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Abstract This paper presents a method for generating interoperability test suites for the 
class of communication protocols such as the ATM/B-ISDN signaling 
protocol and TCP that are modeled as communicating nondeterministic finite­
state machines. To our knowledge, no test generation method exists for 
protocol interoperability testing that supports multiple simultaneous inputs to 
the implementations. In other words, it has been assumed that communicating 
systems adhere to the single stimulus principle in generating test cases. In 
practice, however, there exists the possibility that additional messages will be 
sent to a machine while the previous message is still being processed, and/or 
simultaneous messages will be sent to several machines at the same time (e.g., 
TCP's simultaneous open/close). To cope with these situations, we have 
developed an interoperability test suite derivation algorithm based on formal 
models. Experimental results show that our method is applicable to practical 
systems and can generate validation-equivalent interoperability test suites in 
terms of transition coverage. 

Keywords: Interoperability testing, protocol testing, test case generation, validation, single 
stimulus, multiple stimuli, transition coverage, stable state, TCP, ATM 

1. INTRODUCTION 

To increase the confidence that protocol products conform to 
international standards, various protocol testing methodologies have been 
developed and applied. In particular, conformance testing that checks 
whether an implementation is correct with respect to the relevant standards 
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has been standardized by ISO [1] and ITU-T [12] and applied to protocols 
such as N-ISDN and ATM/B-ISDN. Nevertheless, it is well known that 
conformance testing has limitations in ensuring interoperability. Thus, even 
two conforming implementations may fail to interoperate [2, 3]. The reasons 
include ambiguity of protocol standards, incompatible option settings and 
incomplete conformance testing [4]. 

There has been some research work on interoperability testing in the 
literature. Rafiq and Castanet [2] dealt with interoperability test suite 
generation based on reachability analysis. However, a rigorous definition of 
interoperability was not used and the work considered only the case where 
lower testers exist between two Implementations Under Test (IUTs). 
Vermeer and Blik [5] described experiences with interoperability testing of 
the FT AM protocol. The work used a single tester between two IUTs and 
thus had limited capability. Arakawa et al. [3] derived a conformance test 
suite and an interoperability test suite separately and later manually 
combined them to reduce the number of conformance test cases. Kang and 
Kim [6] developed a method for systematically dealing with symmetric 
communication protocols and used an interoperability test architecture that 
did not observe the interface behavior between two IUTs. Shin and Kang [4] 
proposed and applied a test derivation method suitable for testing 
interoperability for the class of communication protocols such as the 
ATM/B-ISDN signaling protocol. Seol et al. [7] later enhanced the algorithm 
in [6, 4] and applied the algorithm to the ATM/B-ISDN signaling protocol 
and TCP with analysis on transition coverage. Kang et al. [8] developed a 
coherent framework of interoperability testing and a systematic 
interoperability test suite derivation method based on the framework. 

Quite a number of methods and tools for test case generation get inputs in 
the form of deterministic, nondeterministic, or extended Finite State 
Machine (FSM) specifications. However, these methods are generally 
applicable only when the protocol consists of a single FSM. For 
communication protocols, most interoperability test suite derivation methods 
are based on some form of reachability analysis and the protocols are 
modeled by communicating finite state machines. To our knowledge, the 
single stimulus principle has always been explicitly or implicitly assumed. 
These models therefore do not support multiple stimuli. The single stimulus 
principle means that only a single stimulus can be given at each stable state. 
A stable state for concurrent systems or communicating protocols is defined 
in [9] as the system state (i) that is reachable from the initial state adhering to 
the single stimulus principle, and (ii) from which no change can occur 
without another stimulus. Systems adhering to the single stimulus principle 
are said to be running in a slow environment [10]. In a slow environment, 
inputs can be sent from the environment to the system only when all the 



Interoperabilty Test Generation based on Multiple Stimuli Principle 153 

queues and all the channels are empty. According to the single stimulus 
principle, simultaneous stimuli and stimuli during transitions are not 
considered. 

When protocol implementations interact with one another, it is possible 
that additional messages are sent to the implementation(s) while the previous 
message is still being processed and/or simultaneous messages are sent to 
each implementation at the same time. For instance, TCP allows 
simultaneous open and simultaneous close of a TCP connection. Therefore, 
checking multiple stimuli in interoperability testing is important because 
multiple stimuli are an essential part of many protocol behaviors and their 
implementation seems to be especially error-prone. 

In this paper, we propose a new method to support concurrent behavior 
of protocols in generating test cases for interoperability testing. The rest of 
this paper is organized as follows: Section 2 presents some related work. In 
Section 3, we define formal models for communication protocols and 
interoperability test cases. Section 4 explains our approach to 
interoperability testing and the procedure for generating interoperability test 
suites. In Section 5, we present the results of applying our proposal to the 
TCP and ATM/B-ISDN signaling protocols with transition coverage 
analysis. Finally, Section 6 summarizes the contributions of the paper and 
suggests further research directions. 

2. RELATED WORK AND MOTIVATION 

In this section, we present some existing methods that are related to our 
work and discuss their limitations due to the single stimuli assumption. 

Luo et al. [10] proposed a method of generating test sequences for 
concurrent programs and communication protocols modeled as 
communicating nondetermini-stic finite state machines (CNFSMs). The 
method first reduces a system of CNFSMs into a single NFSM by 
reachability analysis. The NFSM is then transformed into a trace-equivalent 
observable NFSM from which test sequences are generated. Basically, a 
global state denotes contents of channels, input queues, and states in each 
machine. As mentioned in their paper, it is obvious that the number of states 
in a global state machine becomes infinite in case of unlimited channels 
and/or queues. For that reason, they made the assumptions that queues and 
channels are bounded, and that the system runs in a slow environment. The 
first assumption is reasonable since unbounded queues or unbounded 
channels cannot be implemented in practice. The second assumption, 
however, is not reasonable for those protocols that allow multiple and 
simultaneous messages. 
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Paula Lima and Cavalli [11] proposed a pragmatic approach to 
generating test sequences for embedded components of complex systems. 
Embedded testing and interoperability testing are similar in that internal 
actions are usually invisible and thus hard to control. Their method provides 
means to support multiple outputs (i.e., when one signal from the 
environment stimulates several simultaneous outputs) and non-determinism 
of components. A drawback of their method is that it limits the number of 
external inputs between stable states to one. In other words, an input can be 
given to the system only if the previous input has been completely processed 
and the system is not undergoing any state change at the time. 

Recently, Kang et al. [8] proposed a framework for interoperability 
testing of communication protocols. They developed an interoperability test 
derivation method based on stable states, and applied their method to the 
ATM signaling protocol. This method also has the same drawback as the 
other methods mentioned above. As their method adheres to the single 
stimulus principle so that multiple stimuli and stimuli during transitions 
between stable states cannot be handled. 

-.. external inputs 
----+ external outputs 
----• internal messages 

... ::. ....... 1:=81 x' ..... ,y ...... ... .... ....... 
• -···'""·-•• 82 ......... 

83 
MA Ma MA Ma MA M8 

(a) multiple internal outputs for one input (b) multiple stimuli during a (c) simultaneous stimuli 
transition between stable states 

·from one machine to another -from the environment to the system of machines 

Figure I. Multiple stimuli. 

In practice, multiple messages between communicating entities often 
occur. Figure 1 shows three cases of multiple messages in MSC-like charts. 
There are two machines which exchange messages with each other and with 
the environment. In this paper, we shall call the former messages internal 
messages and the latter external messages. Case (a) involves multiple stimuli 
from one entity to the peer entity for a given external input while cases (b) 
and (c) involve multiple stimuli from the environment to the system of 
machines. In (a), the machine MA produces two internal messages x andy 
arising from the external input a. Note that multiple output messages can be 
produced not only from an external input but is possible also from an 
internal input. In (b), external input b is given while the previous input a is 
still being processed. This case is an example of multiple stimuli during a 
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transition from one stable state to another. Note that the global states (A1, 
B1) and (A4, B3) in Figure l(b) are stable states. A similar case is shown in 
Figure 1 (c) where one input goes to MA and another input goes to MB at the 
same time. This is known as simultaneous stimuli which is a special case of 
multiple stimuli. Simultaneous stimuli can be seen in TCP' s simultaneous 
open and close behaviors. These cases can often happen in the real world 
and may also occur in faulty implementations. Therefore, interoperability 
testing should test for these behaviors as well. 

3. FORMAL MODELS 

This section defines formal models for communicating entities and for 
interoperability test cases. The specifications and implementations of 
communicating entities can be modelled using a special type of FSMs 
known as input output state machine (IOSM). IOSM is defined as follows: 

Definition 1. An IOSM is a 5-tuple (S, S0, L 1n, Lonto Tr) where: 
(1) S = { S0, St. •.. , Sn-I } is a set of states; 
(2) S0 E S is the initial state; 
(3) Lin= { Vt. v2, ••• , Vm} is a set of input symbols; 
(4) Lout= { u2, ... , ud is a set of output symbols; 
(5) Tr { S,-viU--"Sd I S,, S# S 1\ vE Lin 1\ UE P(L *out) } is a set of transitions 

where L •out denotes the set of sequences of symbols in Lout and P(X) denotes 
the power set of the set X. 

Bold letters in Definition 1 represent sets. Lin is divided into two sets 
Lin,E and Lin,I that are, respectively, the set of external input symbols and the 
set of internal input symbols. Similarly, Lout is divided into two sets Lout,E 

and Lout,I that are, respectively, the set of external output symbols and the set 
of internal output symbols. For example, symbol a in Figure l(a) is an 
external input symbol and a' is an external output symbol. Symbols x and y 
are internal output symbols for machine MA and, at the same time, are 
internal input symbols for machine M8 • is a transition where 
s., Sd, v, and U are, respectively, the starting state, the destination state, an 
input symbol and a sequence of output symbols. For a transition tr in Tr, the 
'.' notation is used to refer to one of the elements of the following sets such 
as S., Sd, v, and U. For example, tr.Ss represents the starting state of the 
transition tr. In case of a deterministic IOSM, there is at most one transition 
in Tr for each input symbol while there is at least one transition in a 
completely defined IOSM. 
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Definition 2. For every transition tr (Vtr E Tr) whose starting state is Si ( tr.Ss = Si ), 
the state Si E S is said to be: 
(1) controllable iff tr. v E Lin,E; 

(2) uncontrollable iff tr. v E Lin,r ; 

(3) semi-controllable iff 3trj. v E Lin,E and 3trk. v E Lin,r where j=Fk. 

We classify states in an IOSM into three types according to Definition 2. 
If a state can be changed only by external inputs, the state is said to be 
controllable. Such a state is controlled only by the testers' inputs. If all 
possible inputs at a state are internal ones, the state is said to be 
uncontrollable. If some possible inputs at a state are internal and others are 
external, the state is semi-controllable. This classification is illustrated in 
Figure 2. In IOSM MA, a part of which is depicted in the box in Figure 2, 
state AI is controllable, A3 is uncontrollable, and A2 is semi-controllable. 
There are two transitions from state A2 as depicted in the box in Figure 2. 
One transition goes to state A3 with external input y and the other goes to 
state A4 with internal input c. Let us trace the behavior of multiple stimuli in 
this system. When the system's global state is (AI, BI) which is a stable 
state, an external input x is given. Then, MA goes to state A2, sending an 
external output x' and an internal output a, and M8 replies with an internal 
message c. Before the message c reaches MA, another external message y 
(multiple stimuli from the environment) is given. This is because the state A2 
of MA is a semi-controllable state. If MA receives the internal message c in 
state A2, it will go to state A4, but it will go to state A3 if it receives the 
external input y. Although the system is in a transient global state (A2, B2), 
the next stable state of the system is unpredictable since the transient global 
state includes a semi-controllable state. In general, if a machine in a system 
is in a semi-controllable state and an internal signal comes from a peer 
communication machine, the existing test generation methods cannot 
examine the external inputs since the methods adhere to the single stimulus 
principle. 
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{!j Q Semi-controllable state 

(-__ ') Uncontrollable state MA MB • 

Figure 2. Three types of states in an IOSM. 

Now we define a behavior model for two IOSMs communicating with 
each other and the environment. Let TI be the composition of the two 
IOSMs, one, MA, for the specification A and the other, MB, for the 
specification B. Then TI is defined as follows: 

Definition 3. The composite IOSM II is a 5-tuple (Sn, Sno, Ln,;n, Ln,out. Trn, Qn ) 
where: 
(1) Sn= { Sn0, Sm, ... , Snn-I } is a set of global states, and Sm =(SA, Ss), where SA 

and S8 are states of MA and M8 , respectively; 
(2) Sno E Snis the initial state. Namely, Sno =(SAo. Sso); 
(3) Ln,in = { vn" vm . ... , vnm } is a set of input symbols A These :ressages are 

external inputs of each machine. Namely, Ln,in = (L;n,E u L;n,E); 
(4) Ln,out = { um, um, ... , unk } is a set of output symbolsA. These are 

external outputs of each machine. Namely, Ln,out = (Lout,E U Lout,E); 
(5) { trno. trw, ... , trnt-I } is a set of sequences of transitions, and a sequence 

of transitions { trn} {:::} tr0, trh ... , tr1.1 where tr; E (TrA u TrB); 
(6) Qn = (QA, Q8 ) is a pair of directed channels where QA is the channel from M8 to 

MA, and Q8 from MA to M8 ; both channels are represented by queues. 
A global state and directed channels (modelled by queues) in a composite 

IOSM TI determine the system state of the IOSM TI. Here, the system state 
is used to describe the state of the system as a whole while a global state is 
used to depict each local state of the IOSMs in the system. Note that work in 
[8, 10] defined a global state as one describing the entire system, including 
information for input queues and/or channels. 

An IOSM receives messages from either the environment or its channel 
queue. Then, the two IOSMs and the two directed channels constitute a 
composite IOSM TI as shown in Figure 3. Note that in this model IOSM TI 
does not have any queue for inputs from the environment. This is the same 
as a single IOSM because its formal model does not define any queue. Since 
each state in an IOSM consumes one message at a time, messages following 
the current message do not affect the next state. We assume that internal 
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outputs are instantly placed in the channel queue directed to the receiving 
IOSM. This implies first-come first-served (FCFS) message queuing and 
handling. A message leaving one machine before another message will 
arrive at the other machine and served before the other message. 

Environment 

t t 
- > channel Q8 - > 

IOSMMA IOSMM8 .. - channel QA .. -

Figure 3. A composite IOSM II. 

A global state is classified into one of two types depending on the 
channel contents. 

Definition 4. The global states of two IOSMs are classified into two types. 

VSn =(SA. SB) E Sn. 
(1) A global state Sn is said to be stable iff QA and QB are both empty. 
(2) Sn is in a transient state otherwise. 

When a system is in a stable state, the system will change its state due to 
external inputs only. Both local states in a stable state cannot be 
uncontrollable states, otherwise the system is in a deadlock state because 
both machines will wait for messages from each other indefinitely. When a 
system is in a transient state, the system will change its state soon. However, 
the existing test generation methods do not allow for the system to receive 
additional external inputs. Our method, on the other hand, examines all 
possible external inputs. Namely, when one of the two local states in a 
transient global state is semi-controllable, we examine the cases where the 
IOSM receives an external input in the semi-controllable state as well as the 
cases where it consumes an internal message from its receiving channel. 

Finally, we define an interoperability test suite in Definition 5. Each 
machine in a system consumes one input (either internal or external) at each 
state, that is, one transition at a time for each IOSM. Therefore, an 
interoperability test case can be represented by a sequence of transitions in 
either IOSMs in the system. An interoperability test suite is defined in terms 
of interoperability test cases. Note that a test case whose length is 1 is simply 
a conformance test case. 
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Definition 5. An interoperability test suite I OPTS Trn is defined as follows: 
I OPTS = { iopt0, iopt], ... , ioptn-l } is a set of interoperability test cases where an 
interoperability test case is defined as a set of sequences of transitions, 

{ iopt} tr0, tri> ... , tr1_1 where tri E (TrA u Tr8), O:::;i::;I-1, and [2_2. 

The interoperability test case illustrated in Figure 2 can be represented as 
follows. The length of this interoperability test case is 4. The starting stable 
state is (AI, Bl) and the destination stable state is (A4, B3). 

A2-y![y Bl-a!{ a B2-blb AJ-clc 

4. OUR PROPOSED APPROACH 

This section describes our approach to generate interoperability test cases 
based on the formal models defined in Section 3. First, we explain the 
overall procedure of our approach and the associated assumptions. Next, we 
select the test architecture that achieves the desired test coverage. Finally, we 
discuss how to generate interoperability test cases based on the multiple 
stimuli principle. For the purpose of analysis, we divide the multiple stimuli 
into two sets classified in Figure 1 and considered in Section 4.3 and 4.4, 
respectively. 

4.1 An overview 

In order to derive test cases, we first need to derive IOSMs from the 
given protocol specifications. We assume that there is no autonomous 
transition, e.g., a timer. This is because even though we are able to generate 
test cases involving time constraints, it is difficult to apply them to real test 
environments. The interoperability test derivation algorithm generates test 
cases from the IOSMs by constructing an interaction graph. The algorithm 
starts from the initial stable state consisting of each IOSM' s initial states and 
at each step examines all possible external inputs even in transient states, 
until a stable state is reached. In the meantime, new paths are generated 
based on the multiple stimuli principle, and newly found stable states are 
added to the associated state space. This procedure is repeated for every new 
stable state until all stable states are covered. One can apply our algorithm 
for deriving interoperability test cases based on the single stimulus principle 
as well, especially when resources (such as available points of control and 
observation) are limited. The input-enumeration procedure used in our 
approach is similar to what is known as state-perturbation [15]. However, the 
goal of our procedure is to build a reachability tree and then generate 
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interoperability test cases based on its stable states, while the goal of state­
perturbation is to build a reachability tree for validating protocols between 
interacting processes without the concept of stable state. Moreover, 
generating interoperability test cases mainly focuses on inputs and outputs to 
and from the systems of machines, which are regarded as black- or grey­
boxes. However, the model (labelled transition systems) used in paper [15] is 
focused on internal interactions between systems of machines only. 

4.2 Test architecture 

To cater to the multiple stimuli principle, we need a test architecture with 
a tester between the two IUTs as well as one at each end as shown in Figure 
4. The arrows in Figure 4 represent points of control and observation (PCOs) 
with both observability and controllability functions. It is assumed that there 
is a communication channel through which the testers coordinate with each 
other. Tester C should be able to hold messages passing through it for a 
while. In this way, simulating multiple stimuli is feasible. In the case of 
TCP/IP, for example, tester C will be configured with two network interface 
cards for each IUT. The tester duplicates and drops all the messages between 
the two JUTs using libpcap [14], a library for system-independent packet 
capture, and then sends the messages according to the interoperability test 
cases, coordinating with the other two testers in doing so. 

Figure 4. Interoperability test architecture. 

4.3 Multiple stimuli from one machine to another 

Figure 5 shows the channel status (modelled by queues) for every 
transition execution in deriving an interoperability test case in the given 
example. Starting with an external input ex, the algorithm pushes every 
internal output generated by the input into the channel QAB· Next it moves to 
the peer machine Ms and processes all the messages in the channel and 
pushes all internal outputs produced during the process into the channel QsA· 
This procedure is repeated until both channels are empty. Note that the order 
of messages, a, b, c (or, 0, 1, 2, 3) remains unchanged since first-come first­
served scheduling is used. Moreover, protocol concurrency is still 
maintained, e.g., trb I tr1, trc I trz, and trc I tr3. 



Interoperabilty Test Generation based on Multiple Stimuli Principle 161 

Q 
-

M 
--•o --+ --+ 321 

ab +-- a+-- b b+--

QsA 
(a) transition tr ex (b) transition tr0 (c) transition tra (d) transition trb 

3 2 --+1 3 --+2 --+3 
c +-- c c c+--

(e) transition tr1 (f) transition tr2 (g) transition tr3 (h) transition trc 

Derived interoperability test case: trex• tro, tr0 , trb, trb tr2, tr3, trc 

Figure 5. Derivation of interoperability test case for multiple internal outputs. 

4.4 Multiple stimuli from the environment 

To support multiple messages from the environment, an additional step is 
needed. Before the algorithm picks up an element from a channel, it 
examines whether the current local state of the machine is semi-controllable 
or not. If so, a new path is generated for all possible external inputs in this 
semi-controllable state. At this point, information of the current global state 
(which is a transient state) and all queues will be copied and the algorithm 
will generate test cases for each path recursively. 

The procedure of generating interoperability test cases explained so far 
can be formalized into the algorithm given below. Lines 1 to 10 describe the 
main (control) part of the algorithm. This part initializes variables and calls 
the interaction_sequences() function for every stable state in the NEW set 
that has been initialized with the initial stable state ( SAo. SBo ). The function 
described in the rest of the algorithm generates all possible transitions based 
on the multiple stimuli principle. From lines 14 to 24, it checks the 
termination condition by examining the queue contents and updating the 
NEW, IOPTS, and Trrr sets, or calling itself recursively. From lines 25 to 
37, it examines all possible transitions whose inputs are either external 
inputs or the current message from the queue, and then calls itself 
recursively with appropriate variables for this test case. Finally, the rest of 
the function checks whether or not the current interoperability test case has 
encountered a specification error, namely, there are no transition for the 
current message (so-called implicit signal consumption). This algorithm is 
implemented in the C language with about 1000 lines of codes. The 
execution time of the program is negligible (80 milliseconds for generating 
1012 test cases from 150 transitions). 
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INTEROPERABILITY TESTING 

A B 
Ln,;n:=L;n,EUL;n,E; Sn0:=(SA0,S80); Sn:={ Sn,o } ; Trn:={}; IOPTS:={}; NEW:=Sn 
while NEW,o0 do begin 

set gs to any global state in NEW 
delete the global state from NEW 
for each possible external input symbol v in global state gs 

prepare two empty queues QA and Q8, and an empty transition list iopt 
push v to coiTesponding queue, QA or Q8 
interaction_sequences( QA or Q8 , Q8 or QA, gs, iopt, NEW ) 

end for 
end while 

procedure interaction_sequences( var Q1, var Q2, gs, var iopt, var NEW) 
begin 

if Q 1 is empty then begin 
if Q2 is empty then begin 

if iopt has more than one transition then 
insert this new interoperability test case iopt to I OPTS 

if iopt do not end with an eiTor code then 
insert this new global state gs to NEW 

insert iopt to a set of global transitions Trn 
end 
else interaction_sequences( Q2, Q1, gs, iopt, NEW) 
return 

end 
else begin 

in:= pop(Q1); atLeastOne :=false 
for each possible transition tr from the current global state gs 

change gs according to the input in the transition, tr. v 
copy Q1, Q2, and iopt to newQ1, newQ2, and newiopt, respectively 
if the input tr. v ( =/:: in) is external then 

insert current input in to the back of newQ 1 
if the transition tr has internal outputs then 

push all the outputs to newQ2 
append the transition tr to newiopt 
interaction_sequences( newQ1, newQ1, gs, newiopt, NEW) 
atLeastOne := true 

end for 
if atLeastOne := false then begin 

report there is a specification error 
append an error code to iopt to stop expanding the current path 
interaction_sequences(Q1, Q2, gs, iopt, NEW) 

end 
end 

end procedure 
Algorithm 1. Interoperability test suite derivation 
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5. APPLICATIONS 

In this section, we apply our method to the ATM/B-ISDN signaling 
protocols and TCP. Figures 6 and 7 show the IOSMs of these protocols (for 
more details, refer to papers [7, 8]) respectively. 

(a) Calling Party IOSM 

(b) Called Party IOSM 

i_CONN/11 
i RESTART _ACK/ I I 

GiO 
i_CALL_PROC/1 I 
i RESTART_ACK/1 I -oo 
i_CONN/11 
i_CALL_PROC/I I 
i RESTART _ACK/1 I 

Abbreviations 

(!) REUIREL_COMP,i_RELI 
REL_COMP/Ii RELI 
RESTART/ I RESTART _ACK,i-REL I 

(2)REUII 
REL_COMP/1 I 
RESTART/ I RESTART _ACK I 

(3) i REUIREL, i REL_COMPI 
i::REL_COMPliRELI 
i RESTART /li RESTART_ACK, RELI 

(4) i -REU{I -
i::REL_COMP/1 I 
i RESTART/{i RESTART_ACKI 

(5) i-REUI I -
i=REL_COMP/11 

i_CONN/11 
i_CALL_PROC/1 I 
i RESTART_ACK/1 I 

Note I) The Input alphabet and the output alphabet of the Calling Party IOSM and the Called Party 
!OSM are the same, i.e. {SETUP, CALL_PROC, CONN, CONN_ACK, REL, REL_COMP, RESTART, RESTART_ACK, 

i_SETUP, i_CALL_PROC, i_CONN, i_REL_COMP, i_RESTART, i_ RESTART_ACKI. 

Note 2) PNNI specifies three alternative ways to handle unexpected messages: i.e., ignore the received 
message, send STATUS and clear the call. Except in 0:0 and 12:0 above, it is assumed (for simplicity) 
that unexpected messages are ignored. 
Note 3) Dot('.') notation denotes that messages are set one after another successively. For instance, 
{ i_CALL_pROC.i_REL} means thar i_CALL_pROC is sent followed by i_REL. 

Figure 6. The IOSM of ATM signaling protocoL 
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Given the IOSMs, the input data for our method can be derived 
systematically. An IOSM is described in a file, in which each line represents 
a transition in the IOSM. For instance, "[1]0:0 3:6 SETUPb CALL_PROC 
i_SETUP" is the transition whose starting state is 0:0, destination state is 
3:6, input message is SETUPb, and output messages are CALL_PROC and 
i_SETUP. For convenience of reference, index numbers are given to the 
original data file. The postfix is used to specify specific IOSM, e.g., 
SETUPb is an external message being sent to IOSM M8 • The prefix 'i_' is 
used to denote internal messages. 

t/111£0UI 
send: RST 

appl: close 
selld:FIN 

----+ 
appl: 

se11d: 

for cliellf 
nonnoltmnsitionsfor server 
state transitions taken w!Jenapplicatioll issues operation 
state transitions taken when segmem received 
what is sent .for this transition 

/ 

Wait!') 

\,,_ • /'--.(INIACK ----

ACKli \ 1-· \ 
Fl CK Closmg } 

/{ACK, osedl \.... ,../ 

/,.... ..... \ ACK/closed 

t!IN_Wail2} 

/, ............ ,\ 

...... _ ... .' 
' ...... _ ....... 

ACK/closed 

Input/Output symbols in capital character: messages 

messages 
accessing tester through PCOs (external messages). 

Figure 7. The TCP IOSM and its simplified one. 

The results of applying our method to the two protocols are summarized 
in Table 1. In the case of ATM signaling protocol, a total of 1012 test cases 
were derived. 16 cases among them are only for one IUT and thus they are 
for conformance testing since there is no interaction between IUTs. Another 
6 cases address specification errors for requesting the IUTs to receive 
unspecified input messages. Note that our method can also be used in 
detecting specification errors in the design phase. 

The number of interoperability test cases based on the single and multiple 
stimulus principle are 54 and 990 respectively. Without taking into account 
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of multiple stimuli, we have derived exactly the same 54 test cases reported 
in a previous work [8]. 

Figure 8 shows two examples in the derived interoperability test cases. 
An interoperability test case consists of several transitions in given IOSMs. 
Each transition has a unique id. Minus sign is used to denote the transitions 
of one IUT and plus sign to denote the transitions of the other one. Illustrated 
in Figure 8(a), the interoperability test case, <-1, 4, -12, -61, 5, 16, 8, -60,-
8>, involves multiple stimuli. This test case is based on the specification and 
represents one of the correct behaviors of the protocol. Depicted in Figure 
8(b), the interoperability test case, <-1, 75, -12, -9, -999.>, reveals 
specification error. 

RELa 

REL_COMP 1 i\',,, // i_CONti· 

-------- '',,,l' 
'8 

REL_COMP 

[-!] 0:0 3:6 SETUPa CALL]ROC i_SETUP 
[4] 0:0 6:3 i_SETUP i_CALL]ROC SETUP 
[-12] 3:60:11 RELa REL_COMP i_REL 
[-61]0:11 0:11 i_CALL]ROC 
[5] 6:3 10:10 CONNb CONN_ACK i_CONN 
[16] 10:100:11 RELbREL_COMPi_REL 
[8] 0:11 0:0 i_REL 
[-60] 0:11 0:11 i_CONN 
[-8] 0:11 0:0 i_REL (a) 

[-1] 0:0 3:6 SETUPa CALL]ROC i_SETUP 
[75] 0:0 0:0 i_SETUP i_REL_COMP 
[-12] 3:6 0:11 RELa REL_COMP i_REL 
[-9] 0: II 0:0 i_REL_COMP 
[-9991 specification error: unspecified input 

(b) 

Figure 8. Examples of interoperability test cases. 

Table 1 summarizes the results of our applications to the TCP and ATM 
signaling protocols. The test cases are classified into test cases for checking 
specification errors, conformance test cases, and interoperability test cases. It 
is shown that our method generates more test cases than existing methods [7, 
8] in order to support multiple stimuli. For example, in the case of the ATM 
signaling protocol, we have derived 990 interoperability test cases while 54 
were derived by the method [7] that assumes the single stimulus principle. 
Therefore, it is clear the existing methods cannot detect faults due to 
multiple stimuli. 
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Table 1. Test case generation for the IOSMs of TCP's connection establishment phase and 
ATM signaling protocol 

TCP's connection establishment phase (Each IOSM consists of 19 transitions) 
used principle single stimulus principle multiple stimuli principle 
test cases 20 7 4 
test cases due to specification error 4 54 
conformance test cases 8 8 
interoperability test cases 8 12 

ATM signaling protocol (Each IOSM consists of75 transitions) 
used principle single stimulus principle multiple stimuli principle 
test cases 70 1012 
test cases due to specification error 
conformance test cases 
interoperability test cases 

0 
16 
54 

6 
16 

990 

Table 2 gives the transition coverage for the IOSMs of TCP's connection 
establishment phase and the ATM signaling protocol. It is shown that our 
method, which is based on the multiple stimuli principle, has higher 
transition coverage than the existing methods, which are based on the single 
stimulus principle. Our method traverses 5 more transitions of TCP and 9 
more transitions of ATM than the existing methods in [7, 8]. Our coverage is 
exactly the same as that covered by validation4 techniques. A SDL 
commercial tool [13] was used to obtain the result on validation reported in 
Table 2. In other words, our method can generate interoperability test suite 
whose transition coverage is equivalent to that of validation. 

T. bl 2 T a e . rans1t10n coverage 

methods 
the existing methods [7, 8] our method 

validation (single stimulus principle) (multiple stimuli principle) 
protocols TCP ATM TCP ATM TCP ATM 
traversed tr. 13 (68%) 39 (52%) 18 (95%) 48 (64%) 18 48 
untraversed tr. 6 (32%) 36 (48%) 1 (5%) 27 (36%) 1 27 

Table 3. Untraversed transitions 
the existing methods [7, 8] our method 

protocols (untraversed tr.) TCP(6) ATM(36) TCP (1) ATM(27) 
wrongly specified 1 (5%) 13 (17%) 1 13 
over-specified 0(0%) 14 (19%) 0 14 
limitation of the method 5 (26%) 9 (12%) 0 0 

4 Validation is based on the state space exploration technique. It automatically checks a 
distributed system's design for errors and makes it possible to prove a system will work 
before implementation. Validation executes all possible combinations of events that can 
happen, and reports any indication that something has gone wrong. 
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Table 3 shows the reasons why some transitions are not traversed. First, 
some transitions are wrongly specified and will never be executed due to 
absence of transitions that send the corresponding signals. For instance, 
some transitions in Figure 6 need an input signal i_RESTART, but there is 
no transition that sends the required signal. Note that a wrongly specified 
transition may give rise to subsequent untraversed transitions. Also, some 
transitions are over-specified. Over-specified transitions are superfluous and 
are unnecessary for our purpose. They include self-transitions whose start 
state and final state are the same. Actually they are sometimes used for error 
handling. Since checking correct behavior is the objective of our method, 
such transitions are considered as over-specified in this paper. Finally, some 
transitions are not traversed due to the limitation of the method used. As 
shown in the table, our method can traverse all the transitions that cannot be 
handled by the existing methods. 

6. CONCLUSION AND FUTURE WORK 

We have proposed a new method for generating interoperability test 
suites that support multiple inputs to the system under test. This means the 
method adopts the multiple stimuli principle rather than the traditional single 
stimulus principle used in existing methods. To do this, we have developed 
appropriate formal models on which the interoperability test suite derivation 
algorithm is based. We have applied our method to the A TM signaling 
protocol and also to a part of TCP. Experimental results have shown that our 
method has higher transition coverage than the existing methods: 26% 
higher for TCP and 12% higher for ATM. Our transition coverage is 
equivalent to that managed by the validation technique. As future work, the 
derived test cases will be applied to production protocols for interoperability 
testing in a real-life environment. 
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