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Abstract The main contribution of this paper consists of a description of a front-end tool 
which supports the computer-aided specification and verification of a class of 
flowcharts which capture the basic dynamics of object-oriented programs. The 
specific emphasis of our approach is on the automated verification of flowcharts 
annotated with assertions which allow one to specify properties directly in terms 
of the source code itself instead of some particular model of its semantics. 

1. Introduction 

In this paper we describe a software system which supports the computer­
aided specification and verification of a certain class of flowcharts which cap­
ture the basic dynamics of object-oriented programs. The execution of an 
object-oriented program written in, for example, Java gives rise to a dynamic 
configuration of objects. Characteristic of such a configuration is that objects 
can be created at arbitrary points during the execution of a program, and refer­
ences to objects, 'pointers', can be stored in variables and passed around. This 
implies that complicated and dynamically evolving structures of references be­
tween objects can occur. 

The verification tool presented in this paper implements a weakest precondi­
tion calculus (introduced in (De Boer, 1999)) for reasoning about the semantics 
of basic assignments in object-oriented programming languages. The calculus 
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itself is based on an assertion language which allows the description of proper­
ties of dynamic configurations of objects at an abstraction level that coincides 
with that of the programming language. In more detail, this means that the 
only operations on "pointers" (references to objects) are testing for equality 
and dereferencing (looking at the value of an instance variable of the refer­
enced object). Furthermore, in a given configuration, it is only possible to 
mention the objects that exist in that configuration. Objects that do not (yet) 
exist never play a role. 

The input of the verification tool is a flowchart together with a mapping 
which associates an assertion to every location, a so-called annotated flowchart. 
An assertion associated with a location is intended to describe certain invariant 
properties of the set of object-configurations which are reachable at that loca­
tion by a computation of the flowchart (De Roever et al., 2001). In order to 
prove that the assertions of an annotated flowchart are indeed satisfied in the 
sense described above, it suffices to check the logical validity of the (finite) 
set of assertions which are automatically generated by an application of the 
weakest precondition calculus to the annotated flowchart. The validity of these 
assertions are interactively verified by the theorem prover HOL (HOL URL) in 
terms of an internal representation of the assertion language. 

2. The Verification Tool 
In this section we describe the global architecture of the tool and the way it 

is used. See figure 1 for a graphic description of the architecture. 
The verification tool is implemented in Java. The tool contains lexical an­

alyzers and parsers for annotated flowcharts, macros and class descriptions 
which are obtained by means of the lexical analyzer JLex (JLex URL) and the 
parser generator CUP (CUP URL). 

The tool uses a library of class descriptions. A class description consists of 
the name of the class, a list of instance variables and their types. The class 
descriptions are used during a session to infer the types of instance variables 
that occur in the flowchart. Moreover, they are the basis of the type definitions 
that are used to reason over objects in the HOL logic. In section 5 we give a 
description of these type definitions. 

Flowcharts themselves are drawn in the user interface of the tool and are 
shown graphically. They can be modified by mouse movements. Conditions 
and assignments can be entered for every transition in the flowchart. A simple 
form of type-inferencing is used to infer the type of every variable that is not 
explicitly typed. The user is expected to include type information for every 
temporary variable that occurs in a condition or assignment, if necessary. It 
suffices to state the type of every variable once. 
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Figure 1. The tool architecture 

Assertions can be assigned to every location of the flowchart. Parameterized 
macros from a library can be used in these assertions. In section 6 we give an 
example of the use of (parameterized) macros. 

The verification tool is then used to automatically generate the verification 
conditions and export them to a file. This requires the tool to compute the 
substitution operations that are defined in section 4 and translate the resulting 
verification conditions to the HOL syntax. These two phases are completely 
automated. The resulting file can be loaded into HOL. The final proof of cor­
rectness consists of proving the correctness of the verification conditions one­
by-one and is constructed during an interactive proof-session with the HOL­
system. The user is also enabled to view the simulation of a flowchart at a 
separate panel. 

3. Flowcharts 
In this section we describe in more detail the formalism and semantics of 

the class of strongly typed flowcharts which are currently supported by the 
verification tool. We assume a set C of class names. The set of basic types !3 
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is obtained by extending this set of class names with the types lnt and Bool. 
For each basic type B E B we denote by B* the type of all finite sequences 
of objects of type B. For each of these types we assume a set of instance 
variables and a set of temporary variables, i.e. the contents of such a variable 
will be a value of that type. 

We have the following set of expressions without side-effects, with typical 
element e: 

e ::= u I e.x I op(e1, ... , en)· 

Here u is a temporary variable and x is an instance variable of some type and 
op is some operation of one of the data-types (like that of the integers and 
boolean values). (In case n = 0, op is a constant.) In particular we assume 
the presence of the constants self and nil which denote the active object and the 
value 'undefined', respectively. In the expression e.x the type of the expression 
e is assumed to be some class name. The only other operation on objects is 
testing for equality. 

Next we introduce the basic assignments which specify the operations which 
may occur in the flowcharts considered in this paper. We have the following 
assignments e.x := e' to an instance variable x and assignments u := e to 
a temporary variable u. More specifically, the execution of an assignment 
e.X := e' COnSiStS Of assigning the value Of e tO the instance Variable X Of the 
object denoted by e. On the other hand, the execution of an assignment u := e 
by an object consists of assigning the value of e to its temporary variable u. 

It is worthwhile to observe that an assignment of the form e.x[i] := e, with 
x an array variable, can be modelled by an assignment e.x := op(e.x, i, e), 
where op is an operation which produces an array obtained from the array e.x 
by assigning to the ith element the value of e. 

Moreover, we consider in this paper assignments of the form u := new. 
The execution of an assignment u := new consists of the creation of a new 
object and assigning a reference to this object to the temporary variable u (of 
the object executing the assignment). Note that an assignment e.x :=new can 
be simulated by the sequence of assignments u :=new; e.x := u, where u is a 
'fresh' temporary variable. 

As an example of a flowchart we refer to figure 2 where a flowchart is given 
for inserting an integer value into a sorted linked list. We assume given a 
class Node that contains an instance variable next that will be used to point to 
the next node in the list and an instance variable key that contains the integer 
value stored in the node. The temporary variables n (of type Int), cur and tmp 
(both of type Node) are local to the insert operation, with n being its formal 
parameter. The instance variable hd which refers to an object of class Node 
points to the head of the list. It is important to observe that the first node, i.e., 
its head, in the list is a dummy node (a so called sentinel) that is stored in the 
list to simplify boundary conditions. 
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:: hd 

1> _,.-) & -> := cuLnext 

"--------
-(((cur:Node).next!:nil) & (cur.next.key<n)) 

(tmp:Node) :: ne" 

(tmp:Node).key := n 

:= 

(cur:Node).next := (tmp:Node) 

Figure 2. The flowchart of the insert operation 

4. The Assertion Language 
In this section a logical formalism is introduced for expressing certain prop­

erties of a configuration of objects. 
One element of the assertion language will be the introduction of logical 

variables. These variables may not occur in the expressions of the given pro­
gramming language, but only in the assertion language. Therefore we are al­
ways sure that the value of a logical variable can never be changed by a state­
ment. Logical variables are used to express the constancy of certain expres­
sions (for example in a proof rule for message passing, see (De Boer, 1999)). 
Logical variables also serve as bound variables for quantifiers. 

In general, the set of expressions in the assertion language will be larger 
than the set of programming language expressions not only because it contains 
logical variables, but also because we include conditional expressions in the 
assertion language. These conditional expressions will be used for the analysis 
of the phenomenon of aliasing which arises because of the presence of the 
dereferencing operator. 

In two respects the assertion language differs from the usual first-order pred­
icate logic: Firstly, the range of quantifiers is limited to the existing objects in 
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the configuration under consideration. For the classes different from the pre­
defined ones like that of the integers and booleans this restriction means that 
we cannot talk about objects that have not yet been created, even if they could 
be created in the future. This is done in order to satisfy the requirements stated 
in the introduction. Because of this the range of the quantifiers can be different 
for different states. More in particular, a programming statement can change 
the truth of an assertion even if none of the program variables accessed by 
the statement occurs in the assertion, simply by creating an object and thereby 
changing the range of a quantifier. 

Secondly, in order to strengthen the expressiveness of the logic, it is aug­
mented with quantification over finite sequences of objects. It is quite clear 
that this is necessary, because simple first-order logic is not able to express 
certain interesting properties. 

Formally, the set of logical expressions, with typical element l, is generated 
by extending the above grammar of expressions with logical variables z, and 
conditional expressions of the form if then l1 else l2 fi (here lois a boolean 
expression and the expressions h and l2 are of the same type): 

l ::= z I u ll.x I if lo then l1 else l2 fi I op(h, ... , ln)· 

Here z denotes a logical variable. 
In order to reason about sequences we assume the presence of notations 

to express the length of a sequence (denoted by Ill> and the selection of an 
element of a sequence (denoted by l[n], where n is an integer expression). 
More precisely, we assume in this paper that the elements of a sequence are 
indexed by 1, ... , n, for some integer value n 2::: 0 (the sequence is of zero 
length, i.e., empty, in case n = 0). Accessing a sequence with an index which 
is out of its bounds will result in the value of nil. 

The set of assertions, with typical element P, is defined by: 

P : := z I P A Q I ,p I 3zP 

Here l denotes a boolean expression. 
As already explained above, a formula 3zP, with z a logical variable rang­

ing over objects, states that P holds for some existing object. A formula 3zP, 
with z of a sequence type, states the existence of a sequence of existing objects. 

It is worthwhile to note that the assertion 3ztrue, where z ranges over ob­
jects (of some class) is true if and only if there exists an object of that class (in 
the current configuration). In general, however, quantification is characterized 
by the usual validities like 3zP +-+ -,'tjz-,P. 

As an example, consider the flowchart of figure 2 of the previous section. 
The following assertion states that the sequence of nodes denoted by the logical 
variable z are linked by the instance variable next: 

Vn (1 ::; n 1\ n::; lzl --> z[n].next = z[n + 1]). 
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Here n is a logical integer variable. Note that by convention z[lzl + 1] =nil. 

4.1. Aliasing and Object Creation 
In this section we show how we can model assignments involving aliasing 

and object-creation in the assertion language by means of substitutions. These 
substitutions are used by the tool to generate automatically the verification 
conditions of an annotated flowchart. The basic underlying idea is that the 
assertion resulting from the application of a substitution has the same meaning 
in the state before the assignment as the unsubstituted assertion has after the 
assignment. In other words, the substituted assertion describes the weakest 
precondition. 

Aliasing 
First we observe that given an assignment u := e, with u a temporary variable, 
and a postcondition P, the assertion P[eju] obtained from P by replacing 
every occurrence of u by e has the same meaning as the unsubstituted assertion 
P has after the assignment. 

On the other hand, the usual notion of substitution does not suffice for an 
assignment e.x := e' because of possible aliases of the expression e.x, namely, 
expressions of the form l.x: it is possible that, after substitution, l refers to the 
object denoted by e, so that l.x denotes the same 'memory cell' as e.x and 
should be substituted by e. It is also possible that, after substitution, l does not 
refer to the object e, and in this case no substitution should take place. Since 
we cannot decide between these possibilities by the form of the expression 
only, a conditional expression is constructed which decides "dynamically". 

We have the following main cases of the substitution operation [eje.x] (syn-
tactic identity is denoted by:::::): 

(l )[ '/ ] = { if l[e' je.x] = e then e' else (l[e' je.x]).x fi (1) 
.x e e.x - (l[e' je.x]).x (2) 

(l.y)[e' je.x] = (l[e' je.x]).y 

The (instance) variables x and y here are assumed to be distinct. The first 
case of the first clause should be applied if e and l have equal types. The second 
case defines the substitution if the types of e and l differ. The above definitions 
are extended in the standard way. 

Object creation 
Next we consider the creation of objects. We want to define the substitution 
[newju] which models the creation of a new object referred to by the tem­
porary variable u. This substitution should model logically the assignment 
u := new. Execution of an assignment u := new consists of the creation 
of a new object and assigning a reference to this object to u. Note that an 
assignment e.x := new can be simulated by the sequence of assignments 
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u := new; e.x := u, where u is a 'fresh' temporary variable. For an as­
signment e.x := new we therefore can compute the weakest precondition of 
a postcondition P by P[uje.x][new ju], where u is a fresh temporary variable 
which does not occur in P and e. 

As with the usual notions of substitution we want the expression after sub­
stitution to have the same meaning before the assignment as the unsubstituted 
expression has after the assignment. However, in the case of the creation of a 
new object, there are expressions for which this is not possible, because they 
refer to the new object and there is no expression that could refer to that object 
before its creation, because it does not exist yet. Therefore the result of the 
substitution must be left undefined in some cases. 

However we are able to carry out the substitution in case of assertions be­
cause a temporary variable u referring to the new object can essentially occur 
only in a context where either one of its instance variables is referenced, or it is 
compared for equality with another expression. In both of these cases we can 
predict the outcome without having to refer to the new object. 

Here are the main cases ofthe formal definition of the substitution [newju], 
with u a temporary variable, for logical expressions. As already explained 
above the result of the substitution [new/ u] is undefined for the expression u. 
We have 

l[new ju] = l, for l =self, nil, z, x, v, 

where z is a logical variable, x is an instance variable, and v is a temporary 
variable distinct from u. 

Since the (instance) variables of a newly created object are initialized to nil 
we have 

(u.x)[newju] =nil. 

The other possible context u may occur is that of an equality. If neither l nor 
l' is u or a conditional expression they cannot refer to the newly created object 
and we have 

(l = l')[new/u] = (z[new/uJ) = (z'[new/uJ). 

If either lis u and l' is neither u nor a conditional expression (or vice versa) 
we have that after the substitution operation l and l cannot denote the same 
object (because one of them refers to the newly created object while the other 
one refers to an already existing object): 

(z = z') [newju] =false. 

On the other hand if both the expressions l and l equal u we obviously have 

(z = z')[new/u] =true. 
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For l a conditional expression of the form if b then h else l2 fi we define 

(l = l') [newlu] 
:=if lo[newlu] then (h = l')[newlu] else (l2 = l')[newlu] fi. 

Since we assume that the only operations on 'pointers' are testing for equality 
and dereferencing, we have that l [new I u J is defined for boolean expressions l. 

Next we consider lifting this substitution operation [new luJ to assertions. 
We define 

(P 1\ Q)[newluJ 
= P[newlu] 1\ Q[newluJ and (-.P)[newlu] 
= -.(P[newlu]). 

The changing scope of a bound occurrence of a variable z ranging over objects 
which is induced by the creation of a new object is captured as follows. 

(3z P)[newluJ = (3z(P[newlu])) V (P[ulz][newlu]). 

The idea of the application of [new I u] to (3z P) is that the first disjunct 
3z(P[new lu]) represents the case that P holds for an 'old' object (i.e. which 
exists already before the creation of the new object) whereas the second dis­
junct P[ul z] [new lu] represents the case that the new object itself satisfies P. 
Since a logical variable does not have aliases, the substitution [ul z] consists of 
simply replacing every occurrence of z by u. It is worthwhile to observe that 
we can derive the following clause for universal quantification. 

(Vz P)[newlu] = (Vz(P[newlu])) 1\ (P[ulz][newlu]). 

As a simple example, we consider applying [newlu] to the assertion Vz(u = 
z V self = z) which states that the set of existing objects consist only of the 
object denoted by the temporary variable u and the object itself. 

(vz(u = z V self= z)) [newluJ 

Vz( (u = z V self= z)[newluJ) 1\ (u = u V self= u)[new lu] = 
Vz(false V self= z) 1\ (true V false) 

where the last assertion obviously reduces to Vz(self = z). This assertion 
states that self is the only object which exists, which indeed is the weakest 
precondition of the assertion Vz(u = z V self= z) with respect to u :=new. 

The case of an occurrence of a bound variable z which ranges over se­
quences of objects is discussed in the full paper. We omit it here. 
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5. HOL 

In this section we describe the translation of the previously introduced as­
sertion language into the HOL logic. All variables in our assertion language 
range over integers, objects or arrays of some type. We use the standard HOL 
theory (IntegerTheory) to represent integers. Reasoning about the other 
types requires some type declarations, which will be described below. It is im­
portant to bear in mind that those declarations are automatically generated by 
the compiler from the class descriptions in the editor. 

In the computational model described in the full paper the presence of an 
arbitrary infinite set 0 of object identities is assumed because this ensures in 
every global configuration the existence of new object identities. In addition 
we assume that each of these identities is typed. That is, each identity belongs 
to a certain class of objects. There are a finite number of classes in a given 
verification context. Identifiers that start with a capital letter are used to denote 
class names, for instance Node. For each class that is defined, a set of objects 
is assumed. A declaration of a type for such a set in the HOL logic, allows us, 
also in HOL, to quantify over the objects in the set. Types in the HOL logic 
denote sets in the universe of the logic. Declaring a type therefore implies the 
specification of a set of objects. There is however one drawback of this natural 
approach. Types in the HOL logic necessary denote non-empty sets. But the 
set of objects of a class is possibly empty! Our solution to this problem is to 
include nil as an object in every set of objects of a certain class. Note that 
this requires nil to have a polymorphic type. 

Here are the details of this solution. Every class name from the class library 
is used in HOL to declare new atomic types. The following example statement 
shows such a type declaration for the class Node. 

val_= new_type 0 "Node"; 

The example statement declares Node to be a new 0-ary type operator. It is ac­
tually a valid statement in the meta-language of HOL, the functional program­
ming language ML. This statement binds the result of the function new_ type 
to the name that is placed after the) val-keyword. In this case we simply 
place _ instead of an identifier, to indicate that the expression does not have to 
be bound to a specific name. 

Next, we introduce a polymorphic unary type operator Object and the con­
stant nil: 

val new_type 1 "Object"; 
val new_constant ("nil", Type ':'a Object'); 

The latter statement adds nil to the current HOL theory as a constant with the 
polymorphic type 'a Object. The expression 'a denotes a type variable. 
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Note that type operators are written with suffix notation. Since ni 1 has this 
polymorphic type, it is an inhabitant of the set represented by the type Node 
Object. This set is intended to denote the existing objects of class Node 
extended with ni 1. A HOL-axiom is generated that states that this set is finite. 

Next we discuss how to represent the internal states of objects. The internal 
state of an object assigns values to each of its instance variables. We have 
chosen to represent internal states by means of records: Each field of a record 
corresponds to an instance variable of an object. Moreover, the notation used 
for field selection in HOL happens to coincide with the standard notation used 
for dereferencing in object-oriented programs also used in this paper. If o is of 
a record type that contains some field f, the selection of field f of object o is 
denoted by o. f. This improves the readability of the assertions in HOL. The 
HoLdatatype function from the bossLib library facilitates the definition 
of record types. Consider for instance the following statement: 

val _ = Hol_datatype 'NodeRec 
<I next: Node Object 

; key: int I>'; 

This statement declares a record type NodeRec with two fields: a field next 
of type Node Object and another field key of type int. Not surprisingly, 
this definition is exactly the translation of an internal state of an object of class 
Node. For each class, a record type is declared. The name of the record type 
is the name of the class, appended with 11 Rec 11 • 

Finally, we describe the translation of a global configuration of objects into 
the type theory. Such a global configuration specifies the internal state, i.e., 
the values of the instance variables, of every existing object and is 'queried' in 
the semantics of the assertion language only in the definitions of l.x and :JzP. 
Because the types of the internal states differ for each class, we introduce the 
notion class state. A class state is a function that maps object identities of 
a specific class to their internal states. Again, we illustrate this for the class 
Node: 

val =new constant ("NodeState" 
, Type ':Node Object -> NodeRec'); 

This statement introduces a constant NodeState of type Node Object 
- > NodeRec. In general, given a finite number of class names C we thus 
represent a global configuration by the corresponding constants estate of 
type C Object - > CRee. 

As a last example of the necessary type declarations we will describe the 
representation of arrays of objects. An array is simply a function of integers 
to objects of a certain class. The types of these functions are declared for each 
class. A constant length of type 'array - > intis introduced to refer to 
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the length of every arbitrary array, independent of its type ('array is a type 
variable). Recall that an array that is indexed out of bounds equals nil. For 
each type of array, the compiler produces two axioms that handle these upper 
and lower bound respectively. These axioms can be used if necessary during a 
proof session and can be included in automatic rewriting tools. 

The following table lists some examples of the translation Tr of the asser­
tion language into the HOL logic. This translation in fact expresses in a natural 
and simple way in HOL the semantics of the assertion language which is given 
in the full paper. Note that in the translation of V(z : C)P, since nil is in­
cluded in every type C object, we have to exclude it from the domain of 
quantification. On the other hand, we do allow sequences which contain nil. 

Assertion Language 
Tr(z: b) 

Tr(z: C) = 
Tr(z: B*) 
Tr(u: B) = 
Tr(u: C) 

Tr((l: C).x) 
Tr(if lo then h else l2 fi) = 

Tr(self: C) 
Tr(nil) 

Tr(z[i]) = 
Tr(!zl) 

Tr(V(z : C)P) 
Tr(V(z: B*)P) 

HOL 
z: B (where B E {lnt, Bool}) 
{z:C Object) 
(z: "BArray) 

u:B (where BE {lnt, Bool}) 
{u:C Object) 
(eState (Tr(l))) .x 
(if Tr(lo) then Tr(h) else Tr(l2)) 
(self: C Object) 
nil 
((Tr(z)) (Tr(i)))) 
(length Tr(z)) 
! (z:C Object) .-(z=nil) ==> Tr(P) 
! (z: "BArray) .Tr(P) 

Here C denotes an arbitrary class name and B denotes an arbitrary basic 
type. Many operators on e.g. integers are already present in HOL and can be 
used. 

6. An Example: Inserting into a Sorted Linked List 
In this section we briefly discuss an application of the tool to the verifica­

tion of the correctness of the insert operation described in figure 2. We first 
describe the annotation of the flowchart with assertions containing parame­
terized macros and end with some remarks on the level of automation of the 
construction of the proof. 

We want to specify in the postcondition of the insert operation the correct 
addition of the inserted node. We do so by introducing a logical variable z 
which denotes the initial list of linked nodes. The following assertion 

(z[i].next = z[i + 1]/\ z[i] -1- nil) 1\ hd = z[1]/\ lzl 2::: 1 

(here and in the sequel we use the notation LJ!:ep and IIf:ep as an abbre­
viation of the bounded quantification ::Ji(e :::; i 1\ i :::; e 1\ P) and Vi(e :::; 
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i 1\ i ::::; e' --+ P)) states, among others, that two consecutive elements of z are 
linked by the instance variable next (by convention z[!z! + 1] = nil) and that 
its first element is denoted by the variable hd. For this assertion we introduce 
the (parameterized) macro linked list ( z, next). 

The following assertion describes the correct addition of a node tmp in the 
initial list z. 

lzl 
I: ((z[i].next=tmp) 1\ (i > 1--+ z[i].key < tmp.key) 
i=l 

1\ (i < !z!--+ z[i + 1].key 2: tmp.key) 1\ (tmp.next = z[i + 1])) 

For this assertion we introduce the parameterized macro addtolist(z, tmp ). 
We want to prove that the flowchart F of figure 2 satisfies the pre- and 

postcondition specification 

{linkedlist(z, next)}F{addtolist(z, tmp) 1\ tmp.key = n} 

by annotating it with assertions and checking in HOL the corresponding verifi­
cation conditions which are generated automatically by our tool. We have the 
following annotations. 

s: linkedlist(z, next). 

h: linkedlist(z, next) 1\ currentpos( cur, z), 

where the (parameterized) macro currentpos (cur, z) stands for the as­
sertion 

= z[i]A (i > 1--+ cur.key < n)) 

l2: linkedlist(z, next) 1\ correctpos(z, cur), 

where the macro correctpos(z, cur) stands for the assertion 

cur = z[i]A 
i > 1 --+ cur.key < n 1\ 

i < !z! --+ cur.next.key 2: n 

l3: linkedlist(z, next) 1\ correctpos(z, cur) 1\ tmp r:j_ z, 

where tmp r:j_ z is a macro for the assertion (tmp = z[i]) (also 
used below). 

l4: linkedlist(z, next) 1\ correctpos(z, cur) 1\ tmp r:j_ z 1\ tmp.key = n. 

l5: linkedlist(z, next) 1\ correctpos(z, cur) 1\ tmp r:j_ z 1\ tmp.key = n 1\ 

tmp.next = cur.next. 
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t: addtolist(z, tmp) 1\ tmp.key = n. 

The flowchart annotated with these assertions is compiled into a number 
of verification conditions that are translated into the HOL logic by the tool 
and afterwards proven valid in the theorem-proving system of HOL. Three 
out of seven verification conditions were proven almost automatically by basic 
automatic-rewriting tools and two only required additionally the introduction 
of a witness to reduce an existentially quantified goal. The two verification 
conditions of the transitions departing from location l1 required a bit more ef­
fort. This additional effort was mainly due to the required reasoning about 
the underlying data type of the integers. The typical reasoning about pointers 
consists only of some basic equational logic. The arithmetic involved consists 
only of simple Pres burger arithmetic of array indices. This arithmetic is imple­
mented in HOL in a separate proof tactic (COOPER_TAC from the intLib 
library). This tactic functions well on the domain it is written for, however 
it requires some effort to use it in combination with proof tactics for other 
domains. Our conclusion is that a fully automated correctness proof can be 
obtained by an appropriate integration of the proof tactics involved. 

7. Related Work and Future Research 
The main contribution of this paper consists of a description of a front-end 

tool which supports the computer-aided specification and verification of a class 
of flowcharts which capture the basic dynamics of object-oriented programs. 

Currently there is much interesting work on computer-aided verification of 
object-oriented programs being carried out at various places. Here we mention 
only the projects Loop of the University of Nijmegen (LOOP URL), Bali of 
the Technical University of Munich (Bali URL), and Bandera of the Kansas 
State University (Ratcliff and Dwyer 2001). 

The specific emphasis of our project is, first of all, on the automated ver­
ification of programs annotated with assertions which allow one to specify 
properties in terms of the source code itself instead of some particular model 
of its semantics. In fact, the abstraction level of our assertion language cor­
responds with that of the Object Constraint Language (OCL) (Warmer and 
Kleppe, 1998). One of the main differences is that in OCL 'navigation' is an 
operation defined on sets of objects whereas in our assertion language it simply 
is a dereference operator on objects (as it is in the programming language). 

Moreover, for generating the verification conditions the tool implements a 
calculus for computing weakest preconditions. The formal semantics of this 
calculus is given in the full paper. This calculus has been extended in (Reus 
et al., 2001) for OCL, whereas in (Poetzsch-Heffter and Mueller 1998) a dif­
ferent Hoare logic for object-oriented programs is given based on an explicit 
representation of the global store model. The validity of the verification con-
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ditions are interactively verified by the theorem prover HOL in terms of an in­
ternal representation of the semantics of the assertion language. Our front-end 
tool thus describes the program semantics axiomatically in terms of a weakest 
precondition calculus. In fact, this calculus provides some preprocessing of 
information about aliasing and object creation which is made available to the 
theorem prover. The theorem prover itself only knows about the semantics of 
the assertion language and is used only to verify the validity of simple verifi­
cation conditions. In contrast, most existing approaches are based on a direct 
logical description of the program semantics in the theorem prover (Huisman, 
2001). Finally, the specific emphasis in this paper is on reasoning about alias­
ing and object creation. 

Currently we are extending the system with an implementation of message 
passing (De Boer, 1999) and the basics of the multi-threaded flow of control of 
Java (Abraham-Mumm and De Boer, 2000). 

References 
Abraham-Mumm, E. and De Boer, F. S. (2000). Proof-outlines for threads in Java. Proceedings 

of CONCUR 2000, Lecture Notes in Computer Science, Vol. 1877. 
URL: http://www4.informatik. tu-muenchen.de/ rvisabellelbali/. 
De Boer, F. S. (1999). A WP-calculus for 00. Proceedings of Foundations of Software Science 

and Computation Structures (FOSSACS), Lecture Notes in Computer Science, Vol. 1578. 

Ratcliff, J. and Dwyer, M. (2001). Using the Bandera tool set to model-check properties of con­
current Java software. Proceedings of CONCUR 2001, Lecture Notes in Computer Science. 

URL: http://www.cs.princeton.edu/rvappellmodern/java!CUP/. 
Huisman, M. (2001). Reasoning about Java programs in higher order logic with PVS and Is-

abelle. IPA Dissertation Series 2001-03. ISBN 90-9014440-4. 
URL: http://www.cl.cam.ac.uk/Research/HVG/HOU. 
URL: http://www.cs.princeton.edu/rvappel!modern/java/JLex/. 
URL: http://www.cs.kun.nl/rvbart/LOOP/. 
Owre, S ., Rush by, J. and Shankar, N. ( 1992). PVS: A prototype verification system. Proceedings 

of the 1 th Conference on Automated Deduction, Lecture Notes in Artificial Intelligence, Vol. 
617. 

Poetzsch-Heffter, A. and Mueller, P. (1998). Logical foundations for typed object-oriented lan­
guages. Proceedings of the IFIP Working Conference on Programming Concepts and Meth­
ods (PROCOMET98). 

Reus, B., Wirsing, M. and Hennicker, R. (2001). A Hoare Calculus for Verifying Java Real­
izations of OCL-Constrained Design Models. Proceedings of FASE 2001, Lecture Notes in 
Computer Science, Vol. 2029. 

De Roever, W.-P., De Boer, F. S., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M. and 
Zwiers, J. (2001). Concurrency Verification. Cambridge University Press. 

Warmer, J. B. and Kleppe, A. G. (1998). The object constraint language: precise modeling with 
UML. Addison-Wesley Object Technology Series. 


	COMPUTER-AIDED SPECIFICATION AND VERIFICATION OF ANNOTATED OBJECT-ORIENTED PROGRAMS
	1. Introduction
	2. The Verification Tool
	3. Flowcharts
	4. The Assertion Language
	4.1. Aliasing and Object Creation

	5. HOL
	6. An Example: Inserting into a Sorted Linked List
	7. Related Work and Future Research
	References




