed by external proce­
dures have to be checked before been integrated. Furthermore, complex 
pieces of reasoning may be formalized in order to combine these results. 
It results in an increased confidence in the validation/testing process 
since the unavoidable errors due to the merge of several formalisms are 
immediately detected. 

This paper highlights all these concepts by proposing a new approach 
to generate certified test cases for real-time systems. We are only inter­
ested by deriving generic test case without considering a test method. 
This last aspect will be take account in a next stage of the testing pro­
cess, following the methodology of the standard IS09646[13]. To model 
the specification systems, we use Parameterized automata (p-automata) 
that can be seen as extensions of timed automata or timed I/0 au­
tomata. The latter have been used in recent works for test generation 
[12, 4]. The p-automata model has the advantage to allow the use of 
variables of any type and recent experiments [6] tend to prove it is a 
convenient formalism to model communication protocols. 

The rest of the paper is organized as follows: In section 2, we present 
the main features of Isabelle and CClair. In section 3, we describe how 
CClair may be used to formalize the test generation starting from both 
a specification of a timed system under test and a test purpose that 
describes a set of behaviors to be tested. In section 4, we introduce a 
general method to generate test cases by translating test purpose into a 
p-automaton. This automaton is used as synchronous observer to guide 
the construction of an execution that satisfies the test purpose. This 
execution is computed by Hytech and then validated in CClair. This 
method is employed in section 5 to generate test cases for the ABR 
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algorithm used in ATM networks. Finally, the section 6 summarizes the 
results presented in the paper and outlines future works. 

2. A GENERAL FRAMEWORK FOR 
STUDYING AUTOMATA 

2.1 Isabelle 

CClair is developed on top of Isabelle, which is a generic proof assis­
tant in the sense that it supports reasoning in various logics : First Order 
Logic, Zermelo-fraenkel set theory, High Order Logic (HOL in short). In 
this paper, we are however only concerned by the latter instance of Is­
abelle. 

HOL offers a great expressiveness that allows to formalize mathemat­
ical principles such as recursion and [co]induction. 

Proofs, in Isabelle, may be built in a backward-chaining mode : a 
conjecture is stated and the goal is successively reduced to zero or more 
new subgoals by applying tactics. When no subgoals remain, the proof 
is complete and the resulted theorem may be used in further proof. The 
main tactic is resolution, which mimics the natural deduction: it unifies 
the conclusion of a proof rule with a selected subgoal and then replaces 
it by the instantiated premise of the rule. An other important feature 
is offered by rewriting tactics, which simplify a selected subgoal using 
possibly conditional directed equalities. Theorems used during rewriting 
are stored in simplification sets that can be extended by any necessary 
theorems. 

Goals may contain logical variables, denoted with a question mark x 7 . 

Logical variables represent unknown values that can be instantiated by 
resolution during proofs. Rewriting tactics and logical variables may be 
combined to perform some computations. For instance, 

filter (.\x. x =a) [a, b, b, c, a] = x 7 

will instantiate x 7 with the list [a, a] using a rewriting tactic. 

2.2 CClair 

The CClair project [7] aims to provide the user with an environment 
for working with transition systems of various kinds. Its kernel is a 
main theory of plain labeled transition systems, which allows to name 
states, action labels, transitions, traces and executions, and contains 
some tools for computing and reasoning. It intends to be generic in 
the same meaning as Isabelle: a general framework contains a theory of 
plain transition systems; various interesting kinds of transition systems, 
like Biichi, constrained or timed automata are defined in sub-theories. 
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Executions and traces of a system are formalized using the theory of 
lazy list developed by Paulson[18]. This theory allows us to represent 
finite as well infinite behaviors in a single representation and provides 
various usual functions on list such as concatenation and filtering. Exe­
cutions are therefore naturally declared as lists of transitions. 

Properties of executions and/ or traces may be expressed via a set 
of temporal operators (Q, 0, 0 ... ) (see [9] for example) that define lan­
guages of potentially infinite words. Usual operations on languages are 
also provided, among them Concat L1 L2 denotes the concatenation of 
L1 and L2 , Star L is the Kleene-star operation and Omega L represents 
the set of words obtained by infinite concatenations of words in L. 

3. TEST GENERATION METHODOLOGY 
One of the goal of the CClair project is to put in the same frame­

work, verification and testing activities. This section shows that test 
cases generation may be viewed as a verification task: proving that an 
unknown execution satisfies a given property. We begin by a description 
of the p-automata model and its implementation into CClair. 

3.1 The p-automata model 
To model real time systems, we use Parameterised timed automata 

[5]. This model was designed for the formalization and proof of al­
gorithms used in telecommunications and constitutes the heart of the 
French RNRT scientific project Calife. 

A p-automaton is a graph associated with a set of variables and a 
single non resettable clock. Each edge of the graph can be guarded by 
a condition on the variables (including the clock) and a relation which 
describes how the values of variables can be modified. 

More precisely, a p-automata P = (S, A, £, W, V, M, I) consists of 
the following components: S is the universal clock that memorizes the 
elapse of time. A is a set of actions. .C is a set of locations that are 
the vertices of the control graph. W is a set of parameters i.e. variables 
with values fixed by initial constraints. V is a set of variables. As 
usual, we use primed variables to denote the values after a modification 
and the set of primed of variables is denoted V'. M is a set of moves. 
Each move m = (l, a,(), l') is composed of a source location l E £, a 
target location l' E .C and an action a E A. The update relation () 
(V x { S}) x V' describes the guard condition and modifies the value of 
variables. Finally, the function I assigns to each location a constraint 
on variables called invariant. 
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During an execution, the state of Pis given by the triple (s, v, l) that 
is composed of the value of the clock, a location l E C and a vector v = 
(vi, ... , vn) that represents a value ai for each variable Xi E V. States 
must be admissible i.e. values of variables must satisfy the invariant 
associated with the location of the state. 

P can change its state in two ways: a discrete transition associated 
to a move (l, a, e, l') E M causes P to change the location from l to l' 
and the values of variables are updated according the update relation 
e. Otherwise, a delay transition modifies only the value of the universal 
clock. 

The way in which a p-automaton operates is described by an execu­
tion, i.e. a sequence of consecutive discrete and delay transitions. How­
ever, for reasoning about real-time systems, we are interesting in study­
ing not only the actions that are performed when the system runs, but 
also the instant at which each action is executed. Therefore, an adequate 
way to describe the behavior of a p-automaton is given by the notion of 
timed trace. A timed trace is a sequence of pairs [(a1, t1), ... , (an, tn)] 
where ai denotes an action and tithe instant of execution of ai. A couple 
(ai, ti) is called a dated action. 

Behind this general model, a subclass of p-automata called restricted 
p-automata has been identified in [5], where C, A, M are finite sets, 
V is a set of real-valued variables, and update relations and invariants 
are linear expressions. These constraints allow to translate restricted p­
automata into linear hybrid automata [1, 3] on which tools for automatic 
analysis[ll] can be applied. 

Example: figure 1 depicts a restricted p-automaton which models a 
digicode with three keys A, B and C. The correct sequence of keys, i.e. the 
one which causes the door to open, is A, B, A. Since only three errors are 
tolerated, the variable cpt memorizes the number of errors. Moreover, 
some delays control the input: B must be entered at most 10 seconds 
after the key A. The last key A must be entered before 20 seconds. Four 
successive errors or a too long time between two keys cause the lock of 
the digicode. A correct timed trace of the digicode is, for instance, the 
sequence of dated actions [(A, 3.2), (B, 5.4), (A, 6.1)] . 

3.2 P-automata in CClair 

The formalization of the model of p-automata in our framework takes 
the form of an extension of the CClair theories on transition systems. It 
contains the definition of the polymorphic type (a, l, v) pa which repre­
sents p-automata of actions of type a, locations of type l and variables 
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Figure 1. A example of p-automaton 

of type v. Because a, l and v may be instantiated with any type, it is 
possible to represent systems with an infinite number of actions or loca­
tions. Moreover, variables can contain lists, sets or more complex data 
structures. A translation of p-automata into plain transition systems is 
also provided to represent p-automata during execution. Consequently, 
discrete transition and time delay need not to be defined: it is enough 
to consider transitions of the translation into the parent theory. 

In order to make easier the communication between a finite execution 
and its associated timed trace, these notions are introduced simultaneous 
under the form of a predicat defined inductively: given a p-automaton 
P, F_TTracesp contains the objects of the form s E,w s' where is 

p 
an execution of P from the state s to t together with its corresponding 
timed trace w. s s' is called a run of P. A run is built with 
the help of three rules, called introduction rules: a run is either empty 
or obtained by adding a discrete-transition or a delay-transition on the 
head of an already defined run. 

A parallel composition operator, compatible with the Hytech composi­
tion[ll], is provided to modelize complex systems from a collection of 
automata, each describing a modular component of the system. Consider 
two p-automata A and B, locations of the parallel composition AilE are 
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the pairs of location (h, 12) where h is a location of A and 12 is a location 
of B. The invariant function of AIIB assigns to (h, 12) the conjunction 
of h and 12 's invariants. 

A move of A liB is either a move of A orB alone or a combined move if 
the action is common to A and B. In the latter case, the update relation 
is the conjunction of the update relation of each component. 

Numerous results, about runs of p-automata and their composition, 
are proven in CC1air. Among them, the following theorem will be used 
in section 4.5. 

H1: acts_of w AA nAB 1\ 

H2: (1) 
1 7rlx x,w 1 t 2 7r2x x,w 2 t 

1rsS A '1rs /\7rsS A '1rs 

Given an execution in the composed automaton, this theorem infers 
an execution with the same timed trace in A and Busing the projections 
7r1 8 , 7r28 , 7r1x and 7r2x . These are used to project states and executions 
onto the first and second components. The additional assumption H1 
requires that all actions mentioned in the trace (collected by the function 
acts_of) are common to A and B. 

3.3 A proof approach of the test 
Following the definition from standard ISO 9646[13], an implemen­

tation conforms to its specification if it satisfies all the conformance 
requirements which are explicitly mentioned in the protocol standard. 
Consequently, the process of conformance testing aims at deriving a set 
of tests cases which will check whether an implementation satisfies all 
these conformance requirements. In this paper, we focus on the first 
step of this process which consists in deriving generic test cases from 
the specification i.e. test cases which are independent of any implemen­
tation. 

Conformance requirements have to be expressed in a formal language 
and therefore each requirement may involved one or many so-called test 
purposes which are formal descriptions of the constraints to impose on 
the behavior of the specification in order to decide whether the particular 
conformance requirements is satisfied. Using terms of theorem proving, 
we obtain an generic test case if we can prove that it corresponds to 
an execution of the specification that satisfies a test purpose. Since our 
aim is also to compute such a test case, we start with an incomplete 
statement where logical variables replace the desired execution. 
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Consequently, deriving a test case amounts to solve a statement of 
the following form: 

e? ? . w· ? ? ? ? 
s s'· 1\ Q(s,e·,w·,s'·) (2) 

3.4 How to describe Test purposes 
Translating conformance requirements into formal language is a non­

obvious task: requirements are provided in natural language which often 
contains many ambiguities. If the formal language used for this transla­
tion is too poor, it may lead to errors on the meaning of the requirement. 
Since the property Q in the goal 2 is a formula of HOL logic, one dis­
poses of a large expressive language. Moreover, CClair provides many 
operators, commonly used in verification and testing activities: LTL 
modalities, language constructors and of course automata. If it is not 
enough, user may develop his own operators together with a translation 
into concepts already defined in order to prove the soundness. 

Let us emphasize that we are not limited to express test purpose 
about traces. The reason is that Q takes as argument the execution e 
and an execution contains all information about the successive states of 
the system. We can therefore formalize constraints on particular value 
of variables or location. Suppose, for instance, that we seek to obtain a 
test case where the counter exceeds the allowed value before the system 
reaches the location q3. Using the selectors cpt and loc to extract the 
value of the counter and the location from states, the property Q may 
be: e F= O((cpt > 3) "OO(loc = q3)) 

3.5 Deriving test cases 
Deriving a test case amounts to providing a constructive proof of 2. 

The basic technique to build an execution is to use of simulation tactics 
in which introduction rules of the predicat F _TTraces are applied. Once 
a part of the execution is instantiated, the second part of the goal may 
be simplified through rewriting. If simplifications lead to the formula 
"False", this means that an error is detected and another execution is 
searched using backtracking facilities. 

This higher degree of interactivity is the price to pay to enable one to 
work with models known to be undecidable and therefore for which no 
automatic procedure exists. In this difficult cases, tactics are available 
to make the task easier. For instance, one may extract the control graph 
of a p-automaton, by ignoring all but action symbols and locations ; 
if this graph is finite, we can apply certified algorithms on graphs to 
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compute candidates for executions, which are confronted to invariants 
and update relation of the original automaton. 

If automatic procedures may be used, then the generation of certifi­
cated test cases is fully automatic as explained in section 4. 

4. DERIVING TEST CASES FROM 
CERTIFIED TEST PURPOSE 

This section focuses on the production of test cases for the class of 
restricted p-automata. Since a restricted p-automaton is a kind of linear 
hybrid automaton[2], we can invoke the verification tool Hytech from 
CClair in order to automatically compute an execution. 

Our overall approach is as follows: a temporal test purpose T is ex­
pressed using a kind of regular expressions. Then, this expression is 
translated by means of rewriting rules into a timed-automaton T so 
that the traces of T satisfy the test purpose. The latter property is 
established by a pre-proven theorem. Next, Tis used as a synchronous 
observer to guide the construction of an execution which is computed 
by Hytech and finally certified in CClair. 

4.1 Final location and accepted language 
The p-automata model does not permit to declare a final location. 

For the purpose of defining the language accepted by a p-automaton, we 
therefore need to extend the model. It is easily done under CClair by 
introducing a new type of automata, called paf (p-automata with final 
location) that adjoins a final location to each p-automata. 

(a,l,v)paf = ((a,l,v)pa x l) 

A run is accepted by a given automaton (P, f) if there exists a corre­
sponding run in P whose last location is f. 

(s,w) E Accepts(P,f) = 3 e: t A (loc t =f) 

4.2 A particular test purpose 
Conformance requirements may be formalized by a set of test pur­

poses where each test purpose describes a particular sequence of observ­
able events that the system has to perform in order. As we study timed 
systems, it is moreover convenient to precise the instant at which each ac­
tion must be observed. Such test purposes amount to provide a subword 
of a timed trace of the specification. CClair provides a dedicate opera­
tor, named Subword to express make this class of test purposes. To be 
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more precise, given a sequence of dated actions l = [(a1, t1), ... , (an, tn)] 
(ai E A, ti E R), Subword(l) specifies the set of timed traces which cor­
respond to the regular expression (Ax R)*.(a1, t1).(A x R)* ... (an, tn)· 
(Ax R)* where* denotes the Kleene-star on language and. the concate­
nation. In other words, Subword allows us to select timed trace whose l 
is a subword. This means that between two given actions, the system is 
allowed to perform many other actions. 

Using the digicode of the figure 1 as an illustration, Subword(((A, 3.0), 
(B, 6.2), (A, 8.3)]) represents the set of timed traces that contains the two 
following timed traces. 

[(B, 1.1), (A, 3.0), (A, 4.6), (B, 6.2), (A, 8.3)] 

[(A, 3.0), (C, 4.9), (A, 5.3), (A, 5.8), (B, 6.2), (A, 8.3)] 

In order to derive test cases, we are therefore interested in solving the 
testing statement of the section 3.3 where A is instantiated by Subword: 

c? ? .,· w· ? s s'· 1\ w7 E Subword(l) p 

4.3 Timed regular expressions 

(3) 

Our purpose is to translate Subword into an automaton so as to use 
Hytech on it. It is a well-known result that regular expressions can be 
translated into a labeled transition system which accepts the language 
associated to the expression, and vice-versa. Consequently, it is natural 
to introduced regular expressions that can be translated into an equiv­
alent automaton and then use these expressions to defined Subword. 

A recent paper written by T.Nipkow[15] has explored the ability to 
formalize the Kleene's theorem into Isabelle. However this development 
cannot directly be reused here for several reasons: 

For one, we need expressions that contain time informations and there­
fore we must translate them into p-automata, not into simple transition 
systems. For another, Nipkow uses an adhoc representation that differs 
from our actual formalization of p-automata. A third reason is that 
the construction presented in [15] is realized in two steps: a automaton 
with epsilon-transitions is first generated then it is transformed into a 
deterministic automaton. However, the latter construction involves a 
non-executable operator on set. Fortunately, to define Subword, we only 
need a subset of regular expressions, and we can therefore generate, di­
rectly from expression, an automaton without epsilon-transitions. 
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Hence, using the ML syntax, a timed expression on letters of type a 
is defined by the type a texp: 

datatype a texp = One_letter a x lR 

Any_letters 

Cone (a texp) (a texp) 

Following the definition, an timed expression is constructed by con­
catenation of dated actions. A dated action is either explicitly given 
using the constructor One_letter or taken in the set A x lR if the con­
structor Any_letters is used. 

Given a regular expression, the primitive recursive function lang com­
putes its corresponding set of dated actions word. 

lang (One_letter (a, t)) = {[(a, t)]} 

lang (Any_letters) =Star ( u u{[(x, t)]}) 
aEAO::;t 

lang (Cone L1 L2) = Concat (lang L1) (lang L2) 

Finally, Subword is defined as the language of the timed expressions 
built by the recursive function sb_exp. 

sb_exp([]) = Any_letters 

sb_exp((a, t).l) = Cone Any_letters 

(Cone (One_letter (a, t)) (sb_exp(l))) 

Subword(l) =lang (sb_exp(l)) 

4.4 Deriving a certified automata 
The translation of each component of a regular expression into a cor­

responding p-automaton is depicted on figure 2. The corresponding au­
tomata are very simple: locations are natural numbers and no variables, 
except the universal clock, are required. However, we need a type of 
variable to declare these automata in our typed framework. One solu­
tion is to use the special (ML like) type unit which contains the single 
value v. 

Given an expression E of type texp, the result of the translation is 
the paf (T, f) where T is a p-automaton (the timed trace of which are 
in the language associated to the expression) and f its final location. 
The desired property is stated by the pre-proven theorem: 1 

(4) 
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Expression P-antomata 

S = t,a,-

One_letter (a,t) sa 
-,A*,-

Any_letters sa 
exp1 

exp2 

Cone exp1 exp2 -c0······G······a 
Figure 2. Thanslation of expressions into p-automata 

However, we are only interested in the instance of 4 where E is built 
using Subword. 

Let us emphasize that it is an executable translation: definitions use 
mainly primitive recursions so that a automaton is automatically gen­
erated from a regular expression, thanks to the rewriting mechanism of 
Isabelle. 

4.5 Validation of the observer technique 
Now, if we put 5 on the goal 3, we obtain the following new subgoal: 

(:? ? ? ? 

s "'1 . ,w· s'7 A (t·7 v 0) 6· ,w· (t 7 v f) 
p ' T I ' ' (6) 

The next step consists to validate the well-known technique of observer 
automata: the basic idea is that the automaton T can be used as a syn­
chronous observer i.e. it can be executed in parallel with the specification 
automaton in order to find an execution. This step is formalized from 
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to the rule given in 1 proven in section 3.2 and we obtain the following 
goal : 

? . w· ? 
s s' · 

e PIIT e 
(7) 

Where se (resp. is the composition of the initial state (resp. final) 
of the runs in P and T. Be is completely instantiated but we may take 
the liberty to let uninstantiated or to precise a part of the state. It 
is a means to precisely control the search by constraining the execution 
to end with particular values of variables. In this case, we have Be = 
( ti, (Vi, v) , ( li , 0)) and = ( t / , ( v f, v) , ( l / , f)) . 

Notice that Isabelle keeps in memory the instantiation made during 
resolution of the goal 2 with 1 i.e. 6 and 6 are connected by the 
equations 1r1x = 6 and 1r2x = 6. is fully instantiated, it is 
obvious to compute the value of 6 by rewriting. 

4.6 An oracle called Hytech 

Hytech[ll] is a symbolic model checker for linear hybrid systems which 
may automatically generate a diagnostic trace that explains why a prop­
erty is (or is not) satisfied by a system description. Therefore the tool 
Hytech can be used to search an execution in the composite specifica­
tion+observer automaton. 

To achieve this task, we need to build an input file that includes de­
scriptions of automata and commands to compute an execution. Because 
we work with the restricted format of p-automata, the translation into 
hybrid automata is nearly obvious: all variables are real and declared as 
discrete variables. This ensures that they will not evolve except on ex­
plicit update. The universal clock is declared as a variable of type clock 
called now. The only difficulty concerns the translation of constraints 
(update relations and invariants) because CClair allows the declaration 
of any necessary constant to define it. As a consequence, the first step 
of the translation procedure is to compute a "normal form" which is 
done through rewriting. The user is responsible for giving all equations 
needed to expand constants by their definitions. 

Two Hytech commands are needed to compute an execution in our 
composed automaton. 

reached :=reach forward from init_reg 
print trace to final_reg using reached 

One must first use forward reachability analysis to compute all states 
that are reachable from the initial region ini t_reg which contains the 
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single state sc. The second command causes Hytech to generate an 
execution from ini Lreg to the final region f inaLreg { 

4. 7 Validation of the computed execution 

Having obtained a desired execution, we then use this result to solve 
the goal 7. Two choices are offered to us, depending of the level of 
confidence we have about Hytech and our interface with CClair : we 
can admit the computation result as an axiom and directly apply it on 
7. A safer alternative is to instantiate the variable ( with the computed 
execution and then validate it. Let us explain briefly how this latter step 
can be achieved. 

Because all sets involved in the definition of a restricted p-automaton 
are finite, rewriting mechanism is powerful enough to decide whether a 
given move is in the set of moves. For instance, (q1 , C, cpt = 3, Fail) E 

Mdigicode is simplified to True and therefore is accepted as a move of 
the digicode. 

Concerning the data part of a transition, Isabelle provides a decision 
procedure for linear arithmetic. Therefore the value of variables com­
puted by Hytech according to the update relations and invariants are 
automatically admitted or rejected. As a result, CClair provides a tac­
tic which automatically checks the validity of the execution computed 
by Hytech. 

5. A CASE STUDY ABR CONFORMANCE 
ALGORITHMS 

Available Bit Rate[lO] is a special kind of connection defined in ATM 
network architecture : it allows the cell rate to vary during the same 
session. Therefore, a real-time reactive algorithm is necessary to control 
that data cells sent by user conform to the negotiated traffic parameters. 
Two of such algorithms are formalized in [6]. The first one, called I, has 
the ideal desired behavior but its implementation is impossible in prac­
tice because of a too large memory cost. The second one, B', is therefore 
an approximation for which a proof of correctness with respect to the 
ideal algorithm is given. This proof has completely been formalized in 
our framework[19], including the description of algorithms in terms of 
p-automata, and proving a set of invariance assertions by induction on 
execution sequences. 

The rate offered to the user depends of the instant at which resource 
management (RM) cells are received. The crucial point is therefore to 
test if B' computes a rate greater or equal to the rate computed by 
I for a given sequence of values carried by RM cells and their arrival 
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time. Thus, each sequence corresponds to a test purpose of the form: 
Subword([(RM, t1), ... , (RM, tn), (D, tn+l)]) where the actions RM and D rep­
resent respectively the reception of a RM-cell and an user data cell. This 
allows to apply our CClair / Hytech approach for automatically generat­
ing certified test cases. 

As an illustration, we present an execution obtained from the small 
test purpose Subword([(RM, 3), (D, 30)]). 

Actions performed 
Value of S 0 
Rate computed by I 0 
Rate computed by B' 0 

6(3) 
3 
0 
0 

RM I1 A7 6(10) 
3 3 3 13 
0 1 1 1 
0 0 0 0 

A9a 6(17) 
13 30 
1 1 
1 1 

D 
30 
1 
1 

The first line presents the trace of the execution : 6 denotes time elapse, 
I1 is an action of I, A7 and A9a are actions of B'. After each step, the 
value of the clock and the rates computed by I and B' are recorded. 

We obtain a generic test case by filtering (through rewriting) the 
actions of the execution. The adaptation of this result according to 
the test architecture and the available PCO will be done in a further 
research. 

6. CONCLUSION AND FUTURE WORKS 
We have presented a general approach for generating generic test 

cases in the design of real-time systems using an interactive theorem 
prover. The formal framework is based on HOL specifications and ver­
ification environment that includes an expressive specification language 
and a powerful reasoning system. Furthermore, the use of the model of 
p-automata, which include truly real-valued variables allows a natural 
specification of systems. 

We have described a technique for automatically deriving certified test 
cases from formal descriptions of test purposes expressed as a subset 
of regular timed expressions. This method significantly increases the 
confidence in the test case generation process since all reasoning steps 
and computation are checked by the theorem prover. 

In future work, one should enrich the language of expressions to pro­
vide more refined constraints on the time part of dated actions. We also 
plan to study a new protocol called PGM2 . 

Notes 
1. We do not present here the proof of this theorem. All scripts are available online at 

http://dept-info.labri.u-bordeaux.fr/Davy rouillar/CClair/. 

2. seehttp://www.cisco.com/warp/public/cc/pd/iosw/tech/_fr_xcst_ds.htm 
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